manim_builder / app.py
euler314's picture
Update app.py
97cd083 verified
raw
history blame
27.7 kB
import streamlit as st
import tempfile
import os
import logging
from pathlib import Path
from PIL import Image
import io
import numpy as np
import sys
import subprocess
import json
from pygments import highlight
from pygments.lexers import PythonLexer
from pygments.formatters import HtmlFormatter
import base64
from transformers import pipeline
import torch
import re
import shutil
import time
from datetime import datetime, timedelta
import streamlit.components.v1 as components
import uuid
import platform
import pandas as pd
import plotly.express as px
import markdown
import zipfile
import contextlib
import threading
import traceback
from io import StringIO, BytesIO
# Set up enhanced logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Model configuration mapping for different API requirements and limits
MODEL_CONFIGS = {
"DeepSeek-V3-0324": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "DeepSeek", "warning": None},
"DeepSeek-R1": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "DeepSeek", "warning": None},
"Llama-4-Scout-17B-16E-Instruct": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Meta", "warning": None},
"Llama-4-Maverick-17B-128E-Instruct-FP8": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Meta", "warning": None},
"gpt-4o-mini": {"max_tokens": 15000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"gpt-4o": {"max_tokens": 16000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"gpt-4.1": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"gpt-4.1-mini": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"gpt-4.1-nano": {"max_tokens": 32768, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"o4-mini": {"max_completion_tokens": 100000, "param_name": "max_completion_tokens", "api_version": "2024-12-01-preview", "category": "OpenAI", "warning": None},
"o1": {"max_completion_tokens": 100000, "param_name": "max_completion_tokens", "api_version": "2024-12-01-preview", "category": "OpenAI", "warning": None},
"o1-mini": {"max_completion_tokens": 66000, "param_name": "max_completion_tokens", "api_version": "2024-12-01-preview", "category": "OpenAI", "warning": None},
"o1-preview": {"max_tokens": 33000, "param_name": "max_tokens", "api_version": None, "category": "OpenAI", "warning": None},
"Phi-4-multimodal-instruct": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Microsoft", "warning": None},
"Mistral-large-2407": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Mistral", "warning": None},
"Codestral-2501": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Mistral", "warning": None},
# Default configuration for other models
"default": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Other", "warning": None}
}
# Try to import Streamlit Ace
try:
from streamlit_ace import st_ace
ACE_EDITOR_AVAILABLE = True
except ImportError:
ACE_EDITOR_AVAILABLE = False
logger.warning("streamlit-ace not available, falling back to standard text editor")
def prepare_api_params(messages, model_name):
"""Create appropriate API parameters based on model configuration"""
config = MODEL_CONFIGS.get(model_name, MODEL_CONFIGS["default"])
api_params = {
"messages": messages,
"model": model_name
}
token_param = config["param_name"]
api_params[token_param] = config.get(token_param)
return api_params, config
def get_secret(env_var):
"""Retrieve a secret from environment variables"""
val = os.environ.get(env_var)
if not val:
logger.warning(f"Secret '{env_var}' not found")
return val
def check_password():
"""Verify password entered against secret"""
correct = get_secret("password")
if not correct:
st.error("Admin password not configured")
return False
if "password_entered" not in st.session_state:
st.session_state.password_entered = False
if not st.session_state.password_entered:
pwd = st.text_input("Enter password to access AI features", type="password")
if pwd:
if pwd == correct:
st.session_state.password_entered = True
return True
else:
st.error("Incorrect password")
return False
return False
return True
def ensure_packages():
required = {
'manim': '0.17.3',
'Pillow': '9.0.0',
'numpy': '1.22.0',
'transformers': '4.30.0',
'torch': '2.0.0',
'pygments': '2.15.1',
'streamlit-ace': '0.1.1',
'pydub': '0.25.1',
'plotly': '5.14.0',
'pandas': '2.0.0',
'python-pptx': '0.6.21',
'markdown': '3.4.3',
'fpdf': '1.7.2',
'matplotlib': '3.5.0',
'seaborn': '0.11.2',
'scipy': '1.7.3',
'huggingface_hub': '0.16.0',
}
missing = {}
for pkg, ver in required.items():
try:
__import__(pkg if pkg != 'Pillow' else 'PIL')
except ImportError:
missing[pkg] = ver
if not missing:
return True
bar = st.progress(0)
txt = st.empty()
for i, (pkg, ver) in enumerate(missing.items()):
bar.progress(i / len(missing))
txt.text(f"Installing {pkg}...")
