manim_builder / app.py
euler314's picture
Update app.py
8089b19 verified
raw
history blame
236 kB
import streamlit as st
import tempfile
import os
import logging
from pathlib import Path
from PIL import Image
import io
import numpy as np
import sys
import subprocess
import json
from pygments import highlight
from pygments.lexers import PythonLexer, CppLexer
from pygments.formatters import HtmlFormatter
import base64
from transformers import pipeline
import re
import shutil
import time
from datetime import datetime, timedelta
import streamlit.components.v1 as components
import uuid
import platform
import pandas as pd
import plotly.express as px
import markdown
import zipfile
import contextlib
import threading
import traceback
from io import StringIO, BytesIO
# Set up enhanced logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Check if sudo is available on the system
def is_sudo_available():
"""Check if sudo command is available on the system"""
if platform.system() == "Windows":
return False # Windows doesn't use sudo
try:
result = subprocess.run(
["which", "sudo"],
capture_output=True,
text=True,
check=False
)
return result.returncode == 0
except Exception:
return False
# Try to use sudo if available, with password prompt if needed
def run_with_sudo(command, password=None):
"""Run a command with sudo if available, with optional password"""
if not is_sudo_available():
# Fall back to running without sudo
return subprocess.run(command, capture_output=True, text=True)
# Prepare sudo command
sudo_cmd = ["sudo", "-S"] + command
try:
if password:
# Run with provided password
process = subprocess.Popen(
sudo_cmd,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True
)
stdout, stderr = process.communicate(input=password + "\n")
return subprocess.CompletedProcess(
sudo_cmd, process.returncode, stdout, stderr
)
else:
# Run without password (relies on cached sudo credentials)
return subprocess.run(sudo_cmd, capture_output=True, text=True)
except Exception as e:
logger.error(f"Error running sudo command: {str(e)}")
# Fall back to running without sudo
return subprocess.run(command, capture_output=True, text=True)
# Model configuration mapping for different API requirements and limits
MODEL_CONFIGS = {
"DeepSeek-V3-0324": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "DeepSeek", "warning": None},
"DeepSeek-R1": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "DeepSeek", "warning": None},
"gpt-4o": {"max_tokens": 16000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"gpt-4.1": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"gpt-4.1-mini": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"gpt-4.1-nano": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"o3": {"max_tokens": 100000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"o4-mini": {"max_tokens": 100000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
# Default configuration for other models
"default": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Other", "warning": None}
}
# Try to import Streamlit Ace
try:
from streamlit_ace import st_ace
ACE_EDITOR_AVAILABLE = True
except ImportError:
ACE_EDITOR_AVAILABLE = False
logger.warning("streamlit-ace not available, falling back to standard text editor")
def prepare_api_params(messages, model_name):
"""Create appropriate API parameters based on model configuration"""
# Get model configuration
config = MODEL_CONFIGS.get(model_name, MODEL_CONFIGS["default"])
# Base parameters common to all models
api_params = {
"messages": messages,
"model": model_name
}
# Add the appropriate token parameter based on model's parameter name
token_param = config["param_name"]
token_value = config[token_param] # Get the actual value from the config
# Add the parameter to the API params
api_params[token_param] = token_value
return api_params, config
# New functions for accessing secrets and password verification
def get_secret(github_token_api):
"""Retrieve a secret from HuggingFace Spaces environment variables"""
secret_value = os.environ.get(github_token_api)
if not secret_value:
logger.warning(f"Secret '{github_token_api}' not found")
return None
return secret_value
def check_password():
"""Returns True if the user entered the correct password"""
# Get the password from secrets
correct_password = get_secret("password")
if not correct_password:
st.error("Admin password not configured in HuggingFace Spaces secrets")
return False
# Password input
if "password_entered" not in st.session_state:
st.session_state.password_entered = False
if not st.session_state.password_entered:
password = st.text_input("Enter password to access AI features", type="password")
if password:
if password == correct_password:
st.session_state.password_entered = True
return True
else:
st.error("Incorrect password")
return False
return False
return True
# Enhanced package management
def ensure_packages():
"""Install required packages with sudo if available"""
required_packages = {
'manim': '0.17.3',
'Pillow': '9.0.0',
'numpy': '1.22.0',
'transformers': '4.30.0',
'torch': '2.0.0',
'pygments': '2.15.1',
'streamlit-ace': '0.1.1',
'pydub': '0.25.1',
'plotly': '5.14.0',
'pandas': '2.0.0',
'python-pptx': '0.6.21',
'markdown': '3.4.3',
'fpdf': '1.7.2',
'matplotlib': '3.5.0',
'seaborn': '0.11.2',
'scipy': '1.7.3',
'huggingface_hub': '0.16.0',
'azure-ai-inference': '1.0.0b9',
'azure-core': '1.33.0',
'openai': '1.0.0'
}
# System dependencies for manim (Ubuntu/Debian-based systems)
system_dependencies = [
"libcairo2-dev",
"pkg-config",
"python3-dev",
"libpango1.0-dev",
"ffmpeg",
"texlive-latex-recommended",
"texlive-fonts-recommended",
"texlive-latex-extra",
"fonts-dejavu-core",
"libsndfile1"
]
with st.spinner("Checking and installing system dependencies..."):
# Check if we're on a system that uses apt
apt_available = False
try:
result = subprocess.run(
["which", "apt-get"],
capture_output=True,
text=True,
check=False
)
apt_available = result.returncode == 0
except Exception:
apt_available = False
if apt_available:
# Install system dependencies
progress_bar = st.progress(0)
status_text = st.empty()
# Update apt
status_text.text("Updating package lists...")
try:
# First try with sudo
sudo_password = None
if is_sudo_available():
sudo_password = st.text_input("Enter sudo password for system package installation:", type="password")
if sudo_password:
run_with_sudo(["apt-get", "update"], sudo_password)
else:
# Try without password (cached sudo credentials)
run_with_sudo(["apt-get", "update"])
else:
# Try without sudo
subprocess.run(["apt-get", "update"], capture_output=True)
except Exception as e:
logger.warning(f"Error updating apt: {str(e)}")
# Install each dependency
for i, package in enumerate(system_dependencies):
progress = (i / len(system_dependencies))
progress_bar.progress(progress)
status_text.text(f"Installing system dependency: {package}...")
try:
# Try with sudo
if is_sudo_available() and sudo_password:
result = run_with_sudo(
["apt-get", "install", "-y", package],
sudo_password
)
else:
# Try without sudo
result = subprocess.run(
["apt-get", "install", "-y", package],
capture_output=True,
text=True
)
if result.returncode != 0:
logger.warning(f"Could not install system package {package}: {result.stderr}")
except Exception as e:
logger.warning(f"Error installing system package {package}: {str(e)}")
progress_bar.progress(1.0)
status_text.text("System dependencies installation complete!")
time.sleep(0.5)
progress_bar.empty()
status_text.empty()
else:
# If not on an apt-based system, show message
st.warning("System dependencies may need to be installed manually. See the documentation for details.")
# Check and install Python packages
with st.spinner("Checking required Python packages..."):
# First, quickly check if packages are already installed
missing_packages = {}
for package, version in required_packages.items():
try:
# Try to import the package to check if it's available
if package == 'manim':
import manim
elif package == 'Pillow':
import PIL
elif package == 'numpy':
import numpy
elif package == 'transformers':
import transformers
elif package == 'torch':
import torch
elif package == 'pygments':
import pygments
elif package == 'streamlit-ace':
# This one is trickier, we already handle it with ACE_EDITOR_AVAILABLE flag
pass
elif package == 'pydub':
import pydub
elif package == 'plotly':
import plotly
elif package == 'pandas':
import pandas
elif package == 'python-pptx':
import pptx
elif package == 'markdown':
import markdown
elif package == 'fpdf':
import fpdf
elif package == 'matplotlib':
import matplotlib
elif package == 'seaborn':
import seaborn
elif package == 'scipy':
import scipy
elif package == 'huggingface_hub':
import huggingface_hub
elif package == 'azure-ai-inference':
import azure.ai.inference
elif package == 'azure-core':
import azure.core
elif package == 'openai':
import openai
except ImportError:
missing_packages[package] = version
# If no packages are missing, return success immediately
if not missing_packages:
logger.info("All required Python packages already installed.")
return True
# If there are missing packages, install them with progress reporting
progress_bar = st.progress(0)
status_text = st.empty()
# Check if pip install requires sudo
pip_requires_sudo = False
try:
# Try to write to site-packages
import site
site_packages = site.getsitepackages()[0]
# Check if we have write access
test_file = os.path.join(site_packages, "test_write_access.txt")
try:
with open(test_file, "w") as f:
f.write("test")
os.remove(test_file)
except (PermissionError, OSError):
pip_requires_sudo = True
except Exception:
# If anything goes wrong, assume we might need sudo
pip_requires_sudo = True
# Ask for sudo password if needed
sudo_password = None
if pip_requires_sudo and is_sudo_available():
sudo_password = st.text_input("Enter sudo password for Python package installation:", type="password")
for i, (package, version) in enumerate(missing_packages.items()):
try:
progress = (i / len(missing_packages))
progress_bar.progress(progress)
status_text.text(f"Installing {package}...")
pip_install_cmd = [sys.executable, "-m", "pip", "install", f"{package}>={version}"]
if pip_requires_sudo and is_sudo_available():
# Use sudo for pip install
if sudo_password:
result = run_with_sudo(pip_install_cmd, sudo_password)
else:
# Try without password (cached sudo credentials)
result = run_with_sudo(pip_install_cmd)
else:
# Use normal pip install
result = subprocess.run(
pip_install_cmd,
capture_output=True,
text=True
)
if result.returncode != 0:
st.error(f"Failed to install {package}: {result.stderr}")
logger.error(f"Package installation failed: {package}")
return False
except Exception as e:
st.error(f"Error installing {package}: {str(e)}")
logger.error(f"Package installation error: {str(e)}")
return False
progress_bar.progress(1.0)
status_text.text("All Python packages installed successfully!")
time.sleep(0.5)
progress_bar.empty()
status_text.empty()
return True
def install_custom_packages(package_list):
"""Install custom packages specified by the user with sudo if needed"""
if not package_list.strip():
return True, "No packages specified"
# Split and clean package list
packages = [pkg.strip() for pkg in package_list.split(',') if pkg.strip()]
if not packages:
return True, "No valid packages specified"
status_placeholder = st.sidebar.empty()
progress_bar = st.sidebar.progress(0)
# Check if pip install requires sudo
pip_requires_sudo = False
try:
# Try to write to site-packages
import site
site_packages = site.getsitepackages()[0]
# Check if we have write access
test_file = os.path.join(site_packages, "test_write_access.txt")
try:
with open(test_file, "w") as f:
f.write("test")
os.remove(test_file)
except (PermissionError, OSError):
pip_requires_sudo = True
except Exception:
# If anything goes wrong, assume we might need sudo
pip_requires_sudo = True
# Ask for sudo password if needed
sudo_password = None
if pip_requires_sudo and is_sudo_available():
sudo_password = st.text_input("Enter sudo password for custom package installation:", type="password")
results = []
success = True
for i, package in enumerate(packages):
try:
progress = (i / len(packages))
progress_bar.progress(progress)
status_placeholder.text(f"Installing {package}...")
pip_install_cmd = [sys.executable, "-m", "pip", "install", package]
if pip_requires_sudo and is_sudo_available():
# Use sudo for pip install
if sudo_password:
result = run_with_sudo(pip_install_cmd, sudo_password)
else:
# Try without password (cached sudo credentials)
result = run_with_sudo(pip_install_cmd)
else:
# Use normal pip install
result = subprocess.run(
pip_install_cmd,
capture_output=True,
text=True
)
if result.returncode != 0:
error_msg = f"Failed to install {package}: {result.stderr}"
results.append(error_msg)
logger.error(error_msg)
success = False
else:
results.append(f"Successfully installed {package}")
logger.info(f"Successfully installed custom package: {package}")
except Exception as e:
error_msg = f"Error installing {package}: {str(e)}"
results.append(error_msg)
logger.error(error_msg)
success = False
progress_bar.progress(1.0)
status_placeholder.text("Installation complete!")
time.sleep(0.5)
progress_bar.empty()
status_placeholder.empty()
return success, "\n".join(results)
# Install C/C++ libraries with sudo if needed
def install_cpp_libraries(libraries):
"""Install C/C++ libraries using system package manager with sudo if needed"""
if not libraries:
return True, "No libraries specified"
# Library to package mappings for different systems
library_packages = {
"Ubuntu": {
"Eigen": ["libeigen3-dev"],
"Boost": ["libboost-all-dev"],
"OpenCV": ["libopencv-dev", "python3-opencv"],
"FFTW": ["libfftw3-dev"],
"SDL2": ["libsdl2-dev"],
"SFML": ["libsfml-dev"],
"OpenGL": ["libgl1-mesa-dev", "libglu1-mesa-dev", "freeglut3-dev"]
},
"Debian": {
"Eigen": ["libeigen3-dev"],
"Boost": ["libboost-all-dev"],
"OpenCV": ["libopencv-dev", "python3-opencv"],
"FFTW": ["libfftw3-dev"],
"SDL2": ["libsdl2-dev"],
"SFML": ["libsfml-dev"],
"OpenGL": ["libgl1-mesa-dev", "libglu1-mesa-dev", "freeglut3-dev"]
},
"Fedora": {
"Eigen": ["eigen3-devel"],
"Boost": ["boost-devel"],
"OpenCV": ["opencv-devel", "python3-opencv"],
"FFTW": ["fftw-devel"],
"SDL2": ["SDL2-devel"],
"SFML": ["SFML-devel"],
"OpenGL": ["mesa-libGL-devel", "mesa-libGLU-devel", "freeglut-devel"]
},
"CentOS": {
"Eigen": ["eigen3-devel"],
"Boost": ["boost-devel"],
"OpenCV": ["opencv-devel"],
"FFTW": ["fftw-devel"],
"SDL2": ["SDL2-devel"],
"SFML": ["SFML-devel"],
"OpenGL": ["mesa-libGL-devel", "mesa-libGLU-devel", "freeglut-devel"]
},
"Arch": {
"Eigen": ["eigen"],
"Boost": ["boost"],
"OpenCV": ["opencv"],
"FFTW": ["fftw"],
"SDL2": ["sdl2"],
"SFML": ["sfml"],
"OpenGL": ["mesa", "glu", "freeglut"]
},
"MacOS": {
"Eigen": ["eigen"],
"Boost": ["boost"],
"OpenCV": ["opencv"],
"FFTW": ["fftw"],
"SDL2": ["sdl2"],
"SFML": ["sfml"],
"OpenGL": ["mesa", "freeglut"]
}
}
# Detect OS
os_name = "Unknown"
package_manager = None
install_cmd = []
if platform.system() == "Linux":
# Try to detect Linux distribution
try:
if os.path.exists("/etc/os-release"):
with open("/etc/os-release", "r") as f:
os_release = f.read()
if "Ubuntu" in os_release:
os_name = "Ubuntu"
package_manager = "apt-get"
install_cmd = ["apt-get", "install", "-y"]
elif "Debian" in os_release:
os_name = "Debian"
package_manager = "apt-get"
install_cmd = ["apt-get", "install", "-y"]
elif "Fedora" in os_release:
os_name = "Fedora"
package_manager = "dnf"
install_cmd = ["dnf", "install", "-y"]
elif "CentOS" in os_release:
os_name = "CentOS"
package_manager = "yum"
install_cmd = ["yum", "install", "-y"]
elif "Arch" in os_release:
os_name = "Arch"
package_manager = "pacman"
install_cmd = ["pacman", "-S", "--noconfirm"]
# Fallback detection
if os_name == "Unknown":
which_apt = subprocess.run(["which", "apt-get"], capture_output=True, text=True)
which_dnf = subprocess.run(["which", "dnf"], capture_output=True, text=True)
which_yum = subprocess.run(["which", "yum"], capture_output=True, text=True)
which_pacman = subprocess.run(["which", "pacman"], capture_output=True, text=True)
if which_apt.returncode == 0:
os_name = "Debian"
package_manager = "apt-get"
install_cmd = ["apt-get", "install", "-y"]
elif which_dnf.returncode == 0:
os_name = "Fedora"
package_manager = "dnf"
install_cmd = ["dnf", "install", "-y"]
elif which_yum.returncode == 0:
os_name = "CentOS"
package_manager = "yum"
install_cmd = ["yum", "install", "-y"]
elif which_pacman.returncode == 0:
os_name = "Arch"
package_manager = "pacman"
install_cmd = ["pacman", "-S", "--noconfirm"]
except Exception as e:
logger.error(f"Error detecting Linux distribution: {str(e)}")
elif platform.system() == "Darwin":
os_name = "MacOS"
which_brew = subprocess.run(["which", "brew"], capture_output=True, text=True)
if which_brew.returncode == 0:
package_manager = "brew"
install_cmd = ["brew", "install"]
# If package manager not detected, return error
if not package_manager:
return False, f"Could not detect package manager for {platform.system()}. Please install libraries manually."
# Get packages to install
all_packages = []
for library in libraries:
if os_name in library_packages and library in library_packages[os_name]:
all_packages.extend(library_packages[os_name][library])
if not all_packages:
return False, f"No packages found for the selected libraries on {os_name}. Please install libraries manually."
# Display progress
status_placeholder = st.sidebar.empty()
progress_bar = st.sidebar.progress(0)
# Ask for sudo password if needed (most package managers need sudo)
sudo_password = None
if is_sudo_available() and platform.system() != "Darwin": # macOS Homebrew doesn't need sudo
sudo_password = st.text_input("Enter sudo password for C/C++ library installation:", type="password")
results = []
success = True
# Update package lists if needed
if package_manager in ["apt-get", "apt"]:
status_placeholder.text("Updating package lists...")
try:
if is_sudo_available() and sudo_password:
result = run_with_sudo(["apt-get", "update"], sudo_password)
elif is_sudo_available():
result = run_with_sudo(["apt-get", "update"])
else:
result = subprocess.run(["apt-get", "update"], capture_output=True, text=True)
if result.returncode != 0:
logger.warning(f"Failed to update package lists: {result.stderr}")
results.append(f"Warning: Failed to update package lists: {result.stderr}")
except Exception as e:
logger.warning(f"Error updating package lists: {str(e)}")
results.append(f"Warning: Error updating package lists: {str(e)}")
# Install each package
for i, package in enumerate(all_packages):
try:
progress = (i / len(all_packages))
progress_bar.progress(progress)
status_placeholder.text(f"Installing {package}...")
cmd = install_cmd + [package]
if is_sudo_available() and platform.system() != "Darwin": # macOS Homebrew doesn't need sudo
if sudo_password:
result = run_with_sudo(cmd, sudo_password)
else:
result = run_with_sudo(cmd)
else:
result = subprocess.run(cmd, capture_output=True, text=True)
if result.returncode != 0:
error_msg = f"Failed to install {package}: {result.stderr}"
results.append(error_msg)
logger.error(error_msg)
success = False
else:
results.append(f"Successfully installed {package}")
logger.info(f"Successfully installed C/C++ library package: {package}")
except Exception as e:
error_msg = f"Error installing {package}: {str(e)}"
results.append(error_msg)
logger.error(error_msg)
success = False
progress_bar.progress(1.0)
status_placeholder.text("Installation complete!")
time.sleep(0.5)
progress_bar.empty()
status_placeholder.empty()
return success, "\n".join(results)
# Auto-detect C/C++ libraries
def detect_cpp_libraries():
"""Auto-detect installed C/C++ libraries on the system"""
libraries = {}
# Function to check if a library is installed
def check_library(name, headers, pkg_config=None):
# Check if headers exist
header_found = False
for header in headers:
# Common include directories
include_dirs = [
"/usr/include",
"/usr/local/include",
"/opt/local/include",
"/opt/homebrew/include"
]
for include_dir in include_dirs:
if os.path.exists(os.path.join(include_dir, header)):
header_found = True
break
# Check using pkg-config if available
pkg_config_found = False
if pkg_config:
try:
result = subprocess.run(
["pkg-config", "--exists", pkg_config],
capture_output=True,
check=False
)
pkg_config_found = result.returncode == 0
except Exception:
pass
return header_found or pkg_config_found
# Check for common libraries
libraries["Eigen"] = check_library("Eigen", ["Eigen/Core", "eigen3/Eigen/Core"])
libraries["Boost"] = check_library("Boost", ["boost/config.hpp", "boost/version.hpp"])
libraries["OpenCV"] = check_library("OpenCV", ["opencv2/opencv.hpp"], "opencv4")
libraries["FFTW"] = check_library("FFTW", ["fftw3.h"], "fftw3")
libraries["SDL2"] = check_library("SDL2", ["SDL2/SDL.h"], "sdl2")
libraries["SFML"] = check_library("SFML", ["SFML/Graphics.hpp"], "sfml-all")
libraries["OpenGL"] = check_library("OpenGL", ["GL/gl.h", "OpenGL/gl.h"])
return libraries
@st.cache_resource(ttl=3600)
def init_ai_models_direct():
"""Direct implementation using the exact pattern from the example code"""
try:
# Get token from secrets
token = get_secret("github_token_api")
if not token:
st.error("GitHub token not found in secrets. Please add 'github_token_api' to your HuggingFace Spaces secrets.")
return None
# Log what we're doing - for debugging
logger.info(f"Initializing AI model with token: {token[:5]}...")
