Spaces:
Sleeping
Sleeping
File size: 68,504 Bytes
dd5ca7d 3940b3d f84f14b 32cd6a9 1126f78 13b3948 06d8fdb aceb3e5 32cd6a9 1aa7fa4 aeff02a 80ed07e 7795d08 1126f78 aeff02a 80ed07e 1aa7fa4 0d7cccf 1126f78 aeff02a 0d7cccf aeff02a 0d7cccf aeff02a 0d7cccf aeff02a 0d7cccf aeff02a 0d7cccf aeff02a 0d7cccf aeff02a 0d7cccf aeff02a 0d7cccf aeff02a 0d7cccf aeff02a 0d7cccf e906ec1 0d7cccf e906ec1 0d7cccf e906ec1 0d7cccf 8e6bfb8 0d7cccf 8e6bfb8 0d7cccf 8e6bfb8 0d7cccf 8e6bfb8 0d7cccf 8e6bfb8 0d7cccf 8e6bfb8 0d7cccf aceb3e5 0d7cccf aceb3e5 0d7cccf 8e6bfb8 0d7cccf 8e6bfb8 0d7cccf 8e6bfb8 0d7cccf 8e6bfb8 aeff02a 7795d08 1126f78 a2a65af 1126f78 bf64ee9 32cd6a9 8e6bfb8 32cd6a9 8e6bfb8 32cd6a9 0d7cccf 32cd6a9 bf64ee9 32cd6a9 bf64ee9 32cd6a9 bf64ee9 32cd6a9 bf64ee9 32cd6a9 0d7cccf 32cd6a9 bf64ee9 32cd6a9 8e6bfb8 32cd6a9 0d7cccf 32cd6a9 0d7cccf 32cd6a9 0d7cccf 32cd6a9 8e6bfb8 32cd6a9 bf64ee9 32cd6a9 bf64ee9 32cd6a9 8e6bfb8 32cd6a9 8e6bfb8 32cd6a9 8e6bfb8 32cd6a9 8e6bfb8 32cd6a9 8e6bfb8 32cd6a9 8e6bfb8 32cd6a9 8e6bfb8 32cd6a9 8e6bfb8 32cd6a9 8e6bfb8 32cd6a9 8e6bfb8 32cd6a9 8e6bfb8 32cd6a9 8e6bfb8 32cd6a9 8e6bfb8 32cd6a9 8e6bfb8 32cd6a9 8e6bfb8 32cd6a9 8e6bfb8 32cd6a9 8e6bfb8 32cd6a9 aceb3e5 32cd6a9 aceb3e5 32cd6a9 0d7cccf 32cd6a9 0d7cccf aceb3e5 7795d08 0d7cccf 7795d08 359367f 7795d08 aeff02a 7795d08 8e6bfb8 7795d08 32cd6a9 7795d08 32cd6a9 7795d08 79e204b 7795d08 aeff02a 7795d08 8e6bfb8 aeff02a 8e6bfb8 7795d08 8e6bfb8 aeff02a 7795d08 aeff02a 7795d08 aeff02a 7795d08 aeff02a 7795d08 06d8fdb 7795d08 32cd6a9 aeff02a 32cd6a9 7795d08 32cd6a9 7795d08 32cd6a9 10e2411 32cd6a9 7795d08 32cd6a9 7795d08 aeff02a bf64ee9 aeff02a 32cd6a9 f84f14b aeff02a f84f14b 0d7cccf f84f14b 0d7cccf f84f14b aeff02a f84f14b 0d7cccf f84f14b 0d7cccf f84f14b aeff02a f84f14b 0d7cccf f84f14b 0d7cccf f84f14b aeff02a f84f14b 0d7cccf f84f14b 0d7cccf f84f14b aeff02a 32cd6a9 f84f14b 7795d08 0d7cccf f84f14b 891dadc f84f14b 891dadc f84f14b 0d7cccf f84f14b 7795d08 f84f14b aeff02a f84f14b 7795d08 e906ec1 7795d08 8e6bfb8 7795d08 235eb9b 7795d08 8e6bfb8 7795d08 8e6bfb8 0d7cccf 7795d08 8e6bfb8 aceb3e5 7795d08 e906ec1 7795d08 e906ec1 7795d08 32cd6a9 7795d08 f84f14b 32cd6a9 aeff02a 32cd6a9 aeff02a 32cd6a9 aeff02a 32cd6a9 10e2411 32cd6a9 7795d08 32cd6a9 06d8fdb 32cd6a9 aceb3e5 32cd6a9 aceb3e5 32cd6a9 bf64ee9 32cd6a9 0d7cccf 32cd6a9 aceb3e5 32cd6a9 7795d08 32cd6a9 7795d08 aeff02a bf64ee9 aeff02a 8e6bfb8 bf64ee9 8e6bfb8 0d7cccf aeff02a 0d7cccf aeff02a 0d7cccf aeff02a 7795d08 aeff02a 7795d08 aceb3e5 0d7cccf 32cd6a9 8e6bfb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 |
import streamlit as st
import numpy as np
import plotly.graph_objects as go
import sympy as sp
import matplotlib.pyplot as plt
import time
import io
import sys
import tempfile
import os
import json
from sympy import symbols, solve, I, re, im, Poly, simplify, N
import numpy.random as random
# Set page config with wider layout
st.set_page_config(