res = subprocess.run([sys.executable, "-m", "pip", "install", f"{pkg}>={ver}"], capture_output=True, text=True)
if res.returncode != 0:
st.error(f"Failed to install {pkg}")
return False
bar.progress(1.0)
txt.empty()
return True
def install_custom_packages(pkgs):
if not pkgs.strip():
return True, "No packages specified"
parts = [p.strip() for p in pkgs.split(",") if p.strip()]
if not parts:
return True, "No valid packages"
sidebar_txt = st.sidebar.empty()
bar = st.sidebar.progress(0)
results = []
success = True
for i, p in enumerate(parts):
bar.progress(i / len(parts))
sidebar_txt.text(f"Installing {p}...")
res = subprocess.run([sys.executable, "-m", "pip", "install", p], capture_output=True, text=True)
if res.returncode != 0:
results.append(f"Failed {p}: {res.stderr}")
success = False
else:
results.append(f"Installed {p}")
bar.progress(1.0)
sidebar_txt.empty()
return success, "\n".join(results)
@st.cache_resource(ttl=3600)
def init_ai_models_direct():
token = get_secret("github_token_api")
if not token:
st.error("API token not configured")
return None
try:
from azure.ai.inference import ChatCompletionsClient
from azure.ai.inference.models import UserMessage
from azure.core.credentials import AzureKeyCredential
client = ChatCompletionsClient(
endpoint="https://models.inference.ai.azure.com",
credential=AzureKeyCredential(token)
)
return {"client": client, "model_name": "gpt-4o", "last_loaded": datetime.now().isoformat()}
except ImportError as e:
st.error("Azure AI SDK not installed")
logger.error(str(e))
return None
def generate_manim_preview(python_code):
scene_objects = []
if "Circle" in python_code: scene_objects.append("circle")
if "Square" in python_code: scene_objects.append("square")
if "MathTex" in python_code or "Tex" in python_code: scene_objects.append("equation")
if "Text" in python_code: scene_objects.append("text")
if "Axes" in python_code: scene_objects.append("graph")
icons = {"circle":"β­•","square":"πŸ”²","equation":"πŸ“Š","text":"πŸ“","graph":"πŸ“ˆ"}
icon_html = "".join(f'<span style="font-size:2rem;margin:0.3rem;">{icons[o]}</span>' for o in scene_objects if o in icons)
html = f"""
<div style="background:#000;color:#fff;padding:1rem;border-radius:10px;text-align:center;">
<h3>Animation Preview</h3>
<div>{icon_html or '🎬'}</div>
<p>Contains: {', '.join(scene_objects) or 'none'}</p>
<p style="opacity:0.7;">Full rendering required for accurate preview</p>
</div>
"""
return html
def extract_scene_class_name(python_code):
names = re.findall(r'class\s+(\w+)\s*\([^)]*Scene', python_code)
return names[0] if names else "MyScene"
def mp4_to_gif(mp4, out, fps=15):
cmd = [
"ffmpeg","-i",mp4,
"-vf",f"fps={fps},scale=640:-1:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse",
"-loop","0",out
]
r = subprocess.run(cmd, capture_output=True, text=True)
return out if r.returncode==0 else None
def generate_manim_video(code, format_type, quality_preset, speed=1.0, audio_path=None):
temp_dir = tempfile.mkdtemp(prefix="manim_")
scene_class = extract_scene_class_name(code)
file_py = os.path.join(temp_dir, "scene.py")
with open(file_py, "w", encoding="utf-8") as f:
f.write(code)
quality_flags = {"480p":"-ql","720p":"-qm","1080p":"-qh","4K":"-qk","8K":"-qp"}
qf = quality_flags.get(quality_preset, "-qm")
fmt_arg = f"--format={format_type}"
cmd = ["manim", file_py, scene_class, qf, fmt_arg]
proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True)
output = []
out_path = None
mp4_path = None
bar = st.empty()
log = st.empty()
while True:
line = proc.stdout.readline()
if not line and proc.poll() is not None:
break
if line:
output.append(line)
log.code("".join(output[-10:]))
if "File ready at" in line:
m = re.search(r'([\'"])?(.+?\.(?:mp4|gif|webm|svg))\1', line)
if m:
out_path = m.group(2)
if out_path.endswith(".mp4"):
mp4_path = out_path
proc.wait()
time.sleep(1)
data = None
if format_type=="gif" and (not out_path or not os.path.exists(out_path)) and mp4_path and os.path.exists(mp4_path):
gif = os.path.join(temp_dir, scene_class+"_conv.gif")
conv = mp4_to_gif(mp4_path, gif)
if conv and os.path.exists(conv):
out_path = conv
if out_path and os.path.exists(out_path):
with open(out_path,"rb") as f: data = f.read()
shutil.rmtree(temp_dir)
if data:
return data, f"βœ… Generated successfully ({len(data)/(1024*1024):.1f} MB)"
else:
return None, "❌ No output generated. Check logs."