# Use exact imports as in your example
import os
from azure.ai.inference import ChatCompletionsClient
from azure.ai.inference.models import SystemMessage, UserMessage
from azure.core.credentials import AzureKeyCredential
# Use exact endpoint as in your example
endpoint = "https://models.inference.ai.azure.com"
# Use default model
model_name = "gpt-4o"
# Create client exactly as in your example
client = ChatCompletionsClient(
endpoint=endpoint,
credential=AzureKeyCredential(token),
)
# Return the necessary information
return {
"client": client,
"model_name": model_name,
"endpoint": endpoint
}
except ImportError as ie:
st.error(f"Import error: {str(ie)}. Please make sure azure-ai-inference is installed.")
logger.error(f"Import error: {str(ie)}")
return None
except Exception as e:
st.error(f"Error initializing AI model: {str(e)}")
logger.error(f"Initialization error: {str(e)}")
return None
def suggest_code_completion(code_snippet, models):
"""Generate code completion using the AI model"""
if not models:
st.error("AI models not properly initialized.")
return None
try:
# Create the prompt
prompt = f"""Write a complete Manim animation scene based on this code or idea:
{code_snippet}
The code should be a complete, working Manim animation that includes:
- Proper Scene class definition
- Constructor with animations
- Proper use of self.play() for animations
- Proper wait times between animations
Here's the complete Manim code:
"""
with st.spinner("AI is generating your animation code..."):
# Get the current model name and base URL
model_name = models["model_name"]
# Convert message to the appropriate format based on model category
config = MODEL_CONFIGS.get(model_name, MODEL_CONFIGS["default"])
category = config.get("category", "Other")
if category == "OpenAI":
# Import OpenAI client
from openai import OpenAI
# Get token
token = get_secret("github_token_api")
# Create or get client
if "openai_client" not in models:
client = OpenAI(
base_url="https://models.github.ai/inference",
api_key=token
)
models["openai_client"] = client
else:
client = models["openai_client"]
# For OpenAI models, we need role-based messages
messages = [
{"role": "system", "content": "You are an expert in Manim animations."},
{"role": "user", "content": prompt}
]
# Create params
params = {
"messages": messages,
"model": model_name
}
# Add token parameter
token_param = config["param_name"]
params[token_param] = config[token_param]
# Make API call
response = client.chat.completions.create(**params)
completed_code = response.choices[0].message.content
else:
# Use Azure client
from azure.ai.inference.models import UserMessage
# Convert message format for Azure
messages = [UserMessage(prompt)]
api_params, _ = prepare_api_params(messages, model_name)
# Make API call with Azure client
response = models["client"].complete(**api_params)
completed_code = response.choices[0].message.content
# Process the code
if "```python" in completed_code:
completed_code = completed_code.split("```python")[1].split("```")[0]
elif "```" in completed_code:
completed_code = completed_code.split("```")[1].split("```")[0]
# Add Scene class if missing
if "Scene" not in completed_code:
completed_code = f"""from manim import *
class MyScene(Scene):
def construct(self):
{completed_code}"""
return completed_code
except Exception as e:
st.error(f"Error generating code: {str(e)}")
st.code(traceback.format_exc())
return None
def check_model_freshness():
"""Check if models need to be reloaded based on TTL"""
if 'ai_models' not in st.session_state or st.session_state.ai_models is None:
return False
if 'last_loaded' not in st.session_state.ai_models:
return False
last_loaded = datetime.fromisoformat(st.session_state.ai_models['last_loaded'])
ttl_hours = 1 # 1 hour TTL
return datetime.now() - last_loaded < timedelta(hours=ttl_hours)
def extract_scene_class_name(python_code):
"""Extract the scene class name from Python code."""
import re
scene_classes = re.findall(r'class\s+(\w+)\s*\([^)]*Scene[^)]*\)', python_code)
if scene_classes:
# Return the first scene class found
return scene_classes[0]
else:
# If no scene class is found, use a default name
return "MyScene"
def suggest_code_completion(code_snippet, models):
if not models or "code_model" not in models:
st.error("AI models not properly initialized")
return None
try:
prompt = f"""Write a complete Manim animation scene based on this code or idea:
{code_snippet}
The code should be a complete, working Manim animation that includes:
- Proper Scene class definition
- Constructor with animations
- Proper use of self.play() for animations
- Proper wait times between animations
Here's the complete Manim code:
```python
"""
with st.spinner("AI is generating your animation code..."):
response = models["code_model"](
prompt,
max_length=1024,
do_sample=True,
temperature=0.2,
top_p=0.95,
top_k=50,
num_return_sequences=1,
truncation=True,
pad_token_id=50256
)
if not response or not response[0].get('generated_text'):
st.error("No valid completion generated")
return None
completed_code = response[0]['generated_text']
if "```python" in completed_code:
completed_code = completed_code.split("```python")[1].split("```")[0]
if "Scene" not in completed_code:
completed_code = f"""from manim import *
class MyScene(Scene):
def construct(self):
{completed_code}"""
return completed_code
except Exception as e:
st.error(f"Error suggesting code: {str(e)}")
logger.error(f"Code suggestion error: {str(e)}")
return None
# Quality presets
QUALITY_PRESETS = {
"480p": {"resolution": "480p", "fps": "30"},
"720p": {"resolution": "720p", "fps": "30"},
"1080p": {"resolution": "1080p", "fps": "60"},
"4K": {"resolution": "2160p", "fps": "60"},
"8K": {"resolution": "4320p", "fps": "60"} # Added 8K option
}
# Animation speeds
ANIMATION_SPEEDS = {
"Slow": 0.5,
"Normal": 1.0,
"Fast": 2.0,
"Very Fast": 3.0
}
# Export formats
EXPORT_FORMATS = {
"MP4 Video": "mp4",
"GIF Animation": "gif",
"WebM Video": "webm",
"PNG Image Sequence": "png_sequence",
"SVG Image": "svg"
}
# FPS options
FPS_OPTIONS = [15, 24, 30, 60, 120]
def highlight_code(code):
formatter = HtmlFormatter(style='monokai')
highlighted = highlight(code, PythonLexer(), formatter)
return highlighted, formatter.get_style_defs()
def generate_manim_preview(python_code):
"""Generate a lightweight preview of the Manim animation"""
try:
# Extract scene components for preview
scene_objects = []
if "Circle" in python_code:
scene_objects.append("circle")
if "Square" in python_code:
scene_objects.append("square")
if "MathTex" in python_code or "Tex" in python_code:
scene_objects.append("equation")
if "Text" in python_code:
scene_objects.append("text")
if "Axes" in python_code:
scene_objects.append("graph")
if "ThreeDScene" in python_code or "ThreeDAxes" in python_code:
scene_objects.append("3D scene")
if "Sphere" in python_code:
scene_objects.append("sphere")
if "Cube" in python_code:
scene_objects.append("cube")
# Generate a more detailed visual preview based on extracted objects
object_icons = {
"circle": "⭕",
"square": "🔲",
"equation": "📊",
"text": "📝",
"graph": "📈",
"3D scene": "🧊",
"sphere": "🌐",
"cube": "🧊"
}
icon_html = ""
for obj in scene_objects:
if obj in object_icons:
icon_html += f'<span style="font-size:2rem; margin:0.3rem;">{object_icons[obj]}</span>'
preview_html = f"""
<div style="background-color:#000000; width:100%; height:220px; border-radius:10px; display:flex; flex-direction:column; align-items:center; justify-content:center; color:white; text-align:center;">
<h3 style="margin-bottom:10px;">Animation Preview</h3>
<div style="margin-bottom:15px;">
{icon_html if icon_html else '<span style="font-size:2rem;">🎬</span>'}
</div>
<p>Scene contains: {', '.join(scene_objects) if scene_objects else 'No detected objects'}</p>
<div style="margin-top:10px; font-size:0.8rem; opacity:0.8;">Full rendering required for accurate preview</div>
</div>
"""
return preview_html
except Exception as e:
logger.error(f"Preview generation error: {str(e)}")
return f"""
<div style="background-color:#FF0000; width:100%; height:200px; border-radius:10px; display:flex; align-items:center; justify-content:center; color:white; text-align:center;">
<div>
<h3>Preview Error</h3>
<p>{str(e)}</p>
</div>
</div>
"""
def prepare_audio_for_manim(audio_file, target_dir):
"""Process audio file and return path for use in Manim"""
try:
# Create audio directory if it doesn't exist
audio_dir = os.path.join(target_dir, "audio")
os.makedirs(audio_dir, exist_ok=True)
# Generate a unique filename
filename = f"audio_{int(time.time())}.mp3"
output_path = os.path.join(audio_dir, filename)
# Save audio file
with open(output_path, "wb") as f:
f.write(audio_file.getvalue())
return output_path
except Exception as e:
logger.error(f"Audio processing error: {str(e)}")
return None
def mp4_to_gif(mp4_path, output_path, fps=15):
"""Convert MP4 to GIF using ffmpeg as a backup when Manim fails"""
try:
# Use ffmpeg for conversion with optimized settings
command = [
"ffmpeg",
"-i", mp4_path,
"-vf", f"fps={fps},scale=640:-1:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse",
"-loop", "0",
output_path
]
# Run the conversion
result = subprocess.run(command, capture_output=True, text=True)
if result.returncode != 0:
logger.error(f"FFmpeg conversion error: {result.stderr}")
return None
return output_path
except Exception as e:
logger.error(f"GIF conversion error: {str(e)}")
return None
def generate_manim_video(python_code, format_type, quality_preset, animation_speed=1.0, audio_path=None, fps=None):
temp_dir = None
progress_placeholder = st.empty()
status_placeholder = st.empty()
log_placeholder = st.empty()
video_data = None # Initialize video data variable
try:
if not python_code or not format_type:
raise ValueError("Missing required parameters")
# Create temporary directory
temp_dir = tempfile.mkdtemp(prefix="manim_render_")
# Extract the scene class name from the code
scene_class = extract_scene_class_name(python_code)
logger.info(f"Detected scene class: {scene_class}")
# If audio is provided, we need to modify the code to include it
if audio_path:
# Check if the code already has a with_sound decorator
if "with_sound" not in python_code:
# Add the necessary import
if "from manim.scene.scene_file_writer import SceneFileWriter" not in python_code:
python_code = "from manim.scene.scene_file_writer import SceneFileWriter\n" + python_code
# Add sound to the scene
scene_def_pattern = f"class {scene_class}\\(.*?\\):"
scene_def_match = re.search(scene_def_pattern, python_code)
if scene_def_match:
scene_def = scene_def_match.group(0)
scene_def_with_sound = f"@with_sound(\"{audio_path}\")\n{scene_def}"
python_code = python_code.replace(scene_def, scene_def_with_sound)
else:
logger.warning("Could not find scene definition to add audio")
# Write the code to a file
scene_file = os.path.join(temp_dir, "scene.py")
with open(scene_file, "w", encoding="utf-8") as f:
f.write(python_code)
# Map quality preset to Manim quality flag
quality_map = {
"480p": "-ql", # Low quality
"720p": "-qm", # Medium quality
"1080p": "-qh", # High quality
"4K": "-qk", # 4K quality
"8K": "-qp" # 8K quality (production quality)
}
quality_flag = quality_map.get(quality_preset, "-qm")
# Handle special formats
if format_type == "png_sequence":
# For PNG sequence, we need additional flags
format_arg = "--format=png"
extra_args = ["--save_pngs"]
elif format_type == "svg":
# For SVG, we need a different format
format_arg = "--format=svg"
extra_args = []
else:
# Standard video formats
format_arg = f"--format={format_type}"
extra_args = []
# Add custom FPS if specified
if fps is not None:
extra_args.append(f"--fps={fps}")
# Show status and create progress bar
status_placeholder.info(f"Rendering {scene_class} with {quality_preset} quality...")
progress_bar = progress_placeholder.progress(0)
# Build command
command = [
"manim",
scene_file,
scene_class,
quality_flag,
format_arg
]
command.extend(extra_args)
logger.info(f"Running command: {' '.join(command)}")
# Execute the command
process = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True
)
# Track output
full_output = []
output_file_path = None
mp4_output_path = None # Track MP4 output for GIF fallback
# Animation tracking variables
total_animations = None
current_animation = 0
total_frames = None
current_frame = 0
while True:
line = process.stdout.readline()
if not line and process.poll() is not None:
break
full_output.append(line)
log_placeholder.code("".join(full_output[-10:]))
# Try to detect total animations
if "Rendering animation number" in line or "Processing animation" in line:
try:
# Extract current animation number
anim_match = re.search(r"(?:Rendering animation number|Processing animation) (\d+) (?:out of|/) (\d+)", line)
if anim_match:
current_animation = int(anim_match.group(1))
total_animations = int(anim_match.group(2))
logger.info(f"Animation progress: {current_animation}/{total_animations}")
# Calculate progress based on animations
animation_progress = current_animation / total_animations
progress_bar.progress(animation_progress)
status_placeholder.info(f"Rendering {scene_class}: Animation {current_animation}/{total_animations} ({int(animation_progress*100)}%)")
except Exception as e:
logger.error(f"Error parsing animation progress: {str(e)}")
# Try to extract total frames information as fallback
elif "Render animations with total frames:" in line and not total_animations:
try:
total_frames = int(line.split("Render animations with total frames:")[1].strip().split()[0])
logger.info(f"Total frames to render: {total_frames}")
except Exception as e:
logger.error(f"Error parsing total frames: {str(e)}")
# Update progress bar based on frame information if animation count not available
elif "Rendering frame" in line and total_frames and not total_animations:
try:
# Extract current frame number
frame_match = re.search(r"Rendering frame (\d+)", line)
if frame_match:
current_frame = int(frame_match.group(1))
# Calculate progress as current frame / total frames
frame_progress = min(0.99, current_frame / total_frames)
progress_bar.progress(frame_progress)
# Update status with frame information
status_placeholder.info(f"Rendering {scene_class}: Frame {current_frame}/{total_frames} ({int(frame_progress*100)}%)")
except Exception as e:
logger.error(f"Error parsing frame progress: {str(e)}")
elif "%" in line and not total_animations and not total_frames:
try:
# Fallback to percentage if available
percent = float(line.split("%")[0].strip().split()[-1])
progress_bar.progress(min(0.99, percent / 100))
except:
pass
# Try to capture the output file path from Manim's output
if "File ready at" in line:
try:
# Combine next few lines to get the full path
path_parts = []
path_parts.append(line.split("File ready at")[-1].strip())
# Read up to 5 more lines to get the complete path
for _ in range(5):
additional_line = process.stdout.readline()
if additional_line:
full_output.append(additional_line)
path_parts.append(additional_line.strip())
if additional_line.strip().endswith(('.mp4', '.gif', '.webm', '.svg')):
break
# Join all parts and clean up
potential_path = ''.join(path_parts).replace("'", "").strip()
# Look for path pattern surrounded by quotes
path_match = re.search(r'([\'"]?)((?:/|[a-zA-Z]:\\).*?\.(?:mp4|gif|webm|svg))(\1)', potential_path)
if path_match:
output_file_path = path_match.group(2)
logger.info(f"Found output path in logs: {output_file_path}")
# Track MP4 file for potential GIF fallback
if output_file_path.endswith('.mp4'):
mp4_output_path = output_file_path
except Exception as e:
logger.error(f"Error parsing output path: {str(e)}")
# Wait for the process to complete
process.wait()
progress_bar.progress(1.0)
# IMPORTANT: Wait a moment for file system to catch up
time.sleep(3)
# Special handling for GIF format - if Manim failed to generate a GIF but we have an MP4
if format_type == "gif" and (not output_file_path or not os.path.exists(output_file_path)) and mp4_output_path and os.path.exists(mp4_output_path):
status_placeholder.info("GIF generation via Manim failed. Trying FFmpeg conversion...")
# Generate a GIF using FFmpeg
gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif")
gif_path = mp4_to_gif(mp4_output_path, gif_output_path, fps=fps if fps else 15)
if gif_path and os.path.exists(gif_path):
output_file_path = gif_path
logger.info(f"Successfully converted MP4 to GIF using FFmpeg: {gif_path}")
# For PNG sequence, we need to collect the PNGs
if format_type == "png_sequence":
# Find the PNG directory
png_dirs = []
search_dirs = [
os.path.join(os.getcwd(), "media", "images", scene_class, "Animations"),
os.path.join(temp_dir, "media", "images", scene_class, "Animations"),
"/tmp/media/images",
]
for search_dir in search_dirs:
if os.path.exists(search_dir):
for root, dirs, _ in os.walk(search_dir):
for d in dirs:
if os.path.exists(os.path.join(root, d)):
png_dirs.append(os.path.join(root, d))
if png_dirs:
# Get the newest directory
newest_dir = max(png_dirs, key=os.path.getctime)
# Create a zip file with all PNGs
png_files = [f for f in os.listdir(newest_dir) if f.endswith('.png')]
if png_files:
zip_path = os.path.join(temp_dir, f"{scene_class}_pngs.zip")
with zipfile.ZipFile(zip_path, 'w') as zipf:
for png in png_files:
png_path = os.path.join(newest_dir, png)
zipf.write(png_path, os.path.basename(png_path))
with open(zip_path, 'rb') as f:
video_data = f.read()
logger.info(f"Created PNG sequence zip: {zip_path}")
else:
logger.error("No PNG files found in directory")
else:
logger.error("No PNG directories found")
elif output_file_path and os.path.exists(output_file_path):
# For other formats, read the output file directly
with open(output_file_path, 'rb') as f:
video_data = f.read()
logger.info(f"Read output file from path: {output_file_path}")
else:
# If we didn't find the output path, search for files
search_paths = [
os.path.join(os.getcwd(), "media", "videos"),
os.path.join(os.getcwd(), "media", "videos", "scene"),
os.path.join(os.getcwd(), "media", "videos", scene_class),
"/tmp/media/videos",
temp_dir,
os.path.join(temp_dir, "media", "videos"),
]
# Add quality-specific paths
for quality in ["480p30", "720p30", "1080p60", "2160p60", "4320p60"]:
search_paths.append(os.path.join(os.getcwd(), "media", "videos", "scene", quality))
search_paths.append(os.path.join(os.getcwd(), "media", "videos", scene_class, quality))
# For SVG format
if format_type == "svg":
search_paths.extend([
os.path.join(os.getcwd(), "media", "designs"),
os.path.join(os.getcwd(), "media", "designs", scene_class),
])
# Find all output files in the search paths
output_files = []
for search_path in search_paths:
if os.path.exists(search_path):
for root, _, files in os.walk(search_path):
for file in files:
if file.endswith(f".{format_type}") and "partial" not in file:
file_path = os.path.join(root, file)
if os.path.exists(file_path):
output_files.append(file_path)
logger.info(f"Found output file: {file_path}")
if output_files:
# Get the newest file
latest_file = max(output_files, key=os.path.getctime)
with open(latest_file, 'rb') as f:
video_data = f.read()
logger.info(f"Read output from file search: {latest_file}")
# If the format is GIF but we got an MP4, try to convert it
if format_type == "gif" and latest_file.endswith('.mp4'):
gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif")
gif_path = mp4_to_gif(latest_file, gif_output_path, fps=fps if fps else 15)
if gif_path and os.path.exists(gif_path):
with open(gif_path, 'rb') as f:
video_data = f.read()
logger.info(f"Successfully converted MP4 to GIF using FFmpeg: {gif_path}")
# If we got output data, return it
if video_data:
file_size_mb = len(video_data) / (1024 * 1024)
# Clear placeholders
progress_placeholder.empty()
status_placeholder.empty()
log_placeholder.empty()
return video_data, f"✅ Animation generated successfully! ({file_size_mb:.1f} MB)"
else:
output_str = ''.join(full_output)
logger.error(f"No output files found. Full output: {output_str}")
# Check if we have an MP4 but need a GIF (special handling for GIF issues)
if format_type == "gif":
# Try one more aggressive search for any MP4 file
mp4_files = []
for search_path in [os.getcwd(), temp_dir, "/tmp"]:
for root, _, files in os.walk(search_path):
for file in files:
if file.endswith('.mp4') and scene_class.lower() in file.lower():
mp4_path = os.path.join(root, file)
if os.path.exists(mp4_path) and os.path.getsize(mp4_path) > 0:
mp4_files.append(mp4_path)
if mp4_files:
newest_mp4 = max(mp4_files, key=os.path.getctime)
logger.info(f"Found MP4 for GIF conversion: {newest_mp4}")
# Convert to GIF
gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif")
gif_path = mp4_to_gif(newest_mp4, gif_output_path, fps=fps if fps else 15)
if gif_path and os.path.exists(gif_path):
with open(gif_path, 'rb') as f:
video_data = f.read()
# Clear placeholders
progress_placeholder.empty()
status_placeholder.empty()
log_placeholder.empty()
file_size_mb = len(video_data) / (1024 * 1024)
return video_data, f"✅ Animation converted to GIF successfully! ({file_size_mb:.1f} MB)"
return None, f"❌ Error: No output files were generated.\n\nMakim output:\n{output_str[:500]}..."
