File size: 26,084 Bytes
dd5ca7d
 
 
 
a76f82e
319d05d
dd5ca7d
80ed07e
 
19ef319
 
 
80ed07e
 
c02def7
 
 
 
dd5ca7d
 
 
 
19ef319
dd5ca7d
 
19ef319
dd5ca7d
913575d
dd5ca7d
 
 
19ef319
dd5ca7d
19ef319
 
dd5ca7d
 
19ef319
dd5ca7d
 
 
2690664
19ef319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
913575d
dd5ca7d
2690664
19ef319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a1ddff
dd5ca7d
7bda4fb
19ef319
 
 
 
 
 
 
 
 
 
 
 
 
7bda4fb
 
 
19ef319
 
 
913575d
6333e73
 
 
 
7834b48
6333e73
dd5ca7d
19ef319
 
 
 
 
 
 
913575d
c02def7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a1ddff
 
c02def7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19ef319
c02def7
 
19ef319
df770a8
c02def7
3c11a35
f1f1cff
c02def7
 
 
 
df770a8
 
3c11a35
c02def7
 
 
 
 
 
 
 
 
 
 
99f6a90
 
f1f1cff
 
3c11a35
f1f1cff
3c11a35
5be6912
 
f1f1cff
7a1ddff
f1f1cff
c02def7
 
 
19ef319
 
 
 
 
 
7a1ddff
 
 
 
19ef319
 
 
c02def7
 
 
df770a8
c02def7
 
 
3be6fe9
c02def7
 
7a1ddff
c02def7
3be6fe9
 
19ef319
3be6fe9
 
 
 
 
7a1ddff
 
 
 
 
3be6fe9
 
 
 
 
c02def7
 
 
 
 
 
3be6fe9
 
 
c02def7
 
 
7a1ddff
c02def7
 
 
 
 
 
 
 
 
 
 
 
 
 
3be6fe9
 
 
 
 
 
 
 
 
 
 
 
 
 
19ef319
7a1ddff
dd5ca7d
19ef319
 
 
 
 
 
 
 
 
 
913575d
2690664
19ef319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319d05d
7a1ddff
319d05d
7a1ddff
319d05d
7a1ddff
319d05d
 
 
 
 
 
7a1ddff
319d05d
 
 
 
 
7a1ddff
319d05d
 
 
 
7a1ddff
319d05d
 
 
 
7a1ddff
319d05d
 
 
7a1ddff
319d05d
7a1ddff
319d05d
7a1ddff
319d05d
7a1ddff
319d05d
 
 
 
 
 
 
 
 
 
 
7a1ddff
319d05d
7a1ddff
 
 
 
319d05d
 
 
 
 
7a1ddff
319d05d
 
7a1ddff
 
 
 
 
 
19ef319
dd5ca7d
 
7a1ddff
 
dd5ca7d
19ef319
dd5ca7d
ba9a480
 
 
 
 
 
 
3e42471
1a4a7a6
 
df770a8
c02def7
3c11a35
c02def7
3c11a35
a12ae05
df770a8
 
 
c02def7
 
 
 
 
 
 
 
19ef319
ba9a480
19ef319
c02def7
19ef319
 
c02def7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19ef319
7a1ddff
dd5ca7d
7a1ddff
b7ef8c3
 
1a4a7a6
 
 
 
 
3e42471
1a4a7a6
7a1ddff
 
 
319d05d
 
 
7a1ddff
 
ba9a480
2690664
ef6361a
 
 
7a1ddff
319d05d
 
 
 
7a1ddff
 
 
319d05d
 
7a1ddff
 
 
319d05d
 
 
 
 
 
7a1ddff
a76f82e
c02def7
913575d
19ef319
 
 
 
 
 
 
 
3e42471
1a4a7a6
 
c02def7
 
 
 
 
 
 
 
19ef319
 
da34afc
c02def7
da34afc
c02def7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
import streamlit as st
import sympy as sp
import numpy as np
import plotly.graph_objects as go
from scipy.optimize import fsolve
from scipy.stats import gaussian_kde