def detect_input_calls(code):
calls = []
for i, line in enumerate(code.split("\n"),1):
if "input(" in line and not line.strip().startswith("#"):
m = re.search(r'input\(["\'](.+?)["\']\)', line)
prompt = m.group(1) if m else f"Input at line {i}"
calls.append({"line":i,"prompt":prompt})
return calls
def run_python_script(code, inputs=None, timeout=60):
result = {"stdout":"","stderr":"","exception":None,"plots":[],"dataframes":[],"execution_time":0}
mod = ""
if inputs:
mod = f"""
__INPUTS={inputs}
__IDX=0
def input(prompt=''):
global __IDX
print(prompt,end='')
if __IDX<len(__INPUTS):
val=__INPUTS[__IDX]; __IDX+=1
print(val)
return val
print()
return ''
"""
code_full = mod + code
with tempfile.TemporaryDirectory() as td:
script = os.path.join(td,"script.py")
with open(script,"w") as f: f.write(code_full)
outf = os.path.join(td,"out.txt")
errf = os.path.join(td,"err.txt")
start=time.time()
try:
with open(outf,"w") as o, open(errf,"w") as e:
proc=subprocess.Popen([sys.executable, script], stdout=o, stderr=e, cwd=td)
proc.wait(timeout=timeout)
except subprocess.TimeoutExpired:
proc.kill()
result["stderr"] += f"\nTimed out after {timeout}s"
result["exception"] = "Timeout"
result["execution_time"]=time.time()-start
result["stdout"]=open(outf).read()
result["stderr"]+=open(errf).read()
return result
def display_python_script_results(res):
st.info(f"Completed in {res['execution_time']:.2f}s")
if res["exception"]:
st.error(f"Exception: {res['exception']}")
if res["stderr"]:
st.error("Errors:")
st.code(res["stderr"], language="bash")
if res["plots"]:
st.markdown("### Plots")
cols = st.columns(min(3,len(res["plots"])))
for i,p in enumerate(res["plots"]):
cols[i%len(cols)].image(p,use_column_width=True)
if res["dataframes"]:
st.markdown("### DataFrames")
for df in res["dataframes"]:
with st.expander(f"{df['name']} ({df['shape'][0]}Γ—{df['shape'][1]})"):
st.markdown(df["preview_html"], unsafe_allow_html=True)
if res["stdout"]:
st.markdown("### Output")
st.code(res["stdout"], language="bash")
# Main app
def main():
if 'init' not in st.session_state:
st.session_state.update({
'init':True, 'video_data':None, 'status':None, 'ai_models':None,
'generated_code':"", 'code':"", 'temp_code':"", 'editor_key':str(uuid.uuid4()),
'packages_checked':False, 'latex_formula':"", 'audio_path':None,
'image_paths':[], 'custom_library_result':"", 'python_script':"",
'python_result':None, 'active_tab':0,
'settings':{"quality":"720p","format_type":"mp4","animation_speed":"Normal"},
'password_entered':False, 'custom_model':"gpt-4o", 'first_load_complete':False,
'pending_tab_switch':None
})
st.set_page_config(page_title="Manim Animation Studio", page_icon="🎬", layout="wide")
if not st.session_state.packages_checked:
if ensure_packages():
st.session_state.packages_checked=True
else:
st.error("Failed to install packages")
return
tab_names=["✨ Editor","πŸ€– AI Assistant","πŸ“š LaTeX Formulas","🎨 Assets","🎞️ Timeline","πŸŽ“ Educational Export","🐍 Python Runner"]
tabs = st.tabs(tab_names)
# Editor Tab
with tabs[0]:
col1,col2 = st.columns([3,2])
with col1:
st.markdown("### πŸ“ Animation Editor")
mode = st.radio("Code Input",["Type Code","Upload File"], key="editor_mode")
if mode=="Upload File":
up=st.file_uploader("Upload .py file", type=["py"])
if up:
txt=up.getvalue().decode()
if txt.strip():
st.session_state.code=txt
st.session_state.temp_code=txt
if ACE_EDITOR_AVAILABLE:
st.session_state.temp_code = st_ace(value=st.session_state.code, language="python", theme="monokai", min_lines=20, key=f"ace_{st.session_state.editor_key}")
else:
st.session_state.temp_code = st.text_area("Code", st.session_state.code, height=400, key=f"ta_{st.session_state.editor_key}")
if st.session_state.temp_code!=st.session_state.code:
st.session_state.code=st.session_state.temp_code
if st.button("πŸš€ Generate Animation"):
if not st.session_state.code:
st.error("Enter code first")
else:
vc,stt = generate_manim_video(
st.session_state.code,
st.session_state.settings["format_type"],