except Exception as e:
logger.error(f"Error: {str(e)}")
import traceback
logger.error(traceback.format_exc())
if progress_placeholder:
progress_placeholder.empty()
if status_placeholder:
status_placeholder.error(f"Rendering Error: {str(e)}")
if log_placeholder:
log_placeholder.empty()
return None, f"❌ Error: {str(e)}"
finally:
# CRITICAL: Only cleanup after we've captured the output data
if temp_dir and os.path.exists(temp_dir) and video_data is not None:
try:
shutil.rmtree(temp_dir)
logger.info(f"Cleaned up temp dir: {temp_dir}")
except Exception as e:
logger.error(f"Failed to clean temp dir: {str(e)}")
# ENHANCED PYTHON RUNNER FUNCTIONS
def detect_input_calls(code):
"""Detect input() calls in Python code to prepare for handling"""
input_calls = []
lines = code.split('\n')
for i, line in enumerate(lines):
if 'input(' in line and not line.strip().startswith('#'):
# Try to extract the prompt if available
prompt_match = re.search(r'input\([\'"](.+?)[\'"]\)', line)
prompt = prompt_match.group(1) if prompt_match else f"Input for line {i+1}"
input_calls.append({"line": i+1, "prompt": prompt})
return input_calls
def run_python_script_enhanced(code, inputs=None, timeout=60, enable_debug=False, enable_profile=False,
additional_libs=None, project_files=None, realtime_viz=False):
"""Enhanced version of run_python_script with debugging, profiling, etc."""
result = {
"stdout": "",
"stderr": "",
"exception": None,
"plots": [],
"dataframes": [],
"execution_time": 0,
"profile_data": None,
"debug_steps": [],
"realtime_data": []
}
# Create a tempdir for script execution
with tempfile.TemporaryDirectory() as temp_dir:
# Path for saving plots
plot_dir = os.path.join(temp_dir, 'plots')
os.makedirs(plot_dir, exist_ok=True)
# Handle multi-file project if provided
if project_files:
for filename, file_content in project_files.items():
with open(os.path.join(temp_dir, filename), 'w', encoding='utf-8') as f:
f.write(file_content)
# Set the main script path
main_script = os.path.join(temp_dir, "main.py")
else:
# Write the single code file
main_script = os.path.join(temp_dir, "script.py")
with open(main_script, 'w', encoding='utf-8') as f:
f.write(code)
# Add library imports if specified
if additional_libs:
lib_imports = "\n".join([f"import {lib}" for lib in additional_libs if lib != "numpy" and lib != "matplotlib"])
if lib_imports:
with open(main_script, 'r+', encoding='utf-8') as f:
content = f.read()
f.seek(0, 0)
f.write(lib_imports + "\n\n" + content)
# Add debugging setup if enabled
if enable_debug:
debug_setup = """
import pdb
import sys
import traceback
class StringIODebugger:
def __init__(self):
self.steps = []
def add_step(self, frame, event, arg):
if event == 'line':
self.steps.append({
'file': frame.f_code.co_filename,
'line': frame.f_lineno,
'function': frame.f_code.co_name,
'locals': {k: str(v) for k, v in frame.f_locals.items() if not k.startswith('__')}
})
return self
debug_steps = []
def trace_calls(frame, event, arg):
if event != 'call':
return
co = frame.f_code
func_name = co.co_name
if func_name == 'write':
return
line_no = frame.f_lineno
filename = co.co_filename
if 'debugger' in filename or func_name.startswith('__'):
return
debug_steps.append(f"Calling {func_name} in {filename} at line {line_no}")
return trace_calls
sys.settrace(trace_calls)
"""
with open(main_script, 'r+', encoding='utf-8') as f:
content = f.read()
f.seek(0, 0)
f.write(debug_setup + "\n" + content)
# Add profiling if enabled
if enable_profile:
profile_setup = """
import cProfile
import pstats
import io
# Set up profiler
profiler = cProfile.Profile()
profiler.enable()
"""
profile_teardown = """
# Finish profiling
profiler.disable()
s = io.StringIO()
ps = pstats.Stats(profiler, stream=s).sort_stats('cumulative')
ps.print_stats()
with open('profile_results.txt', 'w') as f:
f.write(s.getvalue())
"""
with open(main_script, 'r+', encoding='utf-8') as f:
content = f.read()
f.seek(0, 0)
f.write(profile_setup + "\n" + content + "\n" + profile_teardown)
# Add real-time visualization if enabled
if realtime_viz:
realtime_viz_setup = """
# Setup for real-time visualization
import threading
import json
import time
class RealTimeData:
def __init__(self):
self.data = []
def add_data(self, label, value):
self.data.append({'label': label, 'value': value, 'time': time.time()})
# Write to file for real-time monitoring
with open('realtime_data.json', 'w') as f:
json.dump(self.data, f)
rt_data = RealTimeData()
# Example usage: rt_data.add_data("iteration", i)
"""
with open(main_script, 'r+', encoding='utf-8') as f:
content = f.read()
f.seek(0, 0)
f.write(realtime_viz_setup + "\n" + content)
# Add input handling code
if inputs and len(inputs) > 0:
# Modify the code to use predefined inputs instead of waiting for user input
input_handling = """
# Input values provided by the user
__INPUT_VALUES = {}
__INPUT_INDEX = 0
# Override the built-in input function
def input(prompt=''):
global __INPUT_INDEX
print(prompt, end='')
if __INPUT_INDEX < len(__INPUT_VALUES):
value = __INPUT_VALUES[__INPUT_INDEX]
__INPUT_INDEX += 1
print(value) # Echo the input
return value
else:
print("\\n[WARNING] No more predefined inputs available, using empty string")
return ""
""".format(inputs)
with open(main_script, 'r+', encoding='utf-8') as f:
content = f.read()
f.seek(0, 0)
f.write(input_handling + "\n" + content)
# Add matplotlib and pandas handling
data_handling = """
# Add plot saving code if matplotlib is used
import os
# For matplotlib plots
if 'matplotlib' in globals() or 'matplotlib.pyplot' in globals() or 'plt' in globals():
import matplotlib
matplotlib.use('Agg') # Use non-interactive backend
import matplotlib.pyplot as plt
# Hook to save all figures
original_show = plt.show
def custom_show(*args, **kwargs):
for i, fig in enumerate(map(plt.figure, plt.get_fignums())):
fig.savefig(os.path.join('{}', f'plot_{{i}}.png'))
return original_show(*args, **kwargs)
plt.show = custom_show
# For pandas DataFrames
if 'pandas' in globals() or 'pd' in globals():
import pandas as pd
import json
# Save DataFrames
original_df_repr_html = pd.DataFrame._repr_html_
def custom_df_repr_html(self):
try:
df_info = {{
"name": str(id(self)),
"shape": self.shape,
"columns": list(map(str, self.columns)),
"preview_html": self.head().to_html()
}}
with open(f'df_{{id(self)}}.json', 'w') as f:
json.dump(df_info, f)
except:
pass
return original_df_repr_html(self)
pd.DataFrame._repr_html_ = custom_df_repr_html
""".format(plot_dir.replace('\\', '\\\\'))
with open(main_script, 'r+', encoding='utf-8') as f:
content = f.read()
f.seek(0, 0)
f.write(data_handling + "\n" + content)
# Files for capturing stdout and stderr
stdout_file = os.path.join(temp_dir, 'stdout.txt')
stderr_file = os.path.join(temp_dir, 'stderr.txt')
# Execute with timeout
start_time = time.time()
try:
# Run the script with stdout and stderr redirection
with open(stdout_file, 'w') as stdout_f, open(stderr_file, 'w') as stderr_f:
process = subprocess.Popen(
[sys.executable, main_script],
stdout=stdout_f,
stderr=stderr_f,
cwd=temp_dir
)
# Real-time monitoring for real-time visualization
if realtime_viz:
realtime_data_file = os.path.join(temp_dir, 'realtime_data.json')
while process.poll() is None:
if os.path.exists(realtime_data_file):
try:
with open(realtime_data_file, 'r') as f:
result["realtime_data"] = json.load(f)
except:
pass
time.sleep(0.1)
# Check for timeout
if time.time() - start_time > timeout:
process.kill()
result["stderr"] += f"\nScript execution timed out after {timeout} seconds."
result["exception"] = "TimeoutError"
break
else:
try:
process.wait(timeout=timeout)
except subprocess.TimeoutExpired:
process.kill()
result["stderr"] += f"\nScript execution timed out after {timeout} seconds."
result["exception"] = "TimeoutError"
# Read the output
with open(stdout_file, 'r') as f:
result["stdout"] = f.read()
with open(stderr_file, 'r') as f:
result["stderr"] = f.read()
# Collect plots
if os.path.exists(plot_dir):
plot_files = sorted([f for f in os.listdir(plot_dir) if f.endswith('.png')])
for plot_file in plot_files:
with open(os.path.join(plot_dir, plot_file), 'rb') as f:
result["plots"].append(f.read())
# Collect dataframes
df_files = [f for f in os.listdir(temp_dir) if f.startswith('df_') and f.endswith('.json')]
for df_file in df_files:
with open(os.path.join(temp_dir, df_file), 'r') as f:
result["dataframes"].append(json.load(f))
# Collect profiling data if enabled
if enable_profile and os.path.exists(os.path.join(temp_dir, 'profile_results.txt')):
with open(os.path.join(temp_dir, 'profile_results.txt'), 'r') as f:
result["profile_data"] = f.read()
# Collect debug data if enabled
if enable_debug and 'debug_steps' in globals():
result["debug_steps"] = debug_steps
# Calculate execution time
result["execution_time"] = time.time() - start_time
except Exception as e:
result["exception"] = str(e)
result["stderr"] += f"\nError executing script: {str(e)}"
return result
def display_python_script_results_enhanced(result):
"""Display the enhanced results from the Python script execution"""
if not result:
st.error("No results to display.")
return
# Display execution time
st.info(f"Execution completed in {result['execution_time']:.2f} seconds")
# Display any errors
if result["exception"]:
st.error(f"Exception occurred: {result['exception']}")
if result["stderr"]:
st.error("Errors:")
st.code(result["stderr"], language="bash")
# Display profiling data if available
if result.get("profile_data"):
with st.expander("Profiling Results"):
st.code(result["profile_data"], language="bash")
# Display debugging steps if available
if result.get("debug_steps"):
with st.expander("Debugging Steps"):
for i, step in enumerate(result["debug_steps"]):
st.markdown(f"**Step {i+1}**: {step}")
# Display plots if any
if result["plots"]:
st.markdown("### Plots")
cols = st.columns(min(3, len(result["plots"])))
for i, plot_data in enumerate(result["plots"]):
cols[i % len(cols)].image(plot_data, use_column_width=True)
# Add button to use this plot in Manim
if cols[i % len(cols)].button(f"Use in Manim", key=f"use_plot_{i}"):
# Create a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
tmp.write(plot_data)
plot_path = tmp.name
# Generate Manim code
plot_code = f"""
# Import the plot image
plot_image = ImageMobject(r"{plot_path}")
plot_image.scale(2) # Adjust size as needed
self.play(FadeIn(plot_image))
self.wait(1)
"""
if st.session_state.code:
st.session_state.code += "\n" + plot_code
else:
st.session_state.code = f"""from manim import *
class PlotScene(Scene):
def construct(self):
{plot_code}
"""
st.session_state.temp_code = st.session_state.code
st.success(f"Added plot to your Manim code!")
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
# Display dataframes if any
if result["dataframes"]:
st.markdown("### DataFrames")
for df_info in result["dataframes"]:
with st.expander(f"{df_info.get('name', 'DataFrame')} - {df_info['shape'][0]} rows × {df_info['shape'][1]} columns"):
st.markdown(df_info["preview_html"], unsafe_allow_html=True)
# Add button to visualize this dataframe in Manim
if st.button(f"Visualize in Manim", key=f"viz_df_{df_info.get('name', 'df')}"):
# Generate Manim code for dataframe visualization
df_viz_code = f"""
# Create a simple table visualization
columns = {df_info['columns']}
table = Table(
col_labels=[Text(col, font_size=24) for col in columns]
)
# Add data rows (showing first 5 rows)
for i in range(min(5, {df_info['shape'][0]})):
# This is a placeholder - in a real implementation, you'd extract actual data
table.add_row(*[Text(f"Row {{i}}, Col {{j}}", font_size=20) for j in range(len(columns))])
self.play(Create(table))
self.wait(1)
"""
if st.session_state.code:
st.session_state.code += "\n" + df_viz_code
else:
st.session_state.code = f"""from manim import *
class DataFrameScene(Scene):
def construct(self):
{df_viz_code}
"""
st.session_state.temp_code = st.session_state.code
st.success(f"Added DataFrame visualization to your Manim code!")
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
# Display standard output
if result["stdout"]:
st.markdown("### Standard Output")
st.code(result["stdout"], language="bash")
# Display real-time data if available
if result.get("realtime_data"):
st.markdown("### Real-time Data")
# Convert to DataFrame for easier visualization
import pandas as pd
rt_df = pd.DataFrame(result["realtime_data"])
# Create a plotly chart
import plotly.express as px
if not rt_df.empty and "time" in rt_df.columns and "value" in rt_df.columns:
fig = px.line(rt_df, x="time", y="value", color="label" if "label" in rt_df.columns else None,
title="Real-time Data Visualization")
st.plotly_chart(fig, use_container_width=True)
# Add button to create Manim animation from this data
if st.button("Create Manim Animation from Data", key="create_manim_from_rt"):
# Extract data points
data_points = []
for _, row in rt_df.iterrows():
if "value" in row:
data_points.append(float(row["value"]))
# Generate Manim code
rt_viz_code = f"""
# Visualize real-time data
data = {data_points}
axes = Axes(
x_range=[0, {len(data_points)}, 1],
y_range=[{min(data_points) if data_points else 0}, {max(data_points) if data_points else 10}, {(max(data_points)-min(data_points))/10 if data_points and max(data_points) > min(data_points) else 1}],
axis_config={{"color": BLUE}}
)
points = [axes.coords_to_point(i, v) for i, v in enumerate(data)]
graph = VMobject(color=RED)
graph.set_points_as_corners(points)
self.play(Create(axes))
self.play(Create(graph), run_time=2)
self.wait(1)
"""
if st.session_state.code:
st.session_state.code += "\n" + rt_viz_code
else:
st.session_state.code = f"""from manim import *
class DataVisualizationScene(Scene):
def construct(self):
{rt_viz_code}
"""
st.session_state.temp_code = st.session_state.code
st.success(f"Added real-time data visualization to your Manim code!")
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
# C/C++ RUNNER FUNCTIONS
def compile_cpp_code_enhanced(code, settings, project_files=None, enable_debug=False, breakpoints=None, watch_vars=None):
"""Enhanced function to compile C++ code with advanced options."""
try:
# Create a temporary directory for compilation
temp_dir = tempfile.mkdtemp(prefix="cpp_runner_")
# Write the project files
if project_files:
for filename, content in project_files.items():
file_path = os.path.join(temp_dir, filename)
with open(file_path, "w") as f:
f.write(content)
# Set main file for single file mode
cpp_file = os.path.join(temp_dir, "main.cpp")
else:
# Write the single code file
cpp_file = os.path.join(temp_dir, "main.cpp")
with open(cpp_file, "w") as f:
f.write(code)
# Output executable path
exe_file = os.path.join(temp_dir, "program.exe" if platform.system() == "Windows" else "program")
# Build the compilation command
compiler = settings.get("compiler", "g++")
std_version = settings.get("std", "c++17")
optimization = settings.get("optimization", "-O2")
compile_cmd = [
compiler,
"-std=" + std_version,
optimization
]
# Add debug flag if debugging is enabled
if enable_debug:
compile_cmd.append("-g")
# Auto-detect include paths if not specified
include_paths = settings.get("include_paths", [])
if not include_paths:
# Common include directories
common_include_dirs = [
"/usr/include",
"/usr/local/include",
"/opt/local/include",
"/opt/homebrew/include"
]
# Add detected paths for specified libraries
for lib in settings.get("libraries", []):
if lib == "Eigen":
for dir in common_include_dirs:
if os.path.exists(os.path.join(dir, "Eigen")):
include_paths.append(dir)
elif os.path.exists(os.path.join(dir, "eigen3")):
include_paths.append(dir)
elif lib == "OpenCV":
try:
# Get OpenCV include paths using pkg-config
result = subprocess.run(
["pkg-config", "--cflags", "opencv4"],
capture_output=True,
text=True,
check=False
)
if result.returncode == 0:
# Extract include paths from pkg-config output
for flag in result.stdout.strip().split():
if flag.startswith("-I"):
include_paths.append(flag[2:])
except Exception:
pass
# Add preprocessor definitions
for definition in settings.get("definitions", []):
if "=" in definition:
name, value = definition.split("=", 1)
compile_cmd.append(f"-D{name}={value}")
else:
compile_cmd.append(f"-D{definition}")
# Add include paths
for path in include_paths:
compile_cmd.append(f"-I{path}")
# Add library paths
for path in settings.get("library_paths", []):
compile_cmd.append(f"-L{path}")
# Add files to compile
if project_files:
source_files = [os.path.join(temp_dir, f) for f in project_files.keys() if f.endswith((".cpp", ".c", ".cc"))]
compile_cmd.extend(source_files)
else:
compile_cmd.append(cpp_file)
# Output file
compile_cmd.extend(["-o", exe_file])
# Add libraries
for lib in settings.get("libraries", []):
if lib == "Eigen":
# Eigen is header-only, nothing to link
pass
elif lib == "OpenCV":
# Add OpenCV libraries
try:
# Get OpenCV libraries using pkg-config
pkg_config = subprocess.run(
["pkg-config", "--libs", "opencv4"],
capture_output=True,
text=True,
check=False
)
if pkg_config.returncode == 0:
compile_cmd.extend(pkg_config.stdout.strip().split())
else:
# Try opencv instead of opencv4
pkg_config = subprocess.run(
["pkg-config", "--libs", "opencv"],
capture_output=True,
text=True,
check=False
)
if pkg_config.returncode == 0:
compile_cmd.extend(pkg_config.stdout.strip().split())
else:
# Fallback to common OpenCV libraries
compile_cmd.extend(["-lopencv_core", "-lopencv_imgproc", "-lopencv_highgui"])
except:
# Fallback to common OpenCV libraries
compile_cmd.extend(["-lopencv_core", "-lopencv_imgproc", "-lopencv_highgui"])
elif lib == "Boost":
# Add common Boost libraries
compile_cmd.extend(["-lboost_system", "-lboost_filesystem"])
elif lib == "FFTW":
compile_cmd.append("-lfftw3")
elif lib == "SDL2":
compile_cmd.append("-lSDL2")
elif lib == "SFML":
compile_cmd.extend(["-lsfml-graphics", "-lsfml-window", "-lsfml-system"])
elif lib == "OpenGL":
compile_cmd.extend(["-lGL", "-lGLU", "-lglut"])
# Add additional libraries
for lib in settings.get("additional_libs", []):
compile_cmd.append(f"-l{lib}")
# Add advanced flags
if settings.get("advanced_flags"):
compile_cmd.extend(settings["advanced_flags"].split())
# Run the compilation process
logger.info(f"Compiling with command: {' '.join(compile_cmd)}")
result = subprocess.run(
compile_cmd,
capture_output=True,
text=True,
check=False,
cwd=temp_dir
)
if result.returncode != 0:
return None, result.stderr, temp_dir
return exe_file, None, temp_dir
except Exception as e:
return None, str(e), None
def run_cpp_executable_enhanced(exe_path, temp_dir, inputs=None, timeout=30, enable_debug=False, breakpoints=None, watch_vars=None):
"""Enhanced function to run C++ executable with debugging support."""