# Configure Streamlit for Hugging Face Spaces
st.set_page_config(
    page_title="Cubic Root Analysis",
    layout="wide",
    initial_sidebar_state="collapsed"
)

def add_sqrt_support(expr_str):
    """Replace 'sqrt(' with 'sp.sqrt(' for sympy compatibility"""
    return expr_str.replace('sqrt(', 'sp.sqrt(')

#############################
# 1) Define the discriminant
#############################

# Symbolic variables for the cubic discriminant
z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True, positive=True)

# Define coefficients a, b, c, d in terms of z_sym, beta_sym, z_a_sym, y_sym
a_sym = z_sym * z_a_sym
b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym
c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym)
d_sym = 1

# Symbolic expression for the cubic discriminant
Delta_expr = (
    ((b_sym*c_sym)/(6*a_sym**2) - (b_sym**3)/(27*a_sym**3) - d_sym/(2*a_sym))**2
    + (c_sym/(3*a_sym) - (b_sym**2)/(9*a_sym**2))**3
)

# Fast numeric function for the discriminant
discriminant_func = sp.lambdify((z_sym, beta_sym, z_a_sym, y_sym), Delta_expr, "numpy")

@st.cache_data
def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps):
    """
    Scan z in [z_min, z_max] for sign changes in the discriminant,
    and return approximated roots (where the discriminant is zero).
    """
    z_grid = np.linspace(z_min, z_max, steps)
    disc_vals = discriminant_func(z_grid, beta, z_a, y)
    roots_found = []
    for i in range(len(z_grid) - 1):
        f1, f2 = disc_vals[i], disc_vals[i+1]
        if np.isnan(f1) or np.isnan(f2):
            continue
        if f1 == 0.0:
            roots_found.append(z_grid[i])
        elif f2 == 0.0:
            roots_found.append(z_grid[i+1])
        elif f1 * f2 < 0:
            zl, zr = z_grid[i], z_grid[i+1]
            for _ in range(50):
                mid = 0.5 * (zl + zr)
                fm = discriminant_func(mid, beta, z_a, y)
                if fm == 0:
                    zl = zr = mid
                    break
                if np.sign(fm) == np.sign(f1):
                    zl, f1 = mid, fm
                else:
                    zr, f2 = mid, fm
            roots_found.append(0.5 * (zl + zr))
    return np.array(roots_found)

@st.cache_data
def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps):
    """
    For each beta in [0,1] (with beta_steps points), find the minimum and maximum z 
    for which the discriminant is zero.
    Returns: betas, lower z*(β) values, and upper z*(β) values.
    """
    betas = np.linspace(0, 1, beta_steps)
    z_min_values = []
    z_max_values = []
    for b in betas:
        roots = find_z_at_discriminant_zero(z_a, y, b, z_min, z_max, z_steps)
        if len(roots) == 0:
            z_min_values.append(np.nan)
            z_max_values.append(np.nan)
        else:
            z_min_values.append(np.min(roots))
            z_max_values.append(np.max(roots))
    return betas, np.array(z_min_values), np.array(z_max_values)

@st.cache_data
def compute_low_y_curve(betas, z_a, y):
    """
    Compute the "Low y Expression" curve.
    """
    betas = np.array(betas)
    with np.errstate(invalid='ignore', divide='ignore'):
        sqrt_term = y * betas * (z_a - 1)
        sqrt_term = np.where(sqrt_term < 0, np.nan, np.sqrt(sqrt_term))
        term = (-1 + sqrt_term) / z_a
        numerator = (y - 2)*term + y * betas * ((z_a - 1)/z_a) - 1/z_a - 1
        denominator = term**2 + term
        mask = (denominator != 0) & ~np.isnan(denominator) & ~np.isnan(numerator)
        result = np.where(mask, numerator/denominator, np.nan)
    return result