st.session_state.settings["quality"],
{"Slow":0.5,"Normal":1.0,"Fast":2.0,"Very Fast":3.0}[st.session_state.settings["animation_speed"]],
st.session_state.audio_path
)
st.session_state.video_data=vc
st.session_state.status=stt
with col2:
if st.session_state.code:
st.markdown("<div style='border:1px solid #ccc;padding:1rem;border-radius:8px;'>", unsafe_allow_html=True)
components.html(generate_manim_preview(st.session_state.code), height=250)
st.markdown("</div>", unsafe_allow_html=True)
if st.session_state.video_data:
fmt=st.session_state.settings["format_type"]
if fmt=="png_sequence":
st.download_button("⬇️ Download PNG ZIP", data=st.session_state.video_data, file_name=f"manim_pngs_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip", mime="application/zip")
elif fmt=="svg":
try:
svg=st.session_state.video_data.decode('utf-8')
components.html(svg, height=400)
except:
st.error("Cannot display SVG")
st.download_button("⬇️ Download SVG", data=st.session_state.video_data, file_name="animation.svg", mime="image/svg+xml")
else:
st.video(st.session_state.video_data, format=fmt)
st.download_button(f"⬇️ Download {fmt.upper()}", st.session_state.video_data, file_name=f"animation.{fmt}", mime=f"video/{fmt}" if fmt!="gif" else "image/gif")
if st.session_state.status:
if "Error" in st.session_state.status:
st.error(st.session_state.status)
else:
st.success(st.session_state.status)
# AI Assistant Tab
with tabs[1]:
st.markdown("### πŸ€– AI Animation Assistant")
if check_password():
client_data = init_ai_models_direct()
if client_data:
if st.button("Test API Connection"):
with st.spinner("Testing..."):
from azure.ai.inference.models import UserMessage
api_params,_=prepare_api_params([UserMessage("Hello")], client_data["model_name"])
resp=client_data["client"].complete(**api_params)
if resp.choices:
st.success("βœ… Connection successful!")
st.session_state.ai_models=client_data
else:
st.error("❌ No response")
if st.session_state.ai_models:
st.info(f"Using model {st.session_state.ai_models['model_name']}")
prompt = st.text_area("Describe animation or paste partial code", height=150)
if st.button("Generate Animation Code"):
if prompt.strip():
from azure.ai.inference.models import UserMessage
api_params,_=prepare_api_params([UserMessage(f"Write a complete Manim scene for:\n{prompt}")], st.session_state.ai_models["model_name"])
resp=st.session_state.ai_models["client"].complete(**api_params)
if resp.choices:
code = resp.choices[0].message.content
if "```python" in code:
code=code.split("```python")[1].split("```")[0]
st.session_state.generated_code=code
else:
st.error("No code generated")
else:
st.warning("Enter prompt first")
if st.session_state.generated_code:
st.code(st.session_state.generated_code, language="python")
if st.button("Use This Code"):
st.session_state.code=st.session_state.generated_code
st.session_state.temp_code=st.session_state.generated_code
st.session_state.pending_tab_switch=0
st.rerun()
else:
st.info("Enter password to access")
# LaTeX Formulas Tab
with tabs[2]:
st.markdown("### πŸ“š LaTeX Formula Builder")
col1,col2=st.columns([3,2])
with col1:
latex_input = st.text_area("LaTeX Formula", value=st.session_state.latex_formula, height=100, placeholder=r"e^{i\pi}+1=0")
st.session_state.latex_formula=latex_input
if latex_input:
manim_latex_code = f"""
# LaTeX formula
formula = MathTex(r"{latex_input}")
self.play(Write(formula))
self.wait(2)
"""
st.code(manim_latex_code, language="python")
if st.button("Insert into Editor"):
if st.session_state.code:
if "def construct(self):" in st.session_state.code:
lines=st.session_state.code.split("\n")
idx=-1
for i,l in enumerate(lines):
if "def construct(self):" in l:
idx=i; break
if idx>=0:
for j in range(idx+1,len(lines)):
if lines[j].strip() and not lines[j].strip().startswith("#"):
indent=re.match(r"(\s*)",lines[j]).group(1)
new_block="\n".join(indent+ln for ln in manim_latex_code.strip().split("\n"))
lines.insert(j,new_block)
break
else:
lines.append(" "+ "\n ".join(manim_latex_code.strip().split("\n")))