result = {
"stdout": "",
"stderr": "",
"execution_time": 0,
"images": [],
"exception": None,
"debug_output": None,
"memory_usage": None
}
try:
# Prepare input data if provided
input_data = "\n".join(inputs) if inputs else None
# Start timing
start_time = time.time()
if enable_debug and breakpoints:
# Run with GDB for debugging
gdb_commands = ["set pagination off"]
# Add breakpoints
for bp in breakpoints:
gdb_commands.append(f"break {bp}")
# Add watchpoints for variables
if watch_vars:
for var in watch_vars:
gdb_commands.append(f"watch {var}")
# Run the program
gdb_commands.append("run")
# Continue to end
gdb_commands.append("continue")
# Quit GDB
gdb_commands.append("quit")
# Create GDB command file
gdb_cmd_file = os.path.join(temp_dir, "gdb_commands.txt")
with open(gdb_cmd_file, "w") as f:
f.write("\n".join(gdb_commands))
# Run with GDB
process = subprocess.run(
["gdb", "-x", gdb_cmd_file, "-batch", exe_path],
input=input_data,
text=True,
capture_output=True,
timeout=timeout,
cwd=temp_dir
)
# Capture outputs
result["stdout"] = process.stdout
result["stderr"] = process.stderr
result["debug_output"] = process.stdout
else:
# Run normally
process = subprocess.run(
[exe_path],
input=input_data,
text=True,
capture_output=True,
timeout=timeout,
cwd=temp_dir
)
# Capture outputs
result["stdout"] = process.stdout
result["stderr"] = process.stderr
# Calculate execution time
result["execution_time"] = time.time() - start_time
# Look for generated images in the executable directory
for ext in [".png", ".jpg", ".jpeg", ".bmp", ".ppm"]:
image_files = [f for f in os.listdir(temp_dir) if f.endswith(ext)]
for img_file in image_files:
try:
img_path = os.path.join(temp_dir, img_file)
# For PPM files, convert to PNG for easier display
if img_file.endswith(".ppm"):
# Create output path
png_path = os.path.join(temp_dir, img_file.replace(".ppm", ".png"))
# Convert using PIL
from PIL import Image
Image.open(img_path).save(png_path)
img_path = png_path
img_file = img_file.replace(".ppm", ".png")
with open(img_path, "rb") as f:
result["images"].append({
"name": img_file,
"data": f.read()
})
except Exception as e:
logger.error(f"Error processing image {img_file}: {str(e)}")
# Estimate memory usage
try:
if platform.system() != "Windows":
# Use ps command to get memory usage
ps_output = subprocess.run(
["ps", "-p", str(process.pid), "-o", "rss="],
capture_output=True,
text=True,
check=False
)
if ps_output.returncode == 0:
mem_kb = int(ps_output.stdout.strip())
result["memory_usage"] = mem_kb / 1024 # Convert to MB
except:
pass
return result
except subprocess.TimeoutExpired:
result["stderr"] += f"\nProgram execution timed out after {timeout} seconds."
result["exception"] = "TimeoutError"
return result
except Exception as e:
result["stderr"] += f"\nError executing program: {str(e)}"
result["exception"] = str(e)
return result
def parse_animation_steps(python_code):
"""Parse Manim code to extract animation steps for timeline editor"""
animation_steps = []
# Look for self.play calls in the code
play_calls = re.findall(r'self\.play\((.*?)\)', python_code, re.DOTALL)
wait_calls = re.findall(r'self\.wait\((.*?)\)', python_code, re.DOTALL)
# Extract animation objects from play calls
for i, play_call in enumerate(play_calls):
# Parse the arguments to self.play()
animations = [arg.strip() for arg in play_call.split(',')]
# Get wait time after this animation if available
wait_time = 1.0 # Default wait time
if i < len(wait_calls):
wait_match = re.search(r'(\d+\.?\d*)', wait_calls[i])
if wait_match:
wait_time = float(wait_match.group(1))
# Add to animation steps
animation_steps.append({
"id": i+1,
"type": "play",
"animations": animations,
"duration": wait_time,
"start_time": sum([step.get("duration", 1.0) for step in animation_steps]),
"code": f"self.play({play_call})"
})
return animation_steps
def generate_code_from_timeline(animation_steps, original_code):
"""Generate Manim code from the timeline data"""
# Extract the class definition and setup
class_match = re.search(r'(class\s+\w+\s*\([^)]*\)\s*:.*?def\s+construct\s*\(\s*self\s*\)\s*:)', original_code, re.DOTALL)
if not class_match:
return original_code # Can't find proper structure to modify
setup_code = class_match.group(1)
# Build the new construct method
new_code = [setup_code]
indent = " " # Standard Manim indentation
# Add each animation step in order
for step in sorted(animation_steps, key=lambda x: x["id"]):
new_code.append(f"{indent}{step['code']}")
if "duration" in step and step["duration"] > 0:
new_code.append(f"{indent}self.wait({step['duration']})")
# Add any code that might come after animations
end_match = re.search(r'(#\s*End\s+of\s+animations.*?$)', original_code, re.DOTALL)
if end_match:
new_code.append(end_match.group(1))
# Combine the code parts with proper indentation
return "\n".join(new_code)
def create_timeline_editor(code):
"""Create an interactive timeline editor for animation sequences"""
st.markdown("### 🎞️ Animation Timeline Editor")
if not code:
st.warning("Add animation code first to use the timeline editor.")
return code
# Parse animation steps from the code
animation_steps = parse_animation_steps(code)
if not animation_steps:
st.warning("No animation steps detected in your code.")
return code
# Convert to DataFrame for easier manipulation
df = pd.DataFrame(animation_steps)
# Create an interactive Gantt chart with plotly
st.markdown("#### Animation Timeline")
st.markdown("Drag timeline elements to reorder or resize to change duration")
# Create the Gantt chart
fig = px.timeline(
df,
x_start="start_time",
x_end=df["start_time"] + df["duration"],
y="id",
color="type",
hover_name="animations",
labels={"id": "Step", "start_time": "Time (seconds)"}
)
# Make it interactive
fig.update_layout(
height=400,
xaxis=dict(
title="Time (seconds)",
rangeslider_visible=True
)
)
# Add buttons and interactivity
timeline_chart = st.plotly_chart(fig, use_container_width=True)
# Control panel
st.markdown("#### Timeline Controls")
controls_col1, controls_col2, controls_col3 = st.columns(3)
with controls_col1:
selected_step = st.selectbox(
"Select Step to Edit:",
options=list(range(1, len(animation_steps) + 1)),
format_func=lambda x: f"Step {x}"
)
with controls_col2:
new_duration = st.number_input(
"Duration (seconds):",
min_value=0.1,
max_value=10.0,
value=float(df[df["id"] == selected_step]["duration"].values[0]),
step=0.1
)
with controls_col3:
step_action = st.selectbox(
"Action:",
options=["Update Duration", "Move Up", "Move Down", "Delete Step"]
)
apply_btn = st.button("Apply Change", key="apply_timeline_change")
# Handle timeline modifications
if apply_btn:
modified = False
if step_action == "Update Duration":
# Update the duration of the selected step
idx = df[df["id"] == selected_step].index[0]
df.at[idx, "duration"] = new_duration
modified = True
elif step_action == "Move Up" and selected_step > 1:
# Swap with the step above
idx1 = df[df["id"] == selected_step].index[0]
idx2 = df[df["id"] == selected_step - 1].index[0]
# Swap IDs to maintain order
df.at[idx1, "id"], df.at[idx2, "id"] = selected_step - 1, selected_step
modified = True
elif step_action == "Move Down" and selected_step < len(animation_steps):
# Swap with the step below
idx1 = df[df["id"] == selected_step].index[0]
idx2 = df[df["id"] == selected_step + 1].index[0]
# Swap IDs to maintain order
df.at[idx1, "id"], df.at[idx2, "id"] = selected_step + 1, selected_step
modified = True
elif step_action == "Delete Step":
# Remove the selected step
df = df[df["id"] != selected_step]
# Reindex remaining steps
new_ids = list(range(1, len(df) + 1))
df["id"] = new_ids
modified = True
if modified:
# Recalculate start times
df = df.sort_values("id")
cumulative_time = 0
for idx, row in df.iterrows():
df.at[idx, "start_time"] = cumulative_time
cumulative_time += row["duration"]
# Regenerate animation code
animation_steps = df.to_dict('records')
new_code = generate_code_from_timeline(animation_steps, code)
st.success("Timeline updated! Code has been regenerated.")
return new_code
# Visual keyframe editor
st.markdown("#### Visual Keyframe Editor")
st.markdown("Add keyframes for smooth property transitions")
keyframe_obj = st.selectbox(
"Select object to animate:",
options=[f"Object {i+1}" for i in range(5)] # Placeholder for actual objects
)
keyframe_prop = st.selectbox(
"Select property:",
options=["position", "scale", "rotation", "opacity", "color"]
)
# Keyframe timeline visualization
keyframe_times = [0, 1, 2, 3, 4] # Placeholder
keyframe_values = [0, 0.5, 0.8, 0.2, 1.0] # Placeholder
keyframe_df = pd.DataFrame({
"time": keyframe_times,
"value": keyframe_values
})
keyframe_fig = px.line(
keyframe_df,
x="time",
y="value",
markers=True,
title=f"{keyframe_prop.capitalize()} Keyframes"
)
keyframe_fig.update_layout(
xaxis_title="Time (seconds)",
yaxis_title="Value",
height=250
)
st.plotly_chart(keyframe_fig, use_container_width=True)
keyframe_col1, keyframe_col2, keyframe_col3 = st.columns(3)
with keyframe_col1:
keyframe_time = st.number_input("Time (s)", min_value=0.0, max_value=10.0, value=0.0, step=0.1)
with keyframe_col2:
keyframe_value = st.number_input("Value", min_value=0.0, max_value=1.0, value=0.0, step=0.1)
with keyframe_col3:
add_keyframe = st.button("Add Keyframe")
# Return the original code or modified code
return code
def export_to_educational_format(video_data, format_type, animation_title, explanation_text, temp_dir):
"""Export animation to various educational formats"""
try:
if format_type == "powerpoint":
# Make sure python-pptx is installed
try:
import pptx
from pptx.util import Inches
except ImportError:
logger.error("python-pptx not installed")
subprocess.run([sys.executable, "-m", "pip", "install", "python-pptx"], check=True)
import pptx
from pptx.util import Inches
# Create PowerPoint presentation
prs = pptx.Presentation()
# Title slide
title_slide = prs.slides.add_slide(prs.slide_layouts[0])
title_slide.shapes.title.text = animation_title
title_slide.placeholders[1].text = "Created with Manim Animation Studio"
# Video slide
video_slide = prs.slides.add_slide(prs.slide_layouts[5])
video_slide.shapes.title.text = "Animation"
# Save video to temp file
video_path = os.path.join(temp_dir, "animation.mp4")
with open(video_path, "wb") as f:
f.write(video_data)
# Add video to slide
try:
left = Inches(1)
top = Inches(1.5)
width = Inches(8)
height = Inches(4.5)
video_slide.shapes.add_movie(video_path, left, top, width, height)
except Exception as e:
logger.error(f"Error adding video to PowerPoint: {str(e)}")
# Fallback to adding a picture with link
img_path = os.path.join(temp_dir, "thumbnail.png")
# Generate thumbnail with ffmpeg
subprocess.run([
"ffmpeg", "-i", video_path, "-ss", "00:00:01.000",
"-vframes", "1", img_path
], check=True)
if os.path.exists(img_path):
pic = video_slide.shapes.add_picture(img_path, left, top, width, height)
video_slide.shapes.add_textbox(left, top + height + Inches(0.5), width, Inches(0.5)).text_frame.text = "Click to play video (exported separately)"
# Explanation slide
if explanation_text:
text_slide = prs.slides.add_slide(prs.slide_layouts[1])
text_slide.shapes.title.text = "Explanation"
text_slide.placeholders[1].text = explanation_text
# Save presentation
output_path = os.path.join(temp_dir, f"{animation_title.replace(' ', '_')}.pptx")
prs.save(output_path)
# Read the file to return it
with open(output_path, "rb") as f:
return f.read(), "powerpoint"
elif format_type == "html":
# Create interactive HTML animation
html_template = """
<!DOCTYPE html>
<html>
<head>
<title>{title}</title>
<style>
body {{ font-family: Arial, sans-serif; max-width: 800px; margin: 0 auto; padding: 20px; }}
.animation-container {{ margin: 20px 0; }}
.controls {{ display: flex; margin: 10px 0; }}
.controls button {{ margin-right: 10px; padding: 5px 10px; }}
.explanation {{ margin-top: 20px; padding: 15px; background: #f5f5f5; border-radius: 5px; }}
</style>
<script>
document.addEventListener('DOMContentLoaded', function() {{
const video = document.getElementById('animation');
const playBtn = document.getElementById('play');
const pauseBtn = document.getElementById('pause');
const restartBtn = document.getElementById('restart');
const slowBtn = document.getElementById('slow');
const normalBtn = document.getElementById('normal');
const fastBtn = document.getElementById('fast');
playBtn.addEventListener('click', function() {{ video.play(); }});
pauseBtn.addEventListener('click', function() {{ video.pause(); }});
restartBtn.addEventListener('click', function() {{ video.currentTime = 0; video.play(); }});
slowBtn.addEventListener('click', function() {{ video.playbackRate = 0.5; }});
normalBtn.addEventListener('click', function() {{ video.playbackRate = 1.0; }});
fastBtn.addEventListener('click', function() {{ video.playbackRate = 2.0; }});
}});
</script>
</head>
<body>
<h1>{title}</h1>
<div class="animation-container">
<video id="animation" width="100%" controls>
<source src="data:video/mp4;base64,{video_base64}" type="video/mp4">
Your browser does not support the video tag.
</video>
<div class="controls">
<button id="play">Play</button>
<button id="pause">Pause</button>
<button id="restart">Restart</button>
<button id="slow">0.5x Speed</button>
<button id="normal">1x Speed</button>
<button id="fast">2x Speed</button>
</div>
</div>
<div class="explanation">
<h2>Explanation</h2>
{explanation_html}
</div>
<footer>
<p>Created with Manim Animation Studio</p>
</footer>
</body>
</html>
"""
# Convert video data to base64
video_base64 = base64.b64encode(video_data).decode('utf-8')
# Convert markdown explanation to HTML
explanation_html = markdown.markdown(explanation_text) if explanation_text else "<p>No explanation provided.</p>"
# Format the HTML template
html_content = html_template.format(
title=animation_title,
video_base64=video_base64,
explanation_html=explanation_html
)
# Save to file
output_path = os.path.join(temp_dir, f"{animation_title.replace(' ', '_')}.html")
with open(output_path, "w", encoding="utf-8") as f:
f.write(html_content)
# Read the file to return it
with open(output_path, "rb") as f:
return f.read(), "html"
elif format_type == "sequence":
# Generate animation sequence with explanatory text
# Make sure FPDF is installed
try:
from fpdf import FPDF
except ImportError:
logger.error("fpdf not installed")
subprocess.run([sys.executable, "-m", "pip", "install", "fpdf"], check=True)
from fpdf import FPDF
# Save video temporarily
temp_video_path = os.path.join(temp_dir, "temp_video.mp4")
with open(temp_video_path, "wb") as f:
f.write(video_data)
# Create frames directory
frames_dir = os.path.join(temp_dir, "frames")
os.makedirs(frames_dir, exist_ok=True)
# Extract frames using ffmpeg (assuming it's installed)
frame_count = 5 # Number of key frames to extract
try:
subprocess.run([
"ffmpeg",
"-i", temp_video_path,
"-vf", f"select=eq(n\\,0)+eq(n\\,{frame_count//4})+eq(n\\,{frame_count//2})+eq(n\\,{frame_count*3//4})+eq(n\\,{frame_count-1})",
"-vsync", "0",
os.path.join(frames_dir, "frame_%03d.png")
], check=True)
except Exception as e:
logger.error(f"Error extracting frames: {str(e)}")
# Try a simpler approach
subprocess.run([
"ffmpeg",
"-i", temp_video_path,
"-r", "1", # 1 frame per second
os.path.join(frames_dir, "frame_%03d.png")
], check=True)
# Parse explanation text into segments (assuming sections divided by ##)
explanation_segments = explanation_text.split("##") if explanation_text else ["No explanation provided."]
# Create a PDF with frames and explanations
pdf = FPDF()
pdf.set_auto_page_break(auto=True, margin=15)
# Title page
pdf.add_page()
pdf.set_font("Arial", "B", 20)
pdf.cell(190, 10, animation_title, ln=True, align="C")
pdf.ln(10)
pdf.set_font("Arial", "", 12)
pdf.cell(190, 10, "Animation Sequence with Explanations", ln=True, align="C")
# Add each frame with explanation
frame_files = sorted([f for f in os.listdir(frames_dir) if f.endswith('.png')])
for i, frame_file in enumerate(frame_files):
pdf.add_page()
# Add frame image
frame_path = os.path.join(frames_dir, frame_file)
pdf.image(frame_path, x=10, y=10, w=190)
# Add explanation text
pdf.ln(140) # Move below the image
pdf.set_font("Arial", "B", 12)
pdf.cell(190, 10, f"Step {i+1}", ln=True)
pdf.set_font("Arial", "", 10)
# Use the corresponding explanation segment if available
explanation = explanation_segments[min(i, len(explanation_segments)-1)]
pdf.multi_cell(190, 5, explanation.strip())
# Save PDF
output_path = os.path.join(temp_dir, f"{animation_title.replace(' ', '_')}_sequence.pdf")
pdf.output(output_path)
# Read the file to return it
with open(output_path, "rb") as f:
return f.read(), "pdf"
return None, None
except Exception as e:
logger.error(f"Educational export error: {str(e)}")
import traceback
logger.error(traceback.format_exc())
return None, None
def main():
# Initialize session state variables if they don't exist
if 'init' not in st.session_state:
st.session_state.init = True
st.session_state.video_data = None
st.session_state.status = None
st.session_state.ai_models = None
st.session_state.generated_code = ""
st.session_state.code = ""
st.session_state.temp_code = ""
st.session_state.editor_key = str(uuid.uuid4())
st.session_state.packages_checked = False # Track if packages were already checked
st.session_state.audio_path = None
st.session_state.image_paths = []
st.session_state.custom_library_result = ""
st.session_state.python_script = "import matplotlib.pyplot as plt\nimport numpy as np\n\n# Example: Create a simple plot\nx = np.linspace(0, 10, 100)\ny = np.sin(x)\n\nplt.figure(figsize=(10, 6))\nplt.plot(x, y, 'b-', label='sin(x)')\nplt.title('Sine Wave')\nplt.xlabel('x')\nplt.ylabel('sin(x)')\nplt.grid(True)\nplt.legend()\n"
st.session_state.python_result = None
st.session_state.active_tab = 0 # Track currently active tab
st.session_state.settings = {
"quality": "720p",
"format_type": "mp4",
"animation_speed": "Normal",
"fps": 30 # Default FPS
}
st.session_state.password_entered = False # Track password authentication
st.session_state.custom_model = "gpt-4o" # Default model
st.session_state.first_load_complete = False # Prevent refreshes on first load
st.session_state.pending_tab_switch = None # Track pending tab switches
# C++ runner state
st.session_state.cpp_code = """#include <iostream>
#include <vector>
#include <algorithm>
int main() {
std::cout << "Hello, Manim Animation Studio!" << std::endl;
// Create a vector of numbers
std::vector<int> numbers = {5, 2, 8, 1, 9, 3, 7, 4, 6};
// Sort the vector
std::sort(numbers.begin(), numbers.end());
// Print the sorted numbers
std::cout << "Sorted numbers: ";
for (int num : numbers) {
std::cout << num << " ";
}
std::cout << std::endl;
return 0;
}"""
st.session_state.cpp_result = None
st.session_state.cpp_project_files = {"main.cpp": st.session_state.cpp_code}
st.session_state.cpp_settings = {
"compiler": "g++",
"std": "c++17",
"optimization": "-O2",
"include_paths": [],
"library_paths": [],
"libraries": []
}
# Page configuration with improved layout
st.set_page_config(
page_title="Manim Animation Studio",
page_icon="🎬",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for improved UI
st.markdown("""
<style>
.main-header {
font-size: 2.5rem;
font-weight: 700;
background: linear-gradient(90deg, #4F46E5, #818CF8);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin-bottom: 1rem;
text-align: center;
}
/* Improved Cards */
.card {
background-color: #ffffff;
border-radius: 12px;
padding: 1.8rem;
box-shadow: 0 6px 12px rgba(0, 0, 0, 0.08);
margin-bottom: 1.8rem;
border-left: 5px solid #4F46E5;
transition: all 0.3s ease;
}
.card:hover {
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.12);
transform: translateY(-2px);
}
/* Tab styling */
.stTabs [data-baseweb="tab-list"] {
gap: 2px;
}
.stTabs [data-baseweb="tab"] {
height: 45px;
white-space: pre-wrap;
border-radius: 4px 4px 0 0;
font-weight: 500;
}
.stTabs [aria-selected="true"] {
background-color: #f0f4fd;
border-bottom: 2px solid #4F46E5;
}
/* Buttons */
.stButton button {
border-radius: 6px;
font-weight: 500;
transition: all 0.2s ease;
}
.stButton button:hover {
transform: translateY(-1px);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
/* Model selection */
.model-group {
margin-bottom: 1.5rem;
padding: 15px;
border-radius: 8px;
background-color: #f8f9fa;
}
.model-card {
background-color: #f8f9fa;
border-radius: 10px;
padding: 15px;
margin-bottom: 10px;
border-left: 4px solid #4F46E5;
transition: all 0.3s ease;
}
.model-card:hover {
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
transform: translateY(-2px);
}
.model-category {
font-size: 1.2rem;
font-weight: 600;
padding: 10px 5px;
margin-top: 15px;
border-bottom: 2px solid #e9ecef;
color: #333;
}
.model-details {
font-size: 0.8rem;
color: #666;
margin-top: 5px;
}
.selected-model {
background-color: #e8f4fe;
border-left: 4px solid #0d6efd;
}
.preview-container {
border: 1px solid #e0e0e0;
border-radius: 10px;
padding: 1rem;
margin-bottom: 1rem;
min-height: 200px;
}
.small-text {
font-size: 0.8rem;
color: #6c757d;
}
.asset-card {
background-color: #f0f2f5;
border-radius: 8px;
padding: 1rem;
margin-bottom: 1rem;
border-left: 4px solid #4F46E5;
}
.timeline-container {
background-color: #f8f9fa;
border-radius: 10px;
padding: 1.5rem;
margin-bottom: 1.5rem;
}
.keyframe {
width: 12px;
height: 12px;
border-radius: 50%;
background-color: #4F46E5;
position: absolute;
transform: translate(-50%, -50%);
cursor: pointer;
}
.educational-export-container {
background-color: #f0f7ff;
border-radius: 10px;
padding: 1.5rem;
margin-bottom: 1.5rem;
border: 1px solid #c2e0ff;
}
.code-output {
background-color: #f8f9fa;
border-radius: 8px;
padding: 1rem;
margin-top: 1rem;
border-left: 4px solid #10b981;
max-height: 400px;
overflow-y: auto;
}
.error-output {
background-color: #fef2f2;
border-radius: 8px;
padding: 1rem;
margin-top: 1rem;
border-left: 4px solid #ef4444;
}
</style>
""", unsafe_allow_html=True)
# Header
st.markdown("""
<div class="main-header">
🎬 Manim Animation Studio
</div>
<p style="text-align: center; margin-bottom: 2rem;">Create mathematical animations with Manim</p>
""", unsafe_allow_html=True)
# Check for packages ONLY ONCE per session
if not st.session_state.packages_checked:
if ensure_packages():
st.session_state.packages_checked = True
else:
st.error("Failed to install required packages. Please try again.")