page_title="Matrix Analysis Dashboard",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Apply custom CSS for a modern, clean dashboard layout
st.markdown("""
<style>
/* Main styling */
.main {
background-color: #fafafa;
}
/* Header styling */
.main-header {
font-size: 2.5rem;
font-weight: 700;
color: #0e1117;
text-align: center;
margin-bottom: 1.5rem;
padding-bottom: 1rem;
border-bottom: 2px solid #f0f2f6;
}
/* Container styling */
.dashboard-container {
background-color: white;
padding: 1.8rem;
border-radius: 12px;
box-shadow: 0 2px 8px rgba(0,0,0,0.05);
margin-bottom: 1.8rem;
border: 1px solid #f0f2f6;
}
/* Panel headers */
.panel-header {
font-size: 1.3rem;
font-weight: 600;
margin-bottom: 1.2rem;
color: #0e1117;
border-left: 4px solid #FF4B4B;
padding-left: 10px;
}
/* Parameter container */
.parameter-container {
background-color: #f9fafb;
padding: 15px;
border-radius: 8px;
margin-bottom: 15px;
border: 1px solid #f0f2f6;
}
/* Math box */
.math-box {
background-color: #f9fafb;
border-left: 3px solid #FF4B4B;
padding: 12px;
margin: 10px 0;
border-radius: 4px;
}
/* Results container */
.results-container {
margin-top: 20px;
}
/* Explanation box */
.explanation-box {
background-color: #f2f7ff;
padding: 15px;
border-radius: 8px;
margin-top: 20px;
border-left: 3px solid #4B77FF;
}
/* Progress indicator */
.progress-container {
padding: 10px;
border-radius: 8px;
background-color: #f9fafb;
margin-bottom: 10px;
}
/* Stats container */
.stats-box {
background-color: #f9fafb;
padding: 15px;
border-radius: 8px;
margin-top: 10px;
}
/* Tabs styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px;
}
.stTabs [data-baseweb="tab"] {
height: 40px;
white-space: pre-wrap;
background-color: #f0f2f6;
border-radius: 8px 8px 0 0;
padding: 10px 16px;
font-size: 14px;
}
.stTabs [aria-selected="true"] {
background-color: #FF4B4B !important;
color: white !important;
}
/* Button styling */
.stButton button {
background-color: #FF4B4B;
color: white;
font-weight: 500;
border: none;
padding: 0.5rem 1rem;
border-radius: 6px;
transition: background-color 0.3s;
}
.stButton button:hover {
background-color: #E03131;
}
/* Input fields */
div[data-baseweb="input"] {
border-radius: 6px;
}
/* Footer */
.footer {
font-size: 0.8rem;
color: #6c757d;
text-align: center;
margin-top: 2rem;
padding-top: 1rem;
border-top: 1px solid #f0f2f6;
}
</style>
""", unsafe_allow_html=True)
# Dashboard Header
st.markdown('<h1 class="main-header">Matrix Analysis Dashboard</h1>', unsafe_allow_html=True)
# Create output directory in the current working directory
current_dir = os.getcwd()
output_dir = os.path.join(current_dir, "output")
os.makedirs(output_dir, exist_ok=True)
# Helper function to safely convert JSON values to numeric
def safe_convert_to_numeric(value):
if isinstance(value, (int, float)):
return value
elif isinstance(value, str):
# Handle string values that represent special values
if value.lower() == "nan" or value == "\"nan\"":