@st.cache_data
def compute_high_y_curve(betas, z_a, y):
    """
    Compute the "High y Expression" curve.
    """
    a = z_a
    betas = np.array(betas)
    denominator = 1 - 2*a
    if denominator == 0:
        return np.full_like(betas, np.nan)
    numerator = -4*a*(a-1)*y*betas - 2*a*y - 2*a*(2*a-1)
    return numerator/denominator

def compute_alternate_low_expr(betas, z_a, y):
    """
    Compute the alternate low expression:
    (z_a*y*beta*(z_a-1) - 2*z_a*(1-y) - 2*z_a**2) / (2+2*z_a)
    """
    betas = np.array(betas)
    return (z_a * y * betas * (z_a - 1) - 2*z_a*(1 - y) - 2*z_a**2) / (2 + 2*z_a)

@st.cache_data
def compute_derivatives(curve, betas):
    """Compute first and second derivatives of a curve"""
    d1 = np.gradient(curve, betas)
    d2 = np.gradient(d1, betas)
    return d1, d2

def compute_all_derivatives(betas, z_mins, z_maxs, low_y_curve, high_y_curve, alt_low_expr, custom_curve1=None, custom_curve2=None):
    """Compute derivatives for all curves"""
    derivatives = {}
    
    # Upper z*(β)
    derivatives['upper'] = compute_derivatives(z_maxs, betas)
    
    # Lower z*(β)
    derivatives['lower'] = compute_derivatives(z_mins, betas)
    
    # Low y Expression
    if low_y_curve is not None:
        derivatives['low_y'] = compute_derivatives(low_y_curve, betas)
    
    # High y Expression
    derivatives['high_y'] = compute_derivatives(high_y_curve, betas)
    
    # Alternate Low Expression
    derivatives['alt_low'] = compute_derivatives(alt_low_expr, betas)
    
    # Custom Expression 1 (if provided)
    if custom_curve1 is not None:
        derivatives['custom1'] = compute_derivatives(custom_curve1, betas)

    # Custom Expression 2 (if provided)
    if custom_curve2 is not None:
        derivatives['custom2'] = compute_derivatives(custom_curve2, betas)
        
    return derivatives

def compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, is_s_based=True):
    """
    Compute custom curve. If is_s_based=True, compute using s substitution.
    Otherwise, compute direct z(β) expression.
    """
    beta_sym, z_a_sym, y_sym = sp.symbols("beta z_a y", positive=True)
    local_dict = {"beta": beta_sym, "z_a": z_a_sym, "y": y_sym, "sp": sp}
    
    try:
        # Add sqrt support
        s_num_expr = add_sqrt_support(s_num_expr)
        s_denom_expr = add_sqrt_support(s_denom_expr)
        
        num_expr = sp.sympify(s_num_expr, locals=local_dict)
        denom_expr = sp.sympify(s_denom_expr, locals=local_dict)
        
        if is_s_based:
            # Compute s and substitute into main expression
            s_expr = num_expr / denom_expr
            a = z_a_sym
            numerator = y_sym*beta_sym*(z_a_sym-1)*s_expr + (a*s_expr+1)*((y_sym-1)*s_expr-1)
            denominator = (a*s_expr+1)*(s_expr**2 + s_expr)
            final_expr = numerator/denominator
        else:
            # Direct z(β) expression
            final_expr = num_expr / denom_expr
            
    except sp.SympifyError as e:
        st.error(f"Error parsing expressions: {e}")
        return np.full_like(betas, np.nan)
    
    final_func = sp.lambdify((beta_sym, z_a_sym, y_sym), final_expr, modules=["numpy"])
    with np.errstate(divide='ignore', invalid='ignore'):
        result = final_func(betas, z_a, y)
        if np.isscalar(result):
            result = np.full_like(betas, result)
    return result

def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps,
                          s_num_expr=None, s_denom_expr=None, 
                          z_num_expr=None, z_denom_expr=None,
                          show_derivatives=False):
    if z_a <= 0 or y <= 0 or z_min >= z_max:
        st.error("Invalid input parameters.")
        return None

    betas = np.linspace(0, 1, beta_steps)
    betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps)
    
    # Remove low_y_curve computation and display as requested
    # low_y_curve = compute_low_y_curve(betas, z_a, y)  # Commented out
    
    high_y_curve = compute_high_y_curve(betas, z_a, y)
    alt_low_expr = compute_alternate_low_expr(betas, z_a, y)
    