st.stop()
# Create main tabs
tab_names = ["✨ Editor", "🤖 AI Assistant", "🎨 Assets", "🎞️ Timeline", "🎓 Educational Export", "🐍 Python Runner", "🔧 C/C++ Runner"]
tabs = st.tabs(tab_names)
# Sidebar for rendering settings and custom libraries
with st.sidebar:
# Rendering settings section
st.markdown("## ⚙️ Rendering Settings")
col1, col2 = st.columns(2)
with col1:
quality = st.selectbox(
"🎯 Quality",
options=list(QUALITY_PRESETS.keys()),
index=list(QUALITY_PRESETS.keys()).index(st.session_state.settings["quality"]),
key="quality_select"
)
with col2:
format_type_display = st.selectbox(
"📦 Format",
options=list(EXPORT_FORMATS.keys()),
index=list(EXPORT_FORMATS.values()).index(st.session_state.settings["format_type"])
if st.session_state.settings["format_type"] in EXPORT_FORMATS.values() else 0,
key="format_select_display"
)
# Convert display name to actual format value
format_type = EXPORT_FORMATS[format_type_display]
# Add FPS control
fps = st.selectbox(
"🎞️ FPS",
options=FPS_OPTIONS,
index=FPS_OPTIONS.index(st.session_state.settings["fps"]) if st.session_state.settings["fps"] in FPS_OPTIONS else 2, # Default to 30 FPS (index 2)
key="fps_select"
)
animation_speed = st.selectbox(
"⚡ Speed",
options=list(ANIMATION_SPEEDS.keys()),
index=list(ANIMATION_SPEEDS.keys()).index(st.session_state.settings["animation_speed"]),
key="speed_select"
)
# Apply the settings without requiring a button
st.session_state.settings = {
"quality": quality,
"format_type": format_type,
"animation_speed": animation_speed,
"fps": fps
}
# Custom libraries section
st.markdown("## 📚 Custom Libraries")
st.markdown("Enter additional Python packages needed for your animations (comma-separated):")
custom_libraries = st.text_area(
"Libraries to install",
placeholder="e.g., scipy, networkx, matplotlib",
key="custom_libraries"
)
if st.button("Install Libraries", key="install_libraries_btn"):
success, result = install_custom_packages(custom_libraries)
st.session_state.custom_library_result = result
if success:
st.success("Installation complete!")
else:
st.error("Installation failed for some packages.")
if st.session_state.custom_library_result:
with st.expander("Installation Results"):
st.code(st.session_state.custom_library_result)
# System Package Management section
with st.sidebar.expander("🛠️ System Package Management"):
st.markdown("## System Dependencies")
st.markdown("Manage system packages and libraries")
# Auto-detect C/C++ libraries
if st.button("Detect Installed Libraries", key="detect_system_libs"):
with st.spinner("Detecting installed libraries..."):
libraries = detect_cpp_libraries()
# Display results
st.markdown("### Detected Libraries")
for lib, installed in libraries.items():
if installed:
st.success(f"✅ {lib}: Installed")
else:
st.warning(f"⚠️ {lib}: Not detected")
# Install C/C++ libraries
st.markdown("### Install C/C++ Libraries")
cpp_libs_to_install = st.multiselect(
"Select libraries to install",
options=["Eigen", "Boost", "OpenCV", "FFTW", "SDL2", "SFML", "OpenGL"],
default=[]
)
if st.button("Install Selected Libraries", key="install_cpp_libs"):
success, result = install_cpp_libraries(cpp_libs_to_install)
if success:
st.success("Libraries installed successfully!")
else:
st.error("Failed to install some libraries")
st.code(result)
# System package installation
st.markdown("### Install System Packages")
system_packages = st.text_area(
"Enter system packages to install (comma separated)",
placeholder="e.g., ffmpeg, git, cmake"
)
if st.button("Install System Packages", key="install_system_packages"):
if not system_packages.strip():
st.warning("No packages specified")
else:
packages = [pkg.strip() for pkg in system_packages.split(',') if pkg.strip()]
# Detect package manager
package_manager = None
install_cmd = []
if platform.system() == "Linux":
which_apt = subprocess.run(["which", "apt-get"], capture_output=True, text=True)
which_dnf = subprocess.run(["which", "dnf"], capture_output=True, text=True)
which_yum = subprocess.run(["which", "yum"], capture_output=True, text=True)
which_pacman = subprocess.run(["which", "pacman"], capture_output=True, text=True)
if which_apt.returncode == 0:
package_manager = "apt-get"
install_cmd = ["apt-get", "install", "-y"]
elif which_dnf.returncode == 0:
package_manager = "dnf"
install_cmd = ["dnf", "install", "-y"]
elif which_yum.returncode == 0:
package_manager = "yum"
install_cmd = ["yum", "install", "-y"]
elif which_pacman.returncode == 0:
package_manager = "pacman"
install_cmd = ["pacman", "-S", "--noconfirm"]
elif platform.system() == "Darwin":
which_brew = subprocess.run(["which", "brew"], capture_output=True, text=True)
if which_brew.returncode == 0:
package_manager = "brew"
install_cmd = ["brew", "install"]
if not package_manager:
st.error(f"Could not detect package manager for {platform.system()}. Please install packages manually.")
else:
# Ask for sudo password if needed
sudo_password = None
if is_sudo_available() and platform.system() != "Darwin": # macOS Homebrew doesn't need sudo
sudo_password = st.text_input("Enter sudo password for system package installation:", type="password")
# Update package lists if needed
if package_manager in ["apt-get", "apt"]:
with st.spinner("Updating package lists..."):
try:
if is_sudo_available() and sudo_password:
result = run_with_sudo(["apt-get", "update"], sudo_password)
elif is_sudo_available():
result = run_with_sudo(["apt-get", "update"])
else:
result = subprocess.run(["apt-get", "update"], capture_output=True, text=True)
if result.returncode != 0:
st.warning(f"Failed to update package lists: {result.stderr}")
except Exception as e:
st.warning(f"Error updating package lists: {str(e)}")
# Install packages
results = []
success = True
progress_bar = st.sidebar.progress(0)
status_text = st.sidebar.empty()
for i, package in enumerate(packages):
try:
progress = (i / len(packages))
progress_bar.progress(progress)
status_text.text(f"Installing {package}...")
cmd = install_cmd + [package]
if is_sudo_available() and platform.system() != "Darwin": # macOS Homebrew doesn't need sudo
if sudo_password:
result = run_with_sudo(cmd, sudo_password)
else:
result = run_with_sudo(cmd)
else:
result = subprocess.run(cmd, capture_output=True, text=True)
if result.returncode != 0:
error_msg = f"Failed to install {package}: {result.stderr}"
results.append(error_msg)
success = False
else:
results.append(f"Successfully installed {package}")
except Exception as e:
error_msg = f"Error installing {package}: {str(e)}"
results.append(error_msg)
success = False
progress_bar.progress(1.0)
time.sleep(0.5)
progress_bar.empty()
status_text.empty()
if success:
st.success("All packages installed successfully!")
else:
st.error("Failed to install some packages")
st.code("\n".join(results))
# C/C++ Library Options
with st.sidebar.expander("C/C++ Library Options"):
st.markdown("### Advanced C/C++ Settings")
cpp_libs = st.multiselect(
"Include Libraries",
options=["Eigen", "Boost", "OpenCV", "FFTW", "Matplotlib-cpp"],
default=st.session_state.cpp_settings.get("libraries", [])
)
st.session_state.cpp_settings["libraries"] = cpp_libs
custom_include = st.text_input("Custom Include Path:")
custom_lib = st.text_input("Custom Library Path:")
if custom_include and custom_include not in st.session_state.cpp_settings.get("include_paths", []):
if "include_paths" not in st.session_state.cpp_settings:
st.session_state.cpp_settings["include_paths"] = []
st.session_state.cpp_settings["include_paths"].append(custom_include)
if custom_lib and custom_lib not in st.session_state.cpp_settings.get("library_paths", []):
if "library_paths" not in st.session_state.cpp_settings:
st.session_state.cpp_settings["library_paths"] = []
st.session_state.cpp_settings["library_paths"].append(custom_lib)
if st.button("Update Library Settings"):
st.success("Library settings updated!")
# EDITOR TAB
with tabs[0]:
col1, col2 = st.columns([3, 2])
with col1:
st.markdown("### 📝 Animation Editor")
# Toggle between upload and type
editor_mode = st.radio(
"Choose how to input your code:",
["Type Code", "Upload File"],
key="editor_mode"
)
if editor_mode == "Upload File":
uploaded_file = st.file_uploader("Upload Manim Python File", type=["py"], key="code_uploader")
if uploaded_file:
code_content = uploaded_file.getvalue().decode("utf-8")
if code_content.strip(): # Only update if file has content
st.session_state.code = code_content
st.session_state.temp_code = code_content
# Code editor
if ACE_EDITOR_AVAILABLE:
current_code = st.session_state.code if hasattr(st.session_state, 'code') and st.session_state.code else ""
st.session_state.temp_code = st_ace(
value=current_code,
language="python",
theme="monokai",
min_lines=20,
key=f"ace_editor_{st.session_state.editor_key}"
)
else:
current_code = st.session_state.code if hasattr(st.session_state, 'code') and st.session_state.code else ""
st.session_state.temp_code = st.text_area(
"Manim Python Code",
value=current_code,
height=400,
key=f"code_textarea_{st.session_state.editor_key}"
)
# Update code in session state if it changed
if st.session_state.temp_code != st.session_state.code:
st.session_state.code = st.session_state.temp_code
# Generate button (use a form to prevent page reloads)
generate_btn = st.button("🚀 Generate Animation", use_container_width=True, key="generate_btn")
if generate_btn:
if not st.session_state.code:
st.error("Please enter some code before generating animation")
else:
# Extract scene class name
scene_class = extract_scene_class_name(st.session_state.code)
# If no valid scene class found, add a basic one
if scene_class == "MyScene" and "class MyScene" not in st.session_state.code:
default_scene = """
class MyScene(Scene):
def construct(self):
text = Text("Default Scene")
self.play(Write(text))
self.wait(2)
"""
st.session_state.code += default_scene
st.session_state.temp_code = st.session_state.code
st.warning("No scene class found. Added a default scene.")
with st.spinner("Generating animation..."):
video_data, status = generate_manim_video(
st.session_state.code,
st.session_state.settings["format_type"],
st.session_state.settings["quality"],
ANIMATION_SPEEDS[st.session_state.settings["animation_speed"]],
st.session_state.audio_path,
st.session_state.settings["fps"]
)
st.session_state.video_data = video_data
st.session_state.status = status
with col2:
st.markdown("### 🖥️ Preview & Output")
# Preview container
if st.session_state.code:
with st.container():
st.markdown("<div class='preview-container'>", unsafe_allow_html=True)
preview_html = generate_manim_preview(st.session_state.code)
components.html(preview_html, height=250)
st.markdown("</div>", unsafe_allow_html=True)
# Generated output display
if st.session_state.video_data:
# Different handling based on format type
format_type = st.session_state.settings["format_type"]
if format_type == "png_sequence":
st.info("PNG sequence generated successfully. Use the download button to get the ZIP file.")
# Add download button for ZIP
st.download_button(
label="⬇️ Download PNG Sequence (ZIP)",
data=st.session_state.video_data,
file_name=f"manim_pngs_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip",
mime="application/zip",
use_container_width=True
)
elif format_type == "svg":
# Display SVG preview
try:
svg_data = st.session_state.video_data.decode('utf-8')
components.html(svg_data, height=400)
except Exception as e:
st.error(f"Error displaying SVG: {str(e)}")
# Download button for SVG
st.download_button(
label="⬇️ Download SVG",
data=st.session_state.video_data,
file_name=f"manim_animation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.svg",
mime="image/svg+xml",
use_container_width=True
)
else:
# Standard video display for MP4, GIF, WebM
try:
st.video(st.session_state.video_data, format=format_type)
except Exception as e:
st.error(f"Error displaying video: {str(e)}")
# Fallback for GIF if st.video fails
if format_type == "gif":
st.markdown("GIF preview:")
gif_b64 = base64.b64encode(st.session_state.video_data).decode()
st.markdown(f'<img src="data:image/gif;base64,{gif_b64}" alt="animation" style="width:100%">', unsafe_allow_html=True)
# Add download button
st.download_button(
label=f"⬇️ Download {format_type.upper()}",
data=st.session_state.video_data,
file_name=f"manim_animation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.{format_type}",
mime=f"{'image' if format_type == 'gif' else 'video'}/{format_type}",
use_container_width=True
)
if st.session_state.status:
if "Error" in st.session_state.status:
st.error(st.session_state.status)
# Show troubleshooting tips
with st.expander("🔍 Troubleshooting Tips"):
st.markdown("""
### Common Issues:
1. **Syntax Errors**: Check your Python code for any syntax issues
2. **Missing Scene Class**: Ensure your code contains a scene class that extends Scene
3. **High Resolution Issues**: Try a lower quality preset for complex animations
4. **Memory Issues**: For 4K animations, reduce complexity or try again
5. **Format Issues**: Some formats require specific Manim configurations
6. **GIF Generation**: If GIF doesn't work, try MP4 and we'll convert it automatically
### Example Code:
```python
from manim import *
class MyScene(Scene):
def construct(self):
circle = Circle(color=RED)
self.play(Create(circle))
self.wait(1)
```
""")
else:
st.success(st.session_state.status)
# AI ASSISTANT TAB
with tabs[1]:
st.markdown("### 🤖 AI Animation Assistant")
# Check password before allowing access
if check_password():
# Debug section
with st.expander("🔧 Debug Connection"):
st.markdown("Test the AI model connection directly")
if st.button("Test API Connection", key="test_api_btn"):
with st.spinner("Testing API connection..."):
try:
# Get token from secrets
token = get_secret("github_token_api")
if not token:
st.error("GitHub token not found in secrets")
st.stop()
# Get model details
model_name = st.session_state.custom_model
config = MODEL_CONFIGS.get(model_name, MODEL_CONFIGS["default"])
category = config.get("category", "Other")
if category == "OpenAI":
# Use OpenAI client for GitHub AI models
try:
from openai import OpenAI
except ImportError:
st.error("OpenAI package not installed. Please run 'pip install openai'")
st.stop()
# Create OpenAI client with GitHub AI endpoint
client = OpenAI(
base_url="https://models.github.ai/inference",
api_key=token,
)
# For GitHub AI models, ensure the model_name includes the publisher
# If it doesn't have a publisher prefix, add "openai/"
if "/" not in model_name:
full_model_name = f"openai/{model_name}"
st.info(f"Using full model name: {full_model_name}")
else:
full_model_name = model_name
# Prepare parameters based on model configuration
params = {
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello, this is a connection test."}
],
"model": full_model_name
}
# Add appropriate token parameter
token_param = config["param_name"]
params[token_param] = config[token_param]
# Make API call
response = client.chat.completions.create(**params)
# Check if response is valid
if response and response.choices and len(response.choices) > 0:
test_response = response.choices[0].message.content
st.success(f"✅ Connection successful! Response: {test_response[:50]}...")
# Save working connection to session state
st.session_state.ai_models = {
"openai_client": client,
"model_name": full_model_name, # Store the full model name
"endpoint": "https://models.github.ai/inference",
"last_loaded": datetime.now().isoformat(),
"category": category
}
else:
st.error("❌ API returned an empty response")
elif category == "Azure" or category in ["DeepSeek", "Meta", "Microsoft", "Mistral", "Other"]:
# Use Azure client for Azure API models
try:
from azure.ai.inference import ChatCompletionsClient
from azure.ai.inference.models import SystemMessage, UserMessage
from azure.core.credentials import AzureKeyCredential
except ImportError:
st.error("Azure AI packages not installed. Please run 'pip install azure-ai-inference azure-core'")
st.stop()
# Define endpoint
endpoint = "https://models.inference.ai.azure.com"
# Prepare API parameters
messages = [UserMessage("Hello, this is a connection test.")]
api_params, config = prepare_api_params(messages, model_name)
# Create client with appropriate API version
api_version = config.get("api_version")
if api_version:
client = ChatCompletionsClient(
endpoint=endpoint,
credential=AzureKeyCredential(token),
api_version=api_version
)
else:
client = ChatCompletionsClient(
endpoint=endpoint,
credential=AzureKeyCredential(token),
)
# Test with the prepared parameters
response = client.complete(**api_params)
# Check if response is valid
if response and response.choices and len(response.choices) > 0:
test_response = response.choices[0].message.content
st.success(f"✅ Connection successful! Response: {test_response[:50]}...")