st.session_state.code="\n".join(lines)
st.session_state.temp_code=st.session_state.code
st.success("Inserted LaTeX into editor")
st.session_state.pending_tab_switch=0
st.rerun()
else:
st.warning("No construct() found")
else:
basic_scene = f"""from manim import *
class LatexScene(Scene):
def construct(self):
# LaTeX formula
formula = MathTex(r"{latex_input}")
self.play(Write(formula))
self.wait(2)
"""
st.session_state.code=basic_scene
st.session_state.temp_code=basic_scene
st.success("Created new scene with LaTeX")
st.session_state.pending_tab_switch=0
st.rerun()
with col2:
components.html(render_latex_preview(latex_input), height=300)
# Assets Tab
with tabs[3]:
st.markdown("### 🎨 Asset Management")
c1,c2 = st.columns(2)
with c1:
imgs=st.file_uploader("Upload Images", type=["png","jpg","jpeg","svg"], accept_multiple_files=True)
if imgs:
img_dir=os.path.join(os.getcwd(),"manim_assets","images")
os.makedirs(img_dir, exist_ok=True)
for up in imgs:
ext=up.name.split(".")[-1]
fname=f"img_{int(time.time())}_{uuid.uuid4().hex[:6]}.{ext}"
path=os.path.join(img_dir,fname)
with open(path,"wb") as f: f.write(up.getvalue())
st.session_state.image_paths.append({"name":up.name,"path":path})
if st.session_state.image_paths:
for info in st.session_state.image_paths:
img=Image.open(info["path"])
st.image(img, caption=info["name"], width=100)
if st.button(f"Use {info['name']}"):
code_snippet=f"""
# Image asset
image = ImageMobject(r"{info['path']}")
image.scale(2)
self.play(FadeIn(image))
self.wait(1)
"""
st.session_state.code+=code_snippet
st.session_state.temp_code=st.session_state.code
st.success(f"Added {info['name']} to code")
st.session_state.pending_tab_switch=0
st.rerun()
with c2:
aud=st.file_uploader("Upload Audio", type=["mp3","wav","ogg"])
if aud:
adir=os.path.join(os.getcwd(),"manim_assets","audio")
os.makedirs(adir,exist_ok=True)
ext=aud.name.split(".")[-1]
aname=f"audio_{int(time.time())}.{ext}"
ap=os.path.join(adir,aname)
with open(ap,"wb") as f: f.write(aud.getvalue())
st.session_state.audio_path=ap
st.audio(aud)
st.success("Audio uploaded")
# Timeline Tab
with tabs[4]:
st.markdown("### 🎞️ Timeline Editor")
st.info("Drag and adjust steps in code directly for now.")
# Educational Export Tab
with tabs[5]:
st.markdown("### πŸŽ“ Educational Export")
if not st.session_state.video_data:
st.warning("Generate an animation first")
else:
title = st.text_input("Title", "Manim Animation")
expl = st.text_area("Explanation (use ## to separate steps)", height=150)
fmt = st.selectbox("Format", ["PowerPoint","HTML","PDF Sequence"])
if st.button("Export"):
# Simplified, reuse generate_manim_video logic or placeholder
st.success(f"{fmt} export not yet implemented.")
# Python Runner Tab
with tabs[6]:
st.markdown("### 🐍 Python Script Runner")
examples = {
"Select...":"",
"Sine Plot":"""import matplotlib.pyplot as plt
import numpy as np
x=np.linspace(0,10,100)
y=np.sin(x)
plt.plot(x,y)
print("Done plotting")"""
}
sel=st.selectbox("Example", list(examples.keys()))
code = examples.get(sel, st.session_state.python_script)
if ACE_EDITOR_AVAILABLE:
code = st_ace(value=code, language="python", theme="monokai", min_lines=15, key="pyace")
else:
code = st.text_area("Code", code, height=300, key="pyta")
st.session_state.python_script=code
inputs = detect_input_calls(code)
vals=[]
if inputs:
st.info(f"{len(inputs)} input() calls detected")
for i,c in enumerate(inputs):
vals.append(st.text_input(f"{c['prompt']} (line {c['line']})", key=f"inp{i}"))
timeout = st.slider("Timeout", 5,300,30)
if st.button("▢️ Run"):
res=run_python_script(code, inputs=vals, timeout=timeout)
st.session_state.python_result=res
if st.session_state.python_result:
display_python_script_results(st.session_state.python_result)
# Handle tab switch after actions
if st.session_state.pending_tab_switch is not None:
st.session_state.active_tab = st.session_state.pending_tab_switch
st.session_state.pending_tab_switch=None
if __name__ == "__main__":
main()