    # Compute both custom curves
    custom_curve1 = None
    custom_curve2 = None
    if s_num_expr and s_denom_expr:
        custom_curve1 = compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, True)
    if z_num_expr and z_denom_expr:
        custom_curve2 = compute_custom_expression(betas, z_a, y, z_num_expr, z_denom_expr, False)

    # Compute derivatives if needed
    if show_derivatives:
        derivatives = compute_all_derivatives(betas, z_mins, z_maxs, None, high_y_curve, 
                                           alt_low_expr, custom_curve1, custom_curve2)

    fig = go.Figure()
    
    # Original curves
    fig.add_trace(go.Scatter(x=betas, y=z_maxs, mode="markers+lines", 
                            name="Upper z*(β)", line=dict(color='blue')))
    fig.add_trace(go.Scatter(x=betas, y=z_mins, mode="markers+lines", 
                            name="Lower z*(β)", line=dict(color='lightblue')))
    
    # Remove low_y_curve trace as requested
    # fig.add_trace(go.Scatter(x=betas, y=low_y_curve, mode="markers+lines", 
    #                        name="Low y Expression", line=dict(color='red')))
    
    fig.add_trace(go.Scatter(x=betas, y=high_y_curve, mode="markers+lines", 
                            name="High y Expression", line=dict(color='green')))
    fig.add_trace(go.Scatter(x=betas, y=alt_low_expr, mode="markers+lines", 
                            name="Alternate Low Expression", line=dict(color='orange')))
    
    if custom_curve1 is not None:
        fig.add_trace(go.Scatter(x=betas, y=custom_curve1, mode="markers+lines", 
                                name="Custom 1 (s-based)", line=dict(color='purple')))
    if custom_curve2 is not None:
        fig.add_trace(go.Scatter(x=betas, y=custom_curve2, mode="markers+lines", 
                                name="Custom 2 (direct)", line=dict(color='magenta')))

    if show_derivatives:
        # First derivatives
        curve_info = [
            ('upper', 'Upper z*(β)', 'blue'),
            ('lower', 'Lower z*(β)', 'lightblue'),
            # ('low_y', 'Low y', 'red'),  # Removed as requested
            ('high_y', 'High y', 'green'),
            ('alt_low', 'Alt Low', 'orange')
        ]
        
        if custom_curve1 is not None:
            curve_info.append(('custom1', 'Custom 1', 'purple'))
        if custom_curve2 is not None:
            curve_info.append(('custom2', 'Custom 2', 'magenta'))

        for key, name, color in curve_info:
            fig.add_trace(go.Scatter(x=betas, y=derivatives[key][0], mode="lines", 
                                    name=f"{name} d/dβ", line=dict(color=color, dash='dash')))
            fig.add_trace(go.Scatter(x=betas, y=derivatives[key][1], mode="lines", 
                                    name=f"{name} d²/dβ²", line=dict(color=color, dash='dot')))

    fig.update_layout(
        title="Curves vs β: z*(β) Boundaries and Asymptotic Expressions",
        xaxis_title="β",
        yaxis_title="Value",
        hovermode="x unified",
        showlegend=True,
        legend=dict(
            yanchor="top",
            y=0.99,
            xanchor="left",
            x=0.01
        )
    )
    return fig

def compute_cubic_roots(z, beta, z_a, y):
    """
    Compute the roots of the cubic equation for given parameters.
    """
    a = z * z_a
    b = z * z_a + z + z_a - z_a*y
    c = z + z_a + 1 - y*(beta*z_a + 1 - beta)
    d = 1
    coeffs = [a, b, c, d]
    roots = np.roots(coeffs)
    return roots

def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
    """
    Generate Im(s) and Re(s) vs. z plots.
    """
    if z_a <= 0 or y <= 0 or z_min >= z_max:
        st.error("Invalid input parameters.")
        return None, None

    z_points = np.linspace(z_min, z_max, n_points)
    ims, res = [], []
    for z in z_points:
        roots = compute_cubic_roots(z, beta, z_a, y)
        roots = sorted(roots, key=lambda x: abs(x.imag))
        ims.append([root.imag for root in roots])
        res.append([root.real for root in roots])
    ims = np.array(ims)
    res = np.array(res)