# Save working connection to session state
st.session_state.ai_models = {
"client": client,
"model_name": model_name,
"endpoint": endpoint,
"last_loaded": datetime.now().isoformat(),
"category": category,
"api_version": api_version
}
else:
st.error("❌ API returned an empty response")
else:
st.error(f"Unsupported model category: {category}")
except ImportError as ie:
st.error(f"Module import error: {str(ie)}")
st.info("Try installing required packages: openai, azure-ai-inference and azure-core")
except Exception as e:
st.error(f"❌ API test failed: {str(e)}")
import traceback
st.code(traceback.format_exc())
# Model selection with enhanced UI
st.markdown("### 🤖 Model Selection")
st.markdown("Select an AI model for generating animation code:")
# Group models by category for better organization
model_categories = {}
for model_name in MODEL_CONFIGS:
if model_name != "default":
category = MODEL_CONFIGS[model_name].get("category", "Other")
if category not in model_categories:
model_categories[category] = []
model_categories[category].append(model_name)
# Create tabbed interface for model categories
category_tabs = st.tabs(sorted(model_categories.keys()))
for i, category in enumerate(sorted(model_categories.keys())):
with category_tabs[i]:
for model_name in sorted(model_categories[category]):
config = MODEL_CONFIGS[model_name]
is_selected = model_name == st.session_state.custom_model
warning = config.get("warning")
# Create styled card for each model
warning_html = f'<p style="color: #ff9800; font-size: 0.8rem; margin-top: 5px;">⚠️ {warning}</p>' if warning else ""
st.markdown(f"""
<div class="model-card {'selected-model' if is_selected else ''}">
<h4>{model_name}</h4>
<div class="model-details">
<p>Max Tokens: {config.get(config['param_name'], 'Unknown')}</p>
<p>Category: {config['category']}</p>
<p>API Version: {config['api_version'] if config['api_version'] else 'Default'}</p>
{warning_html}
</div>
</div>
""", unsafe_allow_html=True)
# Button to select this model
button_label = "Selected ✓" if is_selected else "Select Model"
if st.button(button_label, key=f"model_{model_name}", disabled=is_selected):
st.session_state.custom_model = model_name
if st.session_state.ai_models and 'model_name' in st.session_state.ai_models:
st.session_state.ai_models['model_name'] = model_name
st.rerun()
# Display current model selection
st.info(f"🤖 **Currently using: {st.session_state.custom_model}**")
# Add a refresh button to update model connection
if st.button("🔄 Refresh Model Connection", key="refresh_model_connection"):
if st.session_state.ai_models and 'client' in st.session_state.ai_models:
try:
# Test connection with minimal prompt
from azure.ai.inference.models import UserMessage
model_name = st.session_state.custom_model
# Prepare parameters
messages = [UserMessage("Hello")]
api_params, config = prepare_api_params(messages, model_name)
# Check if we need a new client with specific API version
if config["api_version"] and config["api_version"] != st.session_state.ai_models.get("api_version"):
# Create version-specific client if needed
token = get_secret("github_token_api")
from azure.ai.inference import ChatCompletionsClient
from azure.core.credentials import AzureKeyCredential
client = ChatCompletionsClient(
endpoint=st.session_state.ai_models["endpoint"],
credential=AzureKeyCredential(token),
api_version=config["api_version"]
)
response = client.complete(**api_params)
# Update session state with the new client
st.session_state.ai_models["client"] = client
st.session_state.ai_models["api_version"] = config["api_version"]
else:
response = st.session_state.ai_models["client"].complete(**api_params)
st.success(f"✅ Connection to {model_name} successful!")
st.session_state.ai_models["model_name"] = model_name
except Exception as e:
st.error(f"❌ Connection error: {str(e)}")
st.info("Please try the Debug Connection section to re-initialize the API connection.")
# AI code generation
if st.session_state.ai_models and "client" in st.session_state.ai_models:
st.markdown("<div class='card'>", unsafe_allow_html=True)
st.markdown("#### Generate Animation from Description")
st.write("Describe the animation you want to create, or provide partial code to complete.")
# Predefined animation ideas dropdown
animation_ideas = [
"Select an idea...",
"Create a 3D animation showing a sphere morphing into a torus",
"Show a visual proof of the Pythagorean theorem",
"Visualize a Fourier transform converting a signal from time domain to frequency domain",
"Create an animation explaining neural network forward propagation",
"Illustrate the concept of integration with area under a curve"
]
selected_idea = st.selectbox(
"Try one of these ideas",
options=animation_ideas
)
prompt_value = selected_idea if selected_idea != "Select an idea..." else ""
code_input = st.text_area(
"Your Prompt or Code",
value=prompt_value,
placeholder="Example: Create an animation that shows a circle morphing into a square while changing color from red to blue",
height=150
)
if st.button("Generate Animation Code", key="gen_ai_code"):
if code_input:
with st.spinner("AI is generating your animation code..."):
try:
# Get the client and model name
client = st.session_state.ai_models["client"]
model_name = st.session_state.ai_models["model_name"]
# Create the prompt
prompt = f"""Write a complete Manim animation scene based on this code or idea:
{code_input}
The code should be a complete, working Manim animation that includes:
- Proper Scene class definition
- Constructor with animations
- Proper use of self.play() for animations
- Proper wait times between animations
Here's the complete Manim code:
"""
# Prepare API parameters
from azure.ai.inference.models import UserMessage
messages = [UserMessage(prompt)]
api_params, config = prepare_api_params(messages, model_name)
# Make the API call with proper parameters
response = client.complete(**api_params)
# Process the response
if response and response.choices and len(response.choices) > 0:
completed_code = response.choices[0].message.content
# Extract code from markdown if present
if "```python" in completed_code:
completed_code = completed_code.split("```python")[1].split("```")[0]
elif "```" in completed_code:
completed_code = completed_code.split("```")[1].split("```")[0]
# Add Scene class if missing
if "Scene" not in completed_code:
completed_code = f"""from manim import *
class MyScene(Scene):
def construct(self):
{completed_code}"""
# Store the generated code
st.session_state.generated_code = completed_code
else:
st.error("Failed to generate code. API returned an empty response.")
except Exception as e:
st.error(f"Error generating code: {str(e)}")
import traceback
st.code(traceback.format_exc())
else:
st.warning("Please enter a description or prompt first")
# AI generated code display and actions
if "generated_code" in st.session_state and st.session_state.generated_code:
st.markdown("<div class='card'>", unsafe_allow_html=True)
st.markdown("#### Generated Animation Code")
st.code(st.session_state.generated_code, language="python")
col_ai1, col_ai2 = st.columns(2)
with col_ai1:
if st.button("Use This Code", key="use_gen_code"):
st.session_state.code = st.session_state.generated_code
st.session_state.temp_code = st.session_state.generated_code
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
with col_ai2:
if st.button("Render Preview", key="render_preview"):
with st.spinner("Rendering preview..."):
video_data, status = generate_manim_video(
st.session_state.generated_code,
"mp4",
"480p", # Use lowest quality for preview
ANIMATION_SPEEDS["Normal"],
fps=st.session_state.settings["fps"]
)
if video_data:
st.video(video_data)
st.download_button(
label="Download Preview",
data=video_data,
file_name=f"manim_preview_{int(time.time())}.mp4",
mime="video/mp4"
)
else:
st.error(f"Failed to generate preview: {status}")
st.markdown("</div>", unsafe_allow_html=True)
else:
st.warning("AI models not initialized. Please use the Debug Connection section to test API connectivity.")
else:
st.info("Please enter the correct password to access AI features")
# ASSETS TAB
with tabs[2]:
st.markdown("### 🎨 Asset Management")
asset_col1, asset_col2 = st.columns([1, 1])
with asset_col1:
# Image uploader section
st.markdown("#### 📸 Image Assets")
st.markdown("Upload images to use in your animations:")
# Allow multiple image uploads
uploaded_images = st.file_uploader(
"Upload Images",
type=["jpg", "png", "jpeg", "svg"],
accept_multiple_files=True,
key="image_uploader_tab"
)
if uploaded_images:
# Create a unique image directory if it doesn't exist
image_dir = os.path.join(os.getcwd(), "manim_assets", "images")
os.makedirs(image_dir, exist_ok=True)
# Process each uploaded image
for uploaded_image in uploaded_images:
# Generate a unique filename and save the image
file_extension = uploaded_image.name.split(".")[-1]
unique_filename = f"image_{int(time.time())}_{uuid.uuid4().hex[:8]}.{file_extension}"
image_path = os.path.join(image_dir, unique_filename)
with open(image_path, "wb") as f:
f.write(uploaded_image.getvalue())
# Store the path in session state
if "image_paths" not in st.session_state:
st.session_state.image_paths = []
# Check if this image was already added
image_already_added = False
for img in st.session_state.image_paths:
if img["name"] == uploaded_image.name:
image_already_added = True
break
if not image_already_added:
st.session_state.image_paths.append({
"name": uploaded_image.name,
"path": image_path
})
# Display uploaded images in a grid
st.markdown("##### Uploaded Images:")
image_cols = st.columns(3)
for i, img_info in enumerate(st.session_state.image_paths[-len(uploaded_images):]):
with image_cols[i % 3]:
try:
img = Image.open(img_info["path"])
st.image(img, caption=img_info["name"], width=150)
# Show code snippet for this specific image
if st.button(f"Use {img_info['name']}", key=f"use_img_{i}"):
image_code = f"""
# Load and display image
image = ImageMobject(r"{img_info['path']}")
image.scale(2) # Adjust size as needed
self.play(FadeIn(image))
self.wait(1)
"""
if not st.session_state.code:
base_code = """from manim import *
class ImageScene(Scene):
def construct(self):
"""
st.session_state.code = base_code + "\n " + image_code.replace("\n", "\n ")
else:
st.session_state.code += "\n" + image_code
st.session_state.temp_code = st.session_state.code
st.success(f"Added {img_info['name']} to your code!")
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
except Exception as e:
st.error(f"Error loading image {img_info['name']}: {e}")
# Display previously uploaded images
if st.session_state.image_paths:
with st.expander("Previously Uploaded Images"):
# Group images by 3 in each row
for i in range(0, len(st.session_state.image_paths), 3):
prev_cols = st.columns(3)
for j in range(3):
if i+j < len(st.session_state.image_paths):
img_info = st.session_state.image_paths[i+j]
with prev_cols[j]:
try:
img = Image.open(img_info["path"])
st.image(img, caption=img_info["name"], width=100)
st.markdown(f"<div class='small-text'>Path: {img_info['path']}</div>", unsafe_allow_html=True)
except:
st.markdown(f"**{img_info['name']}**")
st.markdown(f"<div class='small-text'>Path: {img_info['path']}</div>", unsafe_allow_html=True)
with asset_col2:
# Audio uploader section
st.markdown("#### 🎵 Audio Assets")
st.markdown("Upload audio files for background or narration:")
uploaded_audio = st.file_uploader("Upload Audio", type=["mp3", "wav", "ogg"], key="audio_uploader")
if uploaded_audio:
# Create a unique audio directory if it doesn't exist
audio_dir = os.path.join(os.getcwd(), "manim_assets", "audio")
os.makedirs(audio_dir, exist_ok=True)
# Generate a unique filename and save the audio
file_extension = uploaded_audio.name.split(".")[-1]
unique_filename = f"audio_{int(time.time())}.{file_extension}"
audio_path = os.path.join(audio_dir, unique_filename)
with open(audio_path, "wb") as f:
f.write(uploaded_audio.getvalue())
# Store the path in session state
st.session_state.audio_path = audio_path
# Display audio player
st.audio(uploaded_audio)
st.markdown(f"""
<div class="asset-card">
<p><strong>Audio: {uploaded_audio.name}</strong></p>
<p class="small-text">Path: {audio_path}</p>
</div>
""", unsafe_allow_html=True)
# Two options for audio usage
st.markdown("#### Add Audio to Your Animation")
option = st.radio(
"Choose how to use audio:",
["Background Audio", "Generate Audio from Text"]
)
if option == "Background Audio":
st.markdown("##### Code to add background audio:")
# For with_sound decorator
audio_code1 = f"""
# Add this import at the top of your file
from manim.scene.scene_file_writer import SceneFileWriter
# Add this decorator before your scene class
@with_sound("{audio_path}")
class YourScene(Scene):
def construct(self):
# Your animation code here
"""
st.code(audio_code1, language="python")
if st.button("Use This Audio in Animation", key="use_audio_btn"):
st.success("Audio set for next render!")
elif option == "Generate Audio from Text":
# Text-to-speech input
tts_text = st.text_area(
"Enter text for narration",
placeholder="Type the narration text here...",
height=100
)
if st.button("Create Narration", key="create_narration_btn"):
try:
# Use basic TTS (placeholder for actual implementation)
st.warning("Text-to-speech feature requires additional setup. Using uploaded audio instead.")
st.session_state.audio_path = audio_path
st.success("Audio set for next render!")
except Exception as e:
st.error(f"Error creating narration: {str(e)}")
# TIMELINE EDITOR TAB
with tabs[3]:
# New code for reordering animation steps
updated_code = create_timeline_editor(st.session_state.code)
# If code was modified by the timeline editor, update the session state
if updated_code != st.session_state.code:
st.session_state.code = updated_code
st.session_state.temp_code = updated_code
# EDUCATIONAL EXPORT TAB
with tabs[4]:
st.markdown("### 🎓 Educational Export Options")
# Check if we have an animation to export
if not st.session_state.video_data:
st.warning("Generate an animation first before using educational export features.")
else:
st.markdown("Create various educational assets from your animation:")
# Animation title and explanation
animation_title = st.text_input("Animation Title", value="Manim Animation", key="edu_title")
st.markdown("#### Explanation Text")
st.markdown("Add explanatory text to accompany your animation. Use markdown formatting.")
st.markdown("Use ## to separate explanation sections for step-by-step sequence export.")
explanation_text = st.text_area(
"Explanation (markdown supported)",
height=150,
placeholder="Explain your animation here...\n\n## Step 1\nIntroduction to the concept...\n\n## Step 2\nNext, we demonstrate..."
)
# Export format selection
edu_format = st.selectbox(
"Export Format",
options=["PowerPoint Presentation", "Interactive HTML", "Explanation Sequence PDF"]
)
# Format-specific options
if edu_format == "PowerPoint Presentation":
st.info("Creates a PowerPoint file with your animation and explanation text.")
elif edu_format == "Interactive HTML":
st.info("Creates an interactive HTML webpage with playback controls and explanation.")
include_controls = st.checkbox("Include interactive controls", value=True)
elif edu_format == "Explanation Sequence PDF":
st.info("Creates a PDF with key frames and step-by-step explanations.")
frame_count = st.slider("Number of key frames", min_value=3, max_value=10, value=5)
# Export button
if st.button("Export Educational Material", key="export_edu_btn"):
with st.spinner(f"Creating {edu_format}..."):
# Map selected format to internal format type
format_map = {
"PowerPoint Presentation": "powerpoint",
"Interactive HTML": "html",
"Explanation Sequence PDF": "sequence"
}
# Create a temporary directory for export
temp_export_dir = tempfile.mkdtemp(prefix="manim_edu_export_")
# Process the export
exported_data, file_type = export_to_educational_format(
st.session_state.video_data,
format_map[edu_format],
animation_title,
explanation_text,
temp_export_dir
)
if exported_data:
# File extension mapping
ext_map = {
"powerpoint": "pptx",
"html": "html",
"pdf": "pdf"
}
# Download button
ext = ext_map.get(file_type, "zip")
filename = f"{animation_title.replace(' ', '_')}.{ext}"
st.success(f"{edu_format} created successfully!")
st.download_button(
label=f"⬇️ Download {edu_format}",
data=exported_data,
file_name=filename,
mime=f"application/{ext}",
use_container_width=True
)
# For HTML, also offer to open in browser
if file_type == "html":
html_path = os.path.join(temp_export_dir, filename)
st.markdown(f"[🌐 Open in browser](file://{html_path})", unsafe_allow_html=True)
else:
st.error(f"Failed to create {edu_format}. Check logs for details.")
# Show usage examples and tips
with st.expander("Usage Tips"):
st.markdown("""
### Educational Export Tips
**PowerPoint Presentations**
- Great for lectures and classroom presentations
- Animation will autoplay when clicked
- Add detailed explanations in notes section
**Interactive HTML**
- Perfect for websites and online learning platforms
- Students can control playback speed and navigation
- Mobile-friendly for learning on any device
**Explanation Sequence**
- Ideal for printed materials and study guides
- Use ## headers to mark different explanation sections
- Each section will be paired with a key frame
""")
# PYTHON RUNNER TAB
with tabs[5]:
st.markdown("### 🐍 Python Script Runner")
st.markdown("Execute Python scripts and visualize the results directly.")
# New UI elements for advanced features
with st.expander("🔧 Advanced Python Features"):
py_feature_col1, py_feature_col2 = st.columns(2)
with py_feature_col1:
enable_debugging = st.checkbox("Enable Debugging", value=False, key="py_debug_enable")
enable_profiling = st.checkbox("Enable Profiling", value=False, key="py_profile_enable")
with py_feature_col2:
py_libs = st.multiselect(
"Additional Libraries",
options=["numpy", "scipy", "pandas", "matplotlib", "seaborn", "plotly", "scikit-learn", "tensorflow", "pytorch", "sympy"],
default=["numpy", "matplotlib"],
key="py_additional_libs"
)
# Multi-file project support
with st.expander("📁 Multi-file Project"):
st.markdown("Add multiple Python files to your project")
# File manager
if "py_project_files" not in st.session_state:
st.session_state.py_project_files = {"main.py": st.session_state.python_script}
# File selector
current_file = st.selectbox(
"Select File",
options=list(st.session_state.py_project_files.keys()),
key="py_current_file"
)
# New file creation
new_file_col1, new_file_col2 = st.columns([3, 1])
with new_file_col1:
new_filename = st.text_input("New File Name", value="", key="py_new_filename")
with new_file_col2:
if st.button("Add File", key="py_add_file_btn"):
if new_filename and new_filename not in st.session_state.py_project_files:
if not new_filename.endswith(".py"):
new_filename += ".py"
st.session_state.py_project_files[new_filename] = "# New Python file\n\n"
st.session_state.py_current_file = new_filename
st.experimental_rerun()
# Update the current file content in session state
if current_file in st.session_state.py_project_files:
st.session_state.py_project_files[current_file] = st.session_state.python_script
# Update main script if we're editing the main file
if current_file == "main.py":
st.session_state.python_script = st.session_state.python_script
# Real-time visualization toggle
real_time_viz = st.checkbox("Enable Real-time Visualization", value=False, key="py_realtime_viz")
# Predefined example scripts
example_scripts = {
"Select an example...": "",
"Basic Matplotlib Plot": """import matplotlib.pyplot as plt
import numpy as np
# Create data
x = np.linspace(0, 10, 100)
y = np.sin(x)
# Create plot
plt.figure(figsize=(10, 6))
plt.plot(x, y, 'b-', label='sin(x)')
plt.title('Sine Wave')
plt.xlabel('x')
plt.ylabel('sin(x)')
plt.grid(True)
plt.legend()
""",
"User Input Example": """# This example demonstrates how to handle user input
name = input("Enter your name: ")
age = int(input("Enter your age: "))
print(f"Hello, {name}! In 10 years, you'll be {age + 10} years old.")
# Let's get some numbers and calculate the average
num_count = int(input("How many numbers would you like to average? "))
total = 0
for i in range(num_count):
num = float(input(f"Enter number {i+1}: "))
total += num
average = total / num_count
print(f"The average of your {num_count} numbers is: {average}")
""",
"Pandas DataFrame": """import pandas as pd
import numpy as np
# Create a sample dataframe
data = {
'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Emma'],
'Age': [25, 30, 35, 40, 45],
'Salary': [50000, 60000, 70000, 80000, 90000],
'Department': ['HR', 'IT', 'Finance', 'Marketing', 'Engineering']
}
df = pd.DataFrame(data)
# Display the dataframe
print("Sample DataFrame:")
print(df)
# Basic statistics
print("\\nSummary Statistics:")
print(df.describe())
# Filtering
print("\\nEmployees older than 30:")
print(df[df['Age'] > 30])
""",
"Seaborn Visualization": """import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
# Set the style
sns.set_style("whitegrid")
# Create sample data
np.random.seed(42)
data = np.random.randn(100, 3)
df = pd.DataFrame(data, columns=['A', 'B', 'C'])
df['category'] = pd.Categorical(['Group 1'] * 50 + ['Group 2'] * 50)
# Create a paired plot
sns.pairplot(df, hue='category', palette='viridis')
# Create another plot
plt.figure(figsize=(10, 6))
sns.violinplot(x='category', y='A', data=df, palette='magma')
plt.title('Distribution of A by Category')
"""
}
# Select example script
selected_example = st.selectbox("Select an example script:", options=list(example_scripts.keys()))
# Python code editor
if selected_example != "Select an example..." and selected_example in example_scripts:
python_code = example_scripts[selected_example]
else:
python_code = st.session_state.python_script
if ACE_EDITOR_AVAILABLE:
python_code = st_ace(
value=python_code,
language="python",
theme="monokai",
min_lines=15,
key=f"python_editor_{st.session_state.editor_key}"
)
else:
python_code = st.text_area(
"Python Code",
value=python_code,
height=400,
key=f"python_textarea_{st.session_state.editor_key}"
)
# Store script in session state (without clearing existing code)
st.session_state.python_script = python_code
# Check for input() calls
input_calls = detect_input_calls(python_code)
user_inputs = []
if input_calls:
st.markdown("### Input Values")
st.info(f"This script contains {len(input_calls)} input() calls. Please provide values below:")
for i, input_call in enumerate(input_calls):
user_input = st.text_input(
f"{input_call['prompt']} (Line {input_call['line']})",
key=f"input_{i}"
)
user_inputs.append(user_input)
# Options and execution
col1, col2 = st.columns([2, 1])
with col1:
timeout_seconds = st.slider("Execution Timeout (seconds)", 5, 3600, 30)
with col2:
run_btn = st.button("▶️ Run Script", use_container_width=True)
if run_btn:
with st.spinner("Executing Python script..."):
# Use the enhanced function
result = run_python_script_enhanced(
python_code,
inputs=user_inputs,
timeout=timeout_seconds,
enable_debug=enable_debugging,
enable_profile=enable_profiling,
additional_libs=py_libs,
project_files=st.session_state.py_project_files if "py_project_files" in st.session_state else None,
realtime_viz=real_time_viz
)
st.session_state.python_result = result
# Display results
if st.session_state.python_result:
display_python_script_results_enhanced(st.session_state.python_result)
# Provide option to save the script
if st.button("📄 Save This Script", key="save_script_btn"):
# Generate a unique filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
script_filename = f"script_{timestamp}.py"
# Offer download button for the script
st.download_button(
label="⬇️ Download Script",
data=python_code,
file_name=script_filename,
mime="text/plain"
)
# Show advanced examples and tips
with st.expander("Python Script Runner Tips"):
st.markdown("""
### Python Script Runner Tips
**What can I run?**
- Any Python code that doesn't require direct UI interaction
- Libraries like Matplotlib, NumPy, Pandas, SciPy, etc.
- Data processing and visualization code
- Scripts that ask for user input (now supported!)
**What can't I run?**
- Streamlit, Gradio, Dash, or other web UIs
- Long-running operations (timeout will occur)
- Code that requires file access outside the temporary environment
**Working with visualizations:**
- All Matplotlib/Seaborn plots will be automatically captured
- Pandas DataFrames are detected and displayed as tables
- Use `print()` to show text output
**Handling user input:**
- The app detects input() calls and automatically creates text fields
- Input values you provide will be passed to the script when it runs
- Type conversion (like int(), float()) is preserved
**Adding to animations:**
- Charts and plots can be directly added to your Manim animations
- Generated images will be properly scaled for your animation
- Perfect for educational content combining data and animations
""")
# C/C++ RUNNER TAB
with tabs[6]: # Assuming this is the 7th tab (index 6)
st.markdown("### 🔧 C/C++ Runner")
st.markdown("Write, compile, and run C/C++ code with advanced features.")
# Create a tabbed interface for different C++ features
cpp_tabs = st.tabs(["Code Editor", "Project Files", "Libraries", "Build Settings", "Debugger"])
with cpp_tabs[0]: # Code Editor tab
# Compiler options
cpp_col1, cpp_col2, cpp_col3 = st.columns(3)
with cpp_col1:
compiler = st.selectbox(
"Compiler",
options=["g++", "clang++", "gcc", "msvc"],
index=["g++", "clang++", "gcc", "msvc"].index(st.session_state.cpp_settings["compiler"]),
key="cpp_compiler"
)
st.session_state.cpp_settings["compiler"] = compiler
with cpp_col2:
std_version = st.selectbox(
"Standard",
options=["c++11", "c++14", "c++17", "c++20"],
index=["c++11", "c++14", "c++17", "c++20"].index(st.session_state.cpp_settings["std"]),
key="cpp_std"
)
st.session_state.cpp_settings["std"] = std_version
with cpp_col3:
optimization = st.selectbox(
"Optimization",
options=["-O0", "-O1", "-O2", "-O3"],
index=["-O0", "-O1", "-O2", "-O3"].index(st.session_state.cpp_settings["optimization"]),
key="cpp_opt"
)
st.session_state.cpp_settings["optimization"] = optimization
# Example code templates
cpp_examples = {
"Select an example...": "",
"Hello World": """#include <iostream>
int main() {
std::cout << "Hello, World!" << std::endl;
return 0;
}""",
"Calculate Prime Numbers": """#include <iostream>
#include <vector>
#include <chrono>
bool isPrime(int n) {
if (n <= 1) return false;
if (n <= 3) return true;
if (n % 2 == 0 || n % 3 == 0) return false;
for (int i = 5; i * i <= n; i += 6) {
if (n % i == 0 || n % (i + 2) == 0)
return false;
}
return true;
}
int main() {
int limit = 10000;
std::vector<int> primes;
auto start = std::chrono::high_resolution_clock::now();
for (int i = 2; i <= limit; i++) {
if (isPrime(i)) {
primes.push_back(i);
}
}
auto end = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end - start);
std::cout << "Found " << primes.size() << " prime numbers up to " << limit << std::endl;
std::cout << "First 10 primes: ";
for (int i = 0; i < std::min(10, (int)primes.size()); i++) {
std::cout << primes[i] << " ";
}
std::cout << std::endl;
std::cout << "Computation time: " << duration.count() << " ms" << std::endl;
return 0;
}""",
"Image Generation (PPM)": """#include <iostream>
#include <fstream>
#include <cmath>
// Generate a simple gradient image in PPM format
int main() {
const int width = 800;
const int height = 600;
// Create a PPM file (P3 format - ASCII)
std::ofstream image("output.ppm");
image << "P3\\n" << width << " " << height << "\\n255\\n";
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
// Create a gradient based on position
int r = static_cast<int>(255.0 * x / width);
int g = static_cast<int>(255.0 * y / height);
int b = static_cast<int>(255.0 * (x + y) / (width + height));
// Write RGB values
image << r << " " << g << " " << b << "\\n";
}
}
image.close();
std::cout << "Generated gradient image: output.ppm" << std::endl;
return 0;
}""",
"Data Processing with Vectors": """#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>
#include <random>
#include <iomanip>
int main() {
const int data_size = 1000;
// Generate random data
std::vector<double> data(data_size);
std::random_device rd;
std::mt19937 gen(rd());
std::normal_distribution<double> dist(100.0, 15.0);
std::cout << "Generating " << data_size << " random values..." << std::endl;
for (auto& value : data) {
value = dist(gen);
}
// Calculate statistics
double sum = std::accumulate(data.begin(), data.end(), 0.0);
double mean = sum / data.size();
std::vector<double> deviations(data_size);
std::transform(data.begin(), data.end(), deviations.begin(),
[mean](double x) { return x - mean; });
double sq_sum = std::inner_product(deviations.begin(), deviations.end(),
deviations.begin(), 0.0);
double stddev = std::sqrt(sq_sum / data.size());
// Sort data
std::sort(data.begin(), data.end());
double median = data.size() % 2 == 0 ?
(data[data.size()/2 - 1] + data[data.size()/2]) / 2 :
data[data.size()/2];
// Output results
std::cout << std::fixed << std::setprecision(2);
std::cout << "Data analysis results:" << std::endl;
std::cout << "Mean: " << mean << std::endl;
std::cout << "Median: " << median << std::endl;
std::cout << "StdDev: " << stddev << std::endl;
std::cout << "Min: " << data.front() << std::endl;
std::cout << "Max: " << data.back() << std::endl;
return 0;
}""",
"Interactive User Input": """#include <iostream>
#include <string>
#include <vector>
int main() {
std::string name;
int age;
// Get user input
std::cout << "Enter your name: ";
std::getline(std::cin, name);
std::cout << "Enter your age: ";
std::cin >> age;
std::cin.ignore(); // Clear the newline from the buffer
std::cout << "Hello, " << name << "! ";
std::cout << "In 10 years, you will be " << age + 10 << " years old." << std::endl;
// Get multiple numbers
int num_count;
std::cout << "How many numbers would you like to enter? ";
std::cin >> num_count;
std::vector<double> numbers;
double total = 0.0;
for (int i = 0; i < num_count; i++) {
double num;
std::cout << "Enter number " << (i+1) << ": ";
std::cin >> num;
numbers.push_back(num);
total += num;
}
if (!numbers.empty()) {
double average = total / numbers.size();
std::cout << "The average of your numbers is: " << average << std::endl;
}
return 0;
}""",
"Eigen Matrix Operations": """#include <iostream>
#include <Eigen/Dense>
using Eigen::MatrixXd;
using Eigen::VectorXd;
int main() {
// Create a 3x3 matrix
MatrixXd A(3, 3);
A << 1, 2, 3,
4, 5, 6,
7, 8, 9;
// Create a 3D vector
VectorXd b(3);
b << 1, 2, 3;
// Perform operations
std::cout << "Matrix A:\\n" << A << std::endl;
std::cout << "Vector b:\\n" << b << std::endl;
std::cout << "A * b:\\n" << A * b << std::endl;
std::cout << "A transpose:\\n" << A.transpose() << std::endl;
// Solve a linear system Ax = b
VectorXd x = A.colPivHouseholderQr().solve(b);
std::cout << "Solution to Ax = b:\\n" << x << std::endl;
// Compute eigenvalues and eigenvectors
Eigen::EigenSolver<MatrixXd> solver(A);
std::cout << "Eigenvalues:\\n" << solver.eigenvalues() << std::endl;
std::cout << "Eigenvectors:\\n" << solver.eigenvectors() << std::endl;
return 0;
}""",
"OpenCV Image Processing": """#include <iostream>
#include <opencv2/opencv.hpp>
int main() {
// Load an image (this will create a blank image if no file is found)
cv::Mat image = cv::Mat::zeros(500, 500, CV_8UC3);
// Draw a circle
cv::circle(image, cv::Point(250, 250), 100, cv::Scalar(0, 0, 255), 5);
// Draw a rectangle
cv::rectangle(image, cv::Point(150, 150), cv::Point(350, 350), cv::Scalar(0, 255, 0), 3);
// Add text
cv::putText(image, "OpenCV Example", cv::Point(100, 50), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(255, 255, 255), 2);
// Save the image
cv::imwrite("opencv_output.png", image);
std::cout << "Image created and saved as 'opencv_output.png'" << std::endl;
return 0;
}"""
}
# Example selection
selected_cpp_example = st.selectbox("Example code:", options=list(cpp_examples.keys()))
# Set initial code from example or session state
if selected_cpp_example != "Select an example..." and cpp_examples[selected_cpp_example] != "":
initial_code = cpp_examples[selected_cpp_example]
else:
if "cpp_current_file" in st.session_state and st.session_state.cpp_current_file in st.session_state.cpp_project_files:
initial_code = st.session_state.cpp_project_files[st.session_state.cpp_current_file]
else:
initial_code = st.session_state.cpp_code
# Code editor for C++
if ACE_EDITOR_AVAILABLE:
cpp_code = st_ace(
value=initial_code,
language="c_cpp",
theme="monokai",
min_lines=15,
key=f"cpp_editor_{st.session_state.editor_key}"
)
else:
cpp_code = st.text_area(
"C/C++ Code",
value=initial_code,
height=400,
key=f"cpp_textarea_{st.session_state.editor_key}"
)
# Save the code to session state
st.session_state.cpp_code = cpp_code
# Update project files
if "cpp_current_file" in st.session_state and st.session_state.cpp_current_file in st.session_state.cpp_project_files:
st.session_state.cpp_project_files[st.session_state.cpp_current_file] = cpp_code
# Check for standard input in the code
has_cin = "std::cin" in cpp_code or "cin" in cpp_code
# Input values section if needed
cpp_inputs = []
if has_cin:
with st.expander("Input Values"):
st.info("This program uses standard input. Please provide input values below:")
num_inputs = st.number_input("Number of input lines:", min_value=1, max_value=10, value=1)
for i in range(int(num_inputs)):
cpp_input = st.text_input(f"Input line {i+1}:", key=f"cpp_input_{i}")
cpp_inputs.append(cpp_input)
with cpp_tabs[1]: # Project Files tab
st.markdown("### Project Files")
st.markdown("Manage multiple source files for your C/C++ project")
# File selector
cpp_current_file = st.selectbox(
"Current File",
options=list(st.session_state.cpp_project_files.keys()),
index=list(st.session_state.cpp_project_files.keys()).index(st.session_state.cpp_current_file) if "cpp_current_file" in st.session_state else 0,
key="cpp_file_selector"
)
# Update the current file in session state
st.session_state.cpp_current_file = cpp_current_file
# Create new file form
new_file_col1, new_file_col2 = st.columns([3, 1])
with new_file_col1:
new_cpp_filename = st.text_input("New File Name", placeholder="e.g., utils.h, helper.cpp", key="new_cpp_file")
with new_file_col2:
if st.button("Add File", key="add_cpp_file"):
if new_cpp_filename and new_cpp_filename not in st.session_state.cpp_project_files:
# Add file extension if missing
if not new_cpp_filename.endswith((".cpp", ".h", ".hpp", ".c", ".cc")):
new_cpp_filename += ".cpp"
# Create a template based on file type
if new_cpp_filename.endswith((".h", ".hpp")):
template = f"""#ifndef {new_cpp_filename.split('.')[0].upper()}_H
#define {new_cpp_filename.split('.')[0].upper()}_H
// Your header content here
#endif // {new_cpp_filename.split('.')[0].upper()}_H
"""
else:
template = f"""#include <iostream>
// Your implementation here
"""
st.session_state.cpp_project_files[new_cpp_filename] = template
st.session_state.cpp_current_file = new_cpp_filename
st.experimental_rerun()
# File actions
file_action_col1, file_action_col2 = st.columns(2)
with file_action_col1:
if st.button("Delete Current File", key="delete_cpp_file"):
if cpp_current_file != "main.cpp" and cpp_current_file in st.session_state.cpp_project_files:
del st.session_state.cpp_project_files[cpp_current_file]
st.session_state.cpp_current_file = "main.cpp"
st.experimental_rerun()
else:
st.error("Cannot delete main.cpp")
with file_action_col2:
if st.button("Download Project Files", key="download_cpp_project"):
# Create a zip file with all project files
with tempfile.NamedTemporaryFile(delete=False, suffix=".zip") as tmp:
with zipfile.ZipFile(tmp.name, 'w') as zipf:
for filename, content in st.session_state.cpp_project_files.items():
# Add file to zip
zipf.writestr(filename, content)
# Download the zip file
with open(tmp.name, "rb") as f:
zip_data = f.read()
st.download_button(
label="Download ZIP",
data=zip_data,
file_name="cpp_project.zip",
mime="application/zip"
)
# Project structure visualization
st.markdown("### Project Structure")
# Group files by type
headers = []
sources = []
others = []
for filename in st.session_state.cpp_project_files:
if filename.endswith((".h", ".hpp")):
headers.append(filename)
elif filename.endswith((".cpp", ".c", ".cc")):
sources.append(filename)
else:
others.append(filename)
# Display structure
st.markdown("#### Header Files")
if headers:
for header in sorted(headers):
st.markdown(f"- `{header}`")
else:
st.markdown("No header files")
st.markdown("#### Source Files")
if sources:
for source in sorted(sources):
st.markdown(f"- `{source}`")
else:
st.markdown("No source files")
if others:
st.markdown("#### Other Files")
for other in sorted(others):
st.markdown(f"- `{other}`")
with cpp_tabs[2]: # Libraries tab
st.markdown("### Library Manager")
st.markdown("Configure libraries and dependencies for your C/C++ project")
# Common library selection
common_libs = st.multiselect(
"Common Libraries",
options=["Eigen", "Boost", "OpenCV", "FFTW", "SDL2", "SFML", "OpenGL", "stb_image", "nlohmann_json", "fmt"],
default=st.session_state.cpp_settings.get("libraries", []),
key="cpp_common_libs"
)
# Update libraries in settings
st.session_state.cpp_settings["libraries"] = common_libs
# Include paths
st.markdown("#### Include Paths")
include_paths = st.text_area(
"Include Directories (one per line)",
value="\n".join(st.session_state.cpp_settings.get("include_paths", [])),
height=100,
key="cpp_include_paths"
)
# Update include paths in settings
st.session_state.cpp_settings["include_paths"] = [path for path in include_paths.split("\n") if path.strip()]
# Library paths
st.markdown("#### Library Paths")
library_paths = st.text_area(
"Library Directories (one per line)",
value="\n".join(st.session_state.cpp_settings.get("library_paths", [])),
height=100,
key="cpp_library_paths"
)
# Update library paths in settings
st.session_state.cpp_settings["library_paths"] = [path for path in library_paths.split("\n") if path.strip()]
# Additional libraries
st.markdown("#### Additional Libraries")
additional_libs = st.text_area(
"Additional Libraries (one per line, without -l prefix)",
value="\n".join(st.session_state.cpp_settings.get("additional_libs", [])),
height=100,
key="cpp_additional_libs"
)
# Update additional libraries in settings
st.session_state.cpp_settings["additional_libs"] = [lib for lib in additional_libs.split("\n") if lib.strip()]
# Library detection
if st.button("Detect Installed Libraries", key="detect_libs"):
with st.spinner("Detecting libraries..."):
# This is a placeholder - in a real implementation, you'd scan the system
detected_libs = []
# Check for Eigen
try:
result = subprocess.run(
["find", "/usr/include", "-name", "Eigen"],
capture_output=True,
text=True,
timeout=5
)
if "Eigen" in result.stdout:
detected_libs.append("Eigen")
except:
pass
# Check for Boost
try:
result = subprocess.run(
["find", "/usr/include", "-name", "boost"],
capture_output=True,
text=True,
timeout=5
)
if "boost" in result.stdout:
detected_libs.append("Boost")
except:
pass
# Check for OpenCV
try:
result = subprocess.run(
["pkg-config", "--exists", "opencv4"],
capture_output=True,
timeout=5
)
if result.returncode == 0:
detected_libs.append("OpenCV")
except:
pass
# Display detected libraries
if detected_libs:
st.success(f"Detected libraries: {', '.join(detected_libs)}")
# Add to selected libraries if not already present
for lib in detected_libs:
if lib not in st.session_state.cpp_settings["libraries"]:
st.session_state.cpp_settings["libraries"].append(lib)
else:
st.warning("No common libraries detected")
with cpp_tabs[3]: # Build Settings tab
st.markdown("### Build Configuration")
# Build type
build_type = st.radio(
"Build Type",
options=["Debug", "Release", "RelWithDebInfo"],
index=1, # Default to Release
key="cpp_build_type"
)
# Update build type in settings
st.session_state.cpp_settings["build_type"] = build_type
# Advanced compiler flags
st.markdown("#### Advanced Compiler Flags")
advanced_flags = st.text_area(
"Additional Compiler Flags",
value=st.session_state.cpp_settings.get("advanced_flags", ""),
height=100,
key="cpp_advanced_flags"
)
# Update advanced flags in settings
st.session_state.cpp_settings["advanced_flags"] = advanced_flags
# Preprocessor definitions
st.markdown("#### Preprocessor Definitions")
definitions = st.text_area(
"Preprocessor Definitions (one per line)",
value="\n".join(st.session_state.cpp_settings.get("definitions", [])),
height=100,
placeholder="Example:\nDEBUG\nVERSION=1.0\nUSE_FEATURE_X",
key="cpp_definitions"
)
# Update definitions in settings
st.session_state.cpp_settings["definitions"] = [d for d in definitions.split("\n") if d.strip()]
# Generate CMakeLists.txt
if st.button("Generate CMakeLists.txt", key="gen_cmake"):
# Create CMakeLists.txt content
cmake_content = f"""cmake_minimum_required(VERSION 3.10)
project(ManimCppProject)
set(CMAKE_CXX_STANDARD {st.session_state.cpp_settings["std"].replace("c++", "")})
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)
# Build type
set(CMAKE_BUILD_TYPE {build_type})
# Preprocessor definitions
"""
# Add definitions
for definition in st.session_state.cpp_settings.get("definitions", []):
if "=" in definition:
name, value = definition.split("=", 1)
cmake_content += f'add_definitions(-D{name}="{value}")\n'
else:
cmake_content += f"add_definitions(-D{definition})\n"
# Add include paths
if st.session_state.cpp_settings.get("include_paths", []):
cmake_content += "\n# Include directories\n"
for path in st.session_state.cpp_settings["include_paths"]:
cmake_content += f"include_directories({path})\n"
# Add library paths
if st.session_state.cpp_settings.get("library_paths", []):
cmake_content += "\n# Library directories\n"
for path in st.session_state.cpp_settings["library_paths"]:
cmake_content += f"link_directories({path})\n"
# Add common libraries
if "Eigen" in st.session_state.cpp_settings.get("libraries", []):
cmake_content += "\n# Eigen\n"
cmake_content += "find_package(Eigen3 REQUIRED)\n"
cmake_content += "include_directories(${EIGEN3_INCLUDE_DIR})\n"
if "OpenCV" in st.session_state.cpp_settings.get("libraries", []):
cmake_content += "\n# OpenCV\n"
cmake_content += "find_package(OpenCV REQUIRED)\n"
cmake_content += "include_directories(${OpenCV_INCLUDE_DIRS})\n"
if "Boost" in st.session_state.cpp_settings.get("libraries", []):
cmake_content += "\n# Boost\n"
cmake_content += "find_package(Boost REQUIRED)\n"
cmake_content += "include_directories(${Boost_INCLUDE_DIRS})\n"
# Add source files
cmake_content += "\n# Source files\n"
source_files = [f for f in st.session_state.cpp_project_files.keys() if f.endswith((".cpp", ".c", ".cc"))]
cmake_content += "add_executable(main\n"
for src in source_files:
cmake_content += f" {src}\n"
cmake_content += ")\n"
# Add libraries to link
cmake_content += "\n# Link libraries\n"
cmake_content += "target_link_libraries(main\n"
if "OpenCV" in st.session_state.cpp_settings.get("libraries", []):
cmake_content += " ${OpenCV_LIBS}\n"
if "Boost" in st.session_state.cpp_settings.get("libraries", []):
cmake_content += " ${Boost_LIBRARIES}\n"
# Additional libraries
for lib in st.session_state.cpp_settings.get("additional_libs", []):
cmake_content += f" {lib}\n"
cmake_content += ")\n"
# Save CMakeLists.txt to project files
st.session_state.cpp_project_files["CMakeLists.txt"] = cmake_content
# Show the generated file
st.success("CMakeLists.txt generated!")