    fig_im = go.Figure()
    for i in range(3):
        fig_im.add_trace(go.Scatter(x=z_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}",
                                    line=dict(width=2)))
    fig_im.update_layout(title=f"Im{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
                         xaxis_title="z", yaxis_title="Im{s}", hovermode="x unified")

    fig_re = go.Figure()
    for i in range(3):
        fig_re.add_trace(go.Scatter(x=z_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}",
                                    line=dict(width=2)))
    fig_re.update_layout(title=f"Re{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
                         xaxis_title="z", yaxis_title="Re{s}", hovermode="x unified")
    return fig_im, fig_re

# New function for computing eigenvalue distribution directly
@st.cache_data
def compute_eigenvalue_distribution_direct(z_a, y, beta, n, num_samples=10):
    """
    Compute the eigenvalue distribution by directly generating random matrices and computing eigenvalues.
    
    Parameters:
    - z_a: The value 'a' in the distribution β·δ_a + (1-β)·δ_1
    - y: The asymptotic ratio p/n
    - beta: The mixing coefficient in the distribution
    - n: Size of the matrix dimension n
    - num_samples: Number of random matrices to generate for averaging
    
    Returns:
    - all_eigenvalues: Array of all eigenvalues from all samples
    """
    p = int(y * n)  # Calculate p based on aspect ratio y
    all_eigenvalues = []
    
    for _ in range(num_samples):
        # Generate random matrix X with elements following β·δ_a + (1-β)·δ_1
        # This means each element is 'a' with probability β, and 1 with probability (1-β)
        random_values = np.random.choice([z_a, 1.0], size=(p, n), p=[beta, 1-beta])
        
        # Compute B_n = (1/n)XX*
        X = random_values
        XX_star = X @ X.T
        B_n = XX_star / n
        
        # Compute eigenvalues
        eigenvalues = np.linalg.eigvalsh(B_n)
        all_eigenvalues.extend(eigenvalues)
    
    return np.array(all_eigenvalues)

def generate_esd_plot_direct(z_a, y, beta, n, num_samples=10, bandwidth=0.1):
    """
    Generate a plot of the eigenvalue distribution using KDE.
    """
    # Compute eigenvalues
    eigenvalues = compute_eigenvalue_distribution_direct(z_a, y, beta, n, num_samples)
    
    # Use KDE to estimate the density
    kde = gaussian_kde(eigenvalues, bw_method=bandwidth)
    
    # Generate points for plotting
    x_min = max(0, np.min(eigenvalues) - 0.5)
    x_max = np.max(eigenvalues) + 0.5
    x_values = np.linspace(x_min, x_max, 1000)
    density_values = kde(x_values)
    
    # Create the plot
    fig = go.Figure()
    fig.add_trace(go.Scatter(x=x_values, y=density_values, mode="lines", 
                            name="Eigenvalue Density", line=dict(color='blue', width=2)))
    
    # Add individual eigenvalue points as a rug plot
    fig.add_trace(go.Scatter(x=eigenvalues, y=np.zeros_like(eigenvalues), 
                             mode="markers", name="Eigenvalues",
                             marker=dict(color='red', size=3, opacity=0.5)))
    
    fig.update_layout(
        title=f"Eigenvalue Distribution (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f}, n={n})",
        xaxis_title="Eigenvalue",
        yaxis_title="Density",
        hovermode="x unified"
    )
    
    return fig

# ----------------- Streamlit UI -----------------
st.title("Cubic Root Analysis")

# Define three tabs (removed "Curve Intersections" tab)
tab1, tab2, tab3 = st.tabs(["z*(β) Curves", "Im{s} vs. z", "Differential Analysis"])

# ----- Tab 1: z*(β) Curves -----
with tab1:
    st.header("Find z Values where Cubic Roots Transition Between Real and Complex")
    col1, col2 = st.columns([1, 2])
    with col1:
        z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1")
        y_1 = st.number_input("y", value=1.0, key="y_1")
        z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1")
        z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1")
        with st.expander("Resolution Settings"):
            beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, key="beta_steps")
            z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, step=1000, key="z_steps")
        
        st.subheader("Custom Expression 1 (s-based)")
        st.markdown("""Enter expressions for s = numerator/denominator 
                    (using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
        st.latex(r"\text{This s will be inserted into:}")
        st.latex(r"\frac{y\beta(z_a-1)\underline{s}+(a\underline{s}+1)((y-1)\underline{s}-1)}{(a\underline{s}+1)(\underline{s}^2 + \underline{s})}")
        s_num = st.text_input("s numerator", value="y*beta*(z_a-1)", key="s_num")
        s_denom = st.text_input("s denominator", value="z_a", key="s_denom")

        st.subheader("Custom Expression 2 (direct z(β))")
        st.markdown("""Enter direct expression for z(β) = numerator/denominator 
                    (using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
        z_num = st.text_input("z(β) numerator", value="y*beta*(z_a-1)", key="z_num")
        z_denom = st.text_input("z(β) denominator", value="1", key="z_denom")

        show_derivatives = st.checkbox("Show derivatives", value=False)

    if st.button("Compute z vs. β Curves", key="tab1_button"):
        with col2:
            fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, z_steps,
                                        s_num, s_denom, z_num, z_denom, show_derivatives)
            if fig is not None:
                st.plotly_chart(fig, use_container_width=True)
                st.markdown("### Curve Explanations")
                st.markdown("""
                - **Upper z*(β)** (Blue): Maximum z value where discriminant is zero
                - **Lower z*(β)** (Light Blue): Minimum z value where discriminant is zero
                - **High y Expression** (Green): Asymptotic approximation for high y values
                - **Alternate Low Expression** (Orange): Alternative asymptotic expression
                - **Custom Expression 1** (Purple): Result from user-defined s substituted into the main formula
                - **Custom Expression 2** (Magenta): Direct z(β) expression
                """)
                if show_derivatives:
                    st.markdown("""
                    Derivatives are shown as:
                    - Dashed lines: First derivatives (d/dβ)
                    - Dotted lines: Second derivatives (d²/dβ²)
                    """)

# ----- Tab 2: Im{s} vs. z and Eigenvalue Distribution -----
with tab2:
    st.header("Plot Complex Roots vs. z and Eigenvalue Distribution")
    col1, col2 = st.columns([1, 2])
    with col1:
        beta = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_tab2")
        y_2 = st.number_input("y", value=1.0, key="y_tab2")
        z_a_2 = st.number_input("z_a", value=1.0, key="z_a_tab2")
        z_min_2 = st.number_input("z_min", value=-10.0, key="z_min_tab2")
        z_max_2 = st.number_input("z_max", value=10.0, key="z_max_tab2")
        with st.expander("Resolution Settings"):
            z_points = st.slider("z grid points", min_value=1000, max_value=10000, value=5000, step=500, key="z_points")
        
        # Add new settings for eigenvalue distribution
        st.subheader("Eigenvalue Distribution Settings")
        matrix_size = st.slider("Matrix size (n)", min_value=50, max_value=1000, value=200, step=50, key="matrix_size")
        num_samples = st.slider("Number of matrix samples", min_value=1, max_value=50, value=10, step=1, key="num_samples")
        bandwidth = st.slider("KDE bandwidth", min_value=0.01, max_value=0.5, value=0.1, step=0.01, key="kde_bandwidth")
    
    if st.button("Compute", key="tab2_button"):
        with col2:
            fig_im, fig_re = generate_root_plots(beta, y_2, z_a_2, z_min_2, z_max_2, z_points)
            if fig_im is not None and fig_re is not None:
                st.plotly_chart(fig_im, use_container_width=True)
                st.plotly_chart(fig_re, use_container_width=True)
                
                # Add eigenvalue distribution plot with direct computation and KDE
                with st.spinner("Computing eigenvalue distribution..."):
                    fig_esd = generate_esd_plot_direct(z_a_2, y_2, beta, matrix_size, num_samples, bandwidth)
                    st.plotly_chart(fig_esd, use_container_width=True)
                
                st.markdown("""
                ### Eigenvalue Distribution Explanation
                This plot shows the eigenvalue distribution of B_n = (1/n)XX* where:
                - X is a p×n matrix with p/n = y
                - Elements of X are i.i.d. following distribution β·δ_a + (1-β)·δ_1
                - a = z_a, y = y, β = β
                