st.code(cmake_content, language="cmake")
with cpp_tabs[4]: # Debugger tab
st.markdown("### C++ Debugger")
st.markdown("Debug your C++ code with breakpoints and variable inspection")
# Enable debugging
enable_cpp_debug = st.checkbox("Enable Debugging", value=False, key="cpp_debug_enable")
if enable_cpp_debug:
# Breakpoints
st.markdown("#### Breakpoints")
st.markdown("Enter line numbers for breakpoints (one per line)")
breakpoints = st.text_area(
"Breakpoints",
placeholder="Example:\n10\n15\n20",
height=100,
key="cpp_breakpoints"
)
breakpoint_lines = []
for line in breakpoints.split("\n"):
try:
line_num = int(line.strip())
if line_num > 0:
breakpoint_lines.append(line_num)
except:
pass
# Watch variables
st.markdown("#### Watch Variables")
st.markdown("Enter variable names to watch (one per line)")
watch_vars = st.text_area(
"Watch Variables",
placeholder="Example:\ni\nsum\nresult",
height=100,
key="cpp_watch_vars"
)
watch_variables = [var.strip() for var in watch_vars.split("\n") if var.strip()]
# Compilation and execution options
st.markdown("### Run Configuration")
run_options_col1, run_options_col2 = st.columns(2)
with run_options_col1:
cpp_timeout = st.slider("Execution Timeout (seconds)", 1, 60, 10)
with run_options_col2:
compile_btn = st.button("🛠️ Compile and Run", use_container_width=True)
# Compile and run the C++ code
if compile_btn:
with st.spinner("Compiling C++ code..."):
cpp_code_to_compile = st.session_state.cpp_code
if "cpp_project_files" in st.session_state and st.session_state.cpp_project_files:
# Use project files
executable_path, compile_error, temp_dir = compile_cpp_code_enhanced(
cpp_code_to_compile,
st.session_state.cpp_settings,
project_files=st.session_state.cpp_project_files,
enable_debug=enable_cpp_debug if "enable_cpp_debug" in locals() else False,
breakpoints=breakpoint_lines if "breakpoint_lines" in locals() else None,
watch_vars=watch_variables if "watch_variables" in locals() else None
)
else:
# Use single file
executable_path, compile_error, temp_dir = compile_cpp_code_enhanced(
cpp_code_to_compile,
st.session_state.cpp_settings,
enable_debug=enable_cpp_debug if "enable_cpp_debug" in locals() else False,
breakpoints=breakpoint_lines if "breakpoint_lines" in locals() else None,
watch_vars=watch_variables if "watch_variables" in locals() else None
)
if compile_error:
st.error("Compilation Error:")
st.code(compile_error, language="bash")
else:
st.success("Compilation successful!")
with st.spinner("Running program..."):
result = run_cpp_executable_enhanced(
executable_path,
temp_dir,
inputs=cpp_inputs if "cpp_inputs" in locals() else None,
timeout=cpp_timeout,
enable_debug=enable_cpp_debug if "enable_cpp_debug" in locals() else False,
breakpoints=breakpoint_lines if "breakpoint_lines" in locals() else None,
watch_vars=watch_variables if "watch_variables" in locals() else None
)
st.session_state.cpp_result = result
# Display results
if "cpp_result" in st.session_state and st.session_state.cpp_result:
result = st.session_state.cpp_result
st.markdown("### Results")
# Execution information
info_cols = st.columns(3)
with info_cols[0]:
st.info(f"Execution Time: {result['execution_time']:.3f} seconds")
with info_cols[1]:
if result.get("memory_usage"):
st.info(f"Memory Usage: {result['memory_usage']:.2f} MB")
with info_cols[2]:
if result["exception"]:
st.error(f"Exception: {result['exception']}")
# Show debug output if available
if result.get("debug_output"):
with st.expander("Debug Output", expanded=True):
st.code(result["debug_output"], language="bash")
# Result tabs
result_tabs = st.tabs(["Output", "Images", "Manim Integration"])
with result_tabs[0]: # Output tab
# Show stdout if any
if result["stdout"]:
st.markdown("#### Standard Output")
st.code(result["stdout"], language="bash")
# Show stderr if any
if result["stderr"]:
st.markdown("#### Standard Error")
st.code(result["stderr"], language="bash")
with result_tabs[1]: # Images tab
# Show images if any
if result["images"]:
st.markdown("#### Generated Images")
img_cols = st.columns(min(3, len(result["images"])))
for i, img in enumerate(result["images"]):
with img_cols[i % len(img_cols)]:
st.image(img["data"], caption=img["name"])
else:
st.info("No images were generated by the program.")
with result_tabs[2]: # Manim Integration tab
st.markdown("#### Integrate C++ Results with Manim")
# Create options for integration
integration_type = st.radio(
"Integration Type",
options=["Data Visualization", "Image Import", "Animation Sequence"],
key="cpp_integration_type"
)
if integration_type == "Data Visualization":
# Extract numerical data from stdout if possible
lines = result["stdout"].strip().split("\n")
data_options = []
for i, line in enumerate(lines):
# Check if line contains numbers
numbers = []
try:
# Try to extract numbers from the line
numbers = [float(x) for x in line.split() if x.replace(".", "").isdigit()]
if numbers:
data_options.append(f"Line {i+1}: {line[:30]}{'...' if len(line) > 30 else ''}")
except:
pass
if data_options:
selected_data_line = st.selectbox(
"Select Data to Visualize",
options=["Select a line..."] + data_options,
key="cpp_data_line"
)
if selected_data_line != "Select a line...":
line_idx = int(selected_data_line.split(":")[0].replace("Line ", "")) - 1
line = lines[line_idx]
# Extract numbers
try:
numbers = [float(x) for x in line.split() if x.replace(".", "").isdigit()]
# Preview the data
st.markdown(f"**Extracted Data:** {numbers}")
# Create visualization code
if st.button("Create Manim Visualization", key="cpp_create_viz"):
viz_code = f"""
# Visualize data from C++ output
values = {numbers}
axes = Axes(
x_range=[0, {len(numbers)}, 1],
y_range=[{min(numbers) if numbers else 0}, {max(numbers) if numbers else 10}, {(max(numbers)-min(numbers))/10 if numbers and max(numbers) > min(numbers) else 1}],
axis_config={{"color": BLUE}}
)
points = [axes.coords_to_point(i, v) for i, v in enumerate(values)]
dots = VGroup(*[Dot(point, color=RED) for point in points])
graph = VMobject(color=YELLOW)
graph.set_points_as_corners(points)
self.play(Create(axes))
self.play(Create(dots), run_time=2)
self.play(Create(graph), run_time=2)
self.wait(1)
"""
if st.session_state.code:
st.session_state.code += "\n" + viz_code
else:
st.session_state.code = f"""from manim import *
class CppDataVisualizationScene(Scene):
def construct(self):
{viz_code}
"""
st.session_state.temp_code = st.session_state.code
st.success("Added C++ data visualization to your Manim code!")
# Set pending tab switch to editor tab
st.session_state.pending_tab_switch = 0
st.rerun()
except Exception as e:
st.error(f"Error extracting numbers: {str(e)}")
else:
st.warning("No numeric data detected in the output.")
elif integration_type == "Image Import":
# Handle image import
if result["images"]:
st.markdown("#### Select Images to Import")
for i, img in enumerate(result["images"]):
st.markdown(f"**{img['name']}**")
st.image(img["data"], width=300)
if st.button(f"Use in Manim", key=f"use_cpp_img_{i}"):
# Save image to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=f"_{img['name']}") as tmp:
tmp.write(img["data"])
img_path = tmp.name
# Generate Manim code
image_code = f"""
# Load and display image generated from C++
cpp_image = ImageMobject(r"{img_path}")
cpp_image.scale(2) # Adjust size as needed
self.play(FadeIn(cpp_image))
self.wait(1)
"""
if st.session_state.code:
st.session_state.code += "\n" + image_code
else:
st.session_state.code = f"""from manim import *
class CppImageScene(Scene):
def construct(self):
{image_code}
"""
st.session_state.temp_code = st.session_state.code
st.success(f"Added C++ generated image to your Manim code!")
st.session_state.pending_tab_switch = 0 # Switch to editor tab
st.rerun()
else:
st.warning("No images were generated by the C++ program.")
elif integration_type == "Animation Sequence":
st.markdown("#### Create Animation Sequence")
st.info("This will create a Manim animation that visualizes the execution of your C++ program.")
# Animation type options
animation_style = st.selectbox(
"Animation Style",
options=["Algorithm Visualization", "Data Flow", "Memory Model"],
key="cpp_anim_style"
)
if st.button("Generate Animation Sequence", key="cpp_gen_anim_seq"):
# Create different animations based on selected style
if animation_style == "Algorithm Visualization":
# Example code for algorithm visualization
algo_code = f"""
# C++ Algorithm Visualization
title = Text("C++ Algorithm Visualization")
self.play(Write(title))
self.play(title.animate.to_edge(UP))
self.wait(0.5)
# Create an array representation
values = [5, 2, 8, 1, 9, 3, 7, 4, 6] # Example values
squares = VGroup(*[Square(side_length=0.7, fill_opacity=0.8, fill_color=BLUE) for _ in values])
squares.arrange(RIGHT, buff=0.1)
labels = VGroup(*[Text(str(v), font_size=24) for v in values])
for label, square in zip(labels, squares):
label.move_to(square.get_center())
array = VGroup(squares, labels)
array_label = Text("Array", font_size=20).next_to(array, UP)
self.play(FadeIn(array), Write(array_label))
self.wait(1)
# Simulate sorting algorithm
for i in range(len(values)-1):
# Highlight current element
self.play(squares[i].animate.set_fill(RED))
for j in range(i+1, len(values)):
# Highlight comparison element
self.play(squares[j].animate.set_fill(YELLOW))
# Simulate comparison
if values[i] > values[j]:
# Swap animation
self.play(
labels[i].animate.move_to(squares[j].get_center()),
labels[j].animate.move_to(squares[i].get_center())
)
# Update values and labels
labels[i], labels[j] = labels[j], labels[i]
values[i], values[j] = values[j], values[i]
# Reset comparison element
self.play(squares[j].animate.set_fill(BLUE))
# Mark current element as processed
self.play(squares[i].animate.set_fill(GREEN))
# Mark the last element as processed
self.play(squares[-1].animate.set_fill(GREEN))
# Show sorted array
sorted_label = Text("Sorted Array", font_size=20).next_to(array, DOWN)
self.play(Write(sorted_label))
self.wait(2)
"""
if st.session_state.code:
st.session_state.code += "\n" + algo_code
else:
st.session_state.code = f"""from manim import *
class CppAlgorithmScene(Scene):
def construct(self):
{algo_code}
"""
st.session_state.temp_code = st.session_state.code
st.success("Added C++ algorithm visualization to your Manim code!")
st.session_state.pending_tab_switch = 0 # Switch to editor tab
st.rerun()
elif animation_style == "Data Flow":
# Example code for data flow visualization
data_flow_code = f"""
# C++ Data Flow Visualization
title = Text("C++ Data Flow")
self.play(Write(title))
self.play(title.animate.to_edge(UP))
self.wait(0.5)
# Create nodes for data flow
input_node = Circle(radius=0.5, fill_opacity=0.8, fill_color=BLUE)
process_node = Square(side_length=1, fill_opacity=0.8, fill_color=GREEN)
output_node = Circle(radius=0.5, fill_opacity=0.8, fill_color=RED)
# Position nodes
input_node.move_to(LEFT*4)
process_node.move_to(ORIGIN)
output_node.move_to(RIGHT*4)
# Add labels
input_label = Text("Input", font_size=20).next_to(input_node, DOWN)
process_label = Text("Process", font_size=20).next_to(process_node, DOWN)
output_label = Text("Output", font_size=20).next_to(output_node, DOWN)
# Create arrows
arrow1 = Arrow(input_node.get_right(), process_node.get_left(), buff=0.2)
arrow2 = Arrow(process_node.get_right(), output_node.get_left(), buff=0.2)
# Display nodes and arrows
self.play(FadeIn(input_node), Write(input_label))
self.wait(0.5)
self.play(FadeIn(process_node), Write(process_label))
self.wait(0.5)
self.play(FadeIn(output_node), Write(output_label))
self.wait(0.5)
self.play(Create(arrow1), Create(arrow2))
self.wait(1)
# Simulate data flow
data = Text("Data", font_size=16).move_to(input_node.get_center())
self.play(FadeIn(data))
self.wait(0.5)
# Move data along the flow
self.play(data.animate.move_to(arrow1.get_center()))
self.wait(0.5)
self.play(data.animate.move_to(process_node.get_center()))
self.wait(0.5)
transformed_data = Text("Processed", font_size=16, color=YELLOW)
transformed_data.move_to(process_node.get_center())
self.play(Transform(data, transformed_data))
self.wait(0.5)
self.play(data.animate.move_to(arrow2.get_center()))
self.wait(0.5)
self.play(data.animate.move_to(output_node.get_center()))
self.wait(1)
result_text = Text("Final Result", font_size=24).to_edge(DOWN)
self.play(Write(result_text))
self.wait(2)
"""
if st.session_state.code:
st.session_state.code += "\n" + data_flow_code
else:
st.session_state.code = f"""from manim import *
class CppDataFlowScene(Scene):
def construct(self):
{data_flow_code}
"""
st.session_state.temp_code = st.session_state.code
st.success("Added C++ data flow visualization to your Manim code!")
st.session_state.pending_tab_switch = 0 # Switch to editor tab
st.rerun()
elif animation_style == "Memory Model":
# Example code for memory model visualization
memory_code = f"""
# C++ Memory Model Visualization
title = Text("C++ Memory Model")
self.play(Write(title))
self.play(title.animate.to_edge(UP))
self.wait(0.5)
# Create memory blocks
stack_rect = Rectangle(height=3, width=4, fill_opacity=0.2, fill_color=BLUE)
stack_rect.move_to(LEFT*3.5)
stack_label = Text("Stack", font_size=20).next_to(stack_rect, UP)
heap_rect = Rectangle(height=3, width=4, fill_opacity=0.2, fill_color=RED)
heap_rect.move_to(RIGHT*3.5)
heap_label = Text("Heap", font_size=20).next_to(heap_rect, UP)
# Display memory areas
self.play(
Create(stack_rect), Write(stack_label),
Create(heap_rect), Write(heap_label)
)
self.wait(1)
# Create variables on the stack
int_var = Rectangle(height=0.5, width=1.5, fill_opacity=0.8, fill_color=BLUE_C)
int_var.move_to(stack_rect.get_center() + UP*1)
int_label = Text("int x = 5", font_size=16).next_to(int_var, RIGHT)
pointer_var = Rectangle(height=0.5, width=1.5, fill_opacity=0.8, fill_color=BLUE_D)
pointer_var.move_to(stack_rect.get_center())
pointer_label = Text("int* ptr", font_size=16).next_to(pointer_var, RIGHT)
# Display stack variables
self.play(FadeIn(int_var), Write(int_label))
self.wait(0.5)
self.play(FadeIn(pointer_var), Write(pointer_label))
self.wait(1)
# Create heap allocation
heap_alloc = Rectangle(height=0.8, width=2, fill_opacity=0.8, fill_color=RED_C)
heap_alloc.move_to(heap_rect.get_center() + UP*0.5)
heap_label = Text("new int[4]", font_size=16).next_to(heap_alloc, LEFT)
# Display heap allocation
self.play(FadeIn(heap_alloc), Write(heap_label))
self.wait(1)
# Create arrow from pointer to heap
arrow = Arrow(pointer_var.get_right(), heap_alloc.get_left(), buff=0.2, color=YELLOW)
self.play(Create(arrow))
self.wait(0.5)
# Simulate pointer assignment
assign_text = Text("ptr = new int[4]", font_size=24).to_edge(DOWN)
self.play(Write(assign_text))
self.wait(1)
# Simulate memory deallocation
delete_text = Text("delete[] ptr", font_size=24).to_edge(DOWN)
self.play(Transform(assign_text, delete_text))
self.play(FadeOut(arrow), FadeOut(heap_alloc), FadeOut(heap_label))
self.wait(1)
# Simulate end of scope
end_scope = Text("End of scope", font_size=24).to_edge(DOWN)
self.play(Transform(assign_text, end_scope))
self.play(FadeOut(int_var), FadeOut(int_label), FadeOut(pointer_var), FadeOut(pointer_label))
self.wait(2)
"""
if st.session_state.code:
st.session_state.code += "\n" + memory_code
else:
st.session_state.code = f"""from manim import *
class CppMemoryModelScene(Scene):
def construct(self):
{memory_code}
"""
st.session_state.temp_code = st.session_state.code
st.success("Added C++ memory model visualization to your Manim code!")
st.session_state.pending_tab_switch = 0 # Switch to editor tab
st.rerun()
# C++ Information and tips
with st.expander("C/C++ Runner Information"):
st.markdown("""
### C/C++ Runner Tips
**Compilation Options:**
- Choose the appropriate compiler based on your platform
- Select the C++ standard version for your code
- Optimization levels affect performance and debugging
**Library Support:**
- Common libraries like Eigen, OpenCV, and Boost are supported
- Add custom include paths and library paths as needed
- Use the library detection feature to find installed libraries
**Input/Output:**
- Standard input/output (cin/cout) is fully supported
- File I/O works within the execution directory
- For interactive programs, provide input values in advance
**Debugging:**
- Set breakpoints at specific line numbers
- Watch variables to track their values
- Debug with GDB for detailed analysis
**Project Management:**
- Create multi-file projects with headers and source files
- Generate CMakeLists.txt for complex projects
- Download project files as a ZIP archive
**Images and Visualization:**
- Generate images in PPM, PNG, JPG formats
- Use OpenCV for more advanced image processing
- All generated images can be used in Manim animations
**Manim Integration:**
- Create algorithm visualizations from C++ code
- Import C++ generated images into Manim scenes
- Visualize data structures and memory models
**Performance:**
- Use release mode for best performance
- Profile your code to identify bottlenecks
- C++ is ideal for computationally intensive tasks
""")
# Help section
with st.sidebar.expander("ℹ️ Help & Info"):
st.markdown("""
### About Manim Animation Studio
This app allows you to create mathematical animations using Manim,
an animation engine for explanatory math videos.
### Example Code
```python
from manim import *
class SimpleExample(Scene):
def construct(self):
circle = Circle(color=BLUE)
self.play(Create(circle))
square = Square(color=RED).next_to(circle, RIGHT)
self.play(Create(square))
text = Text("Manim Animation").next_to(VGroup(circle, square), DOWN)
self.play(Write(text))
self.wait(2)
```
""")
# Handle tab switching with session state to prevent refresh loop
if st.session_state.pending_tab_switch is not None:
st.session_state.active_tab = st.session_state.pending_tab_switch
st.session_state.pending_tab_switch = None
# Set tabs active state
for i, tab in enumerate(tabs):
if i == st.session_state.active_tab:
tab.active = True
# Mark first load as complete to prevent unnecessary refreshes
if not st.session_state.first_load_complete:
st.session_state.first_load_complete = True
if __name__ == "__main__":
main()