                The distribution is computed by:
                1. Directly generating random matrices with the specified distribution
                2. Computing the eigenvalues of B_n
                3. Using Kernel Density Estimation (KDE) to visualize the distribution
                
                Red markers at the bottom indicate individual eigenvalues.
                """)

# ----- Tab 3: Differential Analysis -----
with tab3:
    st.header("Differential Analysis vs. β")
    st.markdown("This page shows the difference between the Upper (blue) and Lower (lightblue) z*(β) curves, along with their first and second derivatives with respect to β.")
    col1, col2 = st.columns([1, 2])
    with col1:
        z_a_diff = st.number_input("z_a", value=1.0, key="z_a_diff")
        y_diff = st.number_input("y", value=1.0, key="y_diff")
        z_min_diff = st.number_input("z_min", value=-10.0, key="z_min_diff")
        z_max_diff = st.number_input("z_max", value=10.0, key="z_max_diff")
        with st.expander("Resolution Settings"):
            beta_steps_diff = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, key="beta_steps_diff")
            z_steps_diff = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, step=1000, key="z_steps_diff")
        
        # Add options for curve selection
        st.subheader("Curves to Analyze")
        analyze_upper_lower = st.checkbox("Upper-Lower Difference", value=True)
        analyze_high_y = st.checkbox("High y Expression", value=False)
        analyze_alt_low = st.checkbox("Alternate Low Expression", value=False)

    if st.button("Compute Differentials", key="tab3_button"):
        with col2:
            betas_diff, lower_vals, upper_vals = sweep_beta_and_find_z_bounds(z_a_diff, y_diff, z_min_diff, z_max_diff, beta_steps_diff, z_steps_diff)
            
            # Create figure
            fig_diff = go.Figure()
            
            if analyze_upper_lower:
                diff_curve = upper_vals - lower_vals
                d1 = np.gradient(diff_curve, betas_diff)
                d2 = np.gradient(d1, betas_diff)
                
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=diff_curve, mode="lines", 
                                name="Upper-Lower Difference", line=dict(color="magenta", width=2)))
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines", 
                                name="Upper-Lower d/dβ", line=dict(color="magenta", dash='dash')))
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines", 
                                name="Upper-Lower d²/dβ²", line=dict(color="magenta", dash='dot')))

            if analyze_high_y:
                high_y_curve = compute_high_y_curve(betas_diff, z_a_diff, y_diff)
                d1 = np.gradient(high_y_curve, betas_diff)
                d2 = np.gradient(d1, betas_diff)
                
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=high_y_curve, mode="lines", 
                                name="High y", line=dict(color="green", width=2)))
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines", 
                                name="High y d/dβ", line=dict(color="green", dash='dash')))
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines", 
                                name="High y d²/dβ²", line=dict(color="green", dash='dot')))

            if analyze_alt_low:
                alt_low_curve = compute_alternate_low_expr(betas_diff, z_a_diff, y_diff)
                d1 = np.gradient(alt_low_curve, betas_diff)
                d2 = np.gradient(d1, betas_diff)
                
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=alt_low_curve, mode="lines", 
                                name="Alt Low", line=dict(color="orange", width=2)))
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines", 
                                name="Alt Low d/dβ", line=dict(color="orange", dash='dash')))
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines", 
                                name="Alt Low d²/dβ²", line=dict(color="orange", dash='dot')))

            fig_diff.update_layout(
                title="Differential Analysis vs. β",
                xaxis_title="β",
                yaxis_title="Value",
                hovermode="x unified",
                showlegend=True,
                legend=dict(
                    yanchor="top",
                    y=0.99,
                    xanchor="left",
                    x=0.01
                )
            )
            st.plotly_chart(fig_diff, use_container_width=True)
            
            st.markdown("""
            ### Curve Types
            - Solid lines: Original curves
            - Dashed lines: First derivatives (d/dβ)
            - Dotted lines: Second derivatives (d²/dβ²)
            """)