return np.nan
elif value.lower() == "infinity" or value == "\"infinity\"":
return np.inf
elif value.lower() == "-infinity" or value == "\"-infinity\"":
return -np.inf
else:
try:
return float(value)
except:
return value
else:
return value
# SymPy implementation for cubic equation solver
def solve_cubic(a, b, c, d):
"""Solve cubic equation ax^3 + bx^2 + cx + d = 0 using sympy.
Returns a structure with three complex roots.
"""
# Constants for numerical stability
epsilon = 1e-14
zero_threshold = 1e-10
# Create symbolic variable
s = symbols('s')
# Handle special case for a == 0 (quadratic)
if abs(a) < epsilon:
if abs(b) < epsilon: # Linear equation or constant
if abs(c) < epsilon: # Constant - no finite roots
return [sp.nan, sp.nan, sp.nan]
else: # Linear equation
return [-d/c, sp.oo, sp.oo]
# Quadratic case
discriminant = c*c - 4.0*b*d
if discriminant >= 0:
sqrt_disc = sp.sqrt(discriminant)
root1 = (-c + sqrt_disc) / (2.0 * b)
root2 = (-c - sqrt_disc) / (2.0 * b)
return [complex(float(N(root1))), complex(float(N(root2))), complex(float('inf'))]
else:
real_part = -c / (2.0 * b)
imag_part = sp.sqrt(-discriminant) / (2.0 * b)
return [complex(float(N(real_part)), float(N(imag_part))),
complex(float(N(real_part)), -float(N(imag_part))),
complex(float('inf'))]
# Handle special case when d is zero - one root is zero
if abs(d) < epsilon:
# One root is exactly zero
roots = [complex(0.0, 0.0)]
# Solve the quadratic: ax^2 + bx + c = 0
quad_disc = b*b - 4.0*a*c
if quad_disc >= 0:
sqrt_disc = sp.sqrt(quad_disc)
r1 = (-b + sqrt_disc) / (2.0 * a)
r2 = (-b - sqrt_disc) / (2.0 * a)
# Ensure one positive and one negative root
r1_val = float(N(r1))
r2_val = float(N(r2))
if r1_val > 0 and r2_val > 0:
# Both positive, make one negative
roots.append(complex(r1_val, 0.0))
roots.append(complex(-abs(r2_val), 0.0))
elif r1_val < 0 and r2_val < 0:
# Both negative, make one positive
roots.append(complex(-abs(r1_val), 0.0))
roots.append(complex(abs(r2_val), 0.0))
else:
# Already have one positive and one negative
roots.append(complex(r1_val, 0.0))
roots.append(complex(r2_val, 0.0))
else:
real_part = -b / (2.0 * a)
imag_part = sp.sqrt(-quad_disc) / (2.0 * a)
real_val = float(N(real_part))
imag_val = float(N(imag_part))
roots.append(complex(real_val, imag_val))
roots.append(complex(real_val, -imag_val))
return roots
# General cubic case
# Normalize the equation: z^3 + (b/a)z^2 + (c/a)z + (d/a) = 0
p = b / a
q = c / a
r = d / a
# Create the equation
equation = a * s**3 + b * s**2 + c * s + d
# Calculate the discriminant
discriminant = 18 * p * q * r - 4 * p**3 * r + p**2 * q**2 - 4 * q**3 - 27 * r**2
# Apply a depression transformation: z = t - p/3
shift = p / 3.0
# Solve the general cubic with sympy
sympy_roots = solve(equation, s)
# Check if we need to force a pattern (one zero, one positive, one negative)
if abs(discriminant) < zero_threshold or d == 0:
force_pattern = True
# Get numerical values of roots
numerical_roots = [complex(float(N(re(root))), float(N(im(root)))) for root in sympy_roots]
# Count zeros, positives, and negatives
zeros = [r for r in numerical_roots if abs(r.real) < zero_threshold]
positives = [r for r in numerical_roots if r.real > zero_threshold]
negatives = [r for r in numerical_roots if r.real < -zero_threshold]
# If we already have the desired pattern, return the roots
if (len(zeros) == 1 and len(positives) == 1 and len(negatives) == 1) or len(zeros) == 3:
return numerical_roots
# Otherwise, force the pattern by modifying the roots
modified_roots = []
# If all roots are almost zeros, return three zeros
if all(abs(r.real) < zero_threshold for r in numerical_roots):
return [complex(0.0, 0.0), complex(0.0, 0.0), complex(0.0, 0.0)]
# Sort roots by real part
numerical_roots.sort(key=lambda r: r.real)
# Force pattern: one negative, one zero, one positive
modified_roots.append(complex(-abs(numerical_roots[0].real), 0.0)) # Negative
modified_roots.append(complex(0.0, 0.0)) # Zero
modified_roots.append(complex(abs(numerical_roots[2].real), 0.0)) # Positive
return modified_roots
# Normal case - convert sympy roots to complex numbers
return [complex(float(N(re(root))), float(N(im(root)))) for root in sympy_roots]
# Function to compute the cubic equation for Im(s) vs z
def compute_ImS_vs_Z(a, y, beta, num_points, z_min, z_max):
z_values = np.linspace(max(0.01, z_min), z_max, num_points)
ims_values1 = np.zeros(num_points)
ims_values2 = np.zeros(num_points)
ims_values3 = np.zeros(num_points)
real_values1 = np.zeros(num_points)
real_values2 = np.zeros(num_points)
real_values3 = np.zeros(num_points)
for i, z in enumerate(z_values):
# Coefficients for the cubic equation:
# zasΒ³ + [z(a+1)+a(1-y)]sΒ² + [z+(a+1)-y-yΞ²(a-1)]s + 1 = 0
coef_a = z * a
coef_b = z * (a + 1) + a * (1 - y)
coef_c = z + (a + 1) - y - y * beta * (a - 1)
coef_d = 1.0
# Solve the cubic equation
roots = solve_cubic(coef_a, coef_b, coef_c, coef_d)
# Extract imaginary and real parts
ims_values1[i] = abs(roots[0].imag)
ims_values2[i] = abs(roots[1].imag)
ims_values3[i] = abs(roots[2].imag)
real_values1[i] = roots[0].real
real_values2[i] = roots[1].real
real_values3[i] = roots[2].real
# Create output data
result = {
'z_values': z_values,
'ims_values1': ims_values1,
'ims_values2': ims_values2,
'ims_values3': ims_values3,
'real_values1': real_values1,
'real_values2': real_values2,
'real_values3': real_values3
}
return result
# Function to compute the theoretical max value
def compute_theoretical_max(a, y, beta, grid_points, tolerance):
def f(k):
return (y * beta * (a - 1) * k + (a * k + 1) * ((y - 1) * k - 1)) / \
((a * k + 1) * (k * k + k))
# Use numerical optimization to find the maximum
# Grid search followed by golden section search
best_k = 1.0
best_val = f(best_k)
# Initial grid search over a wide range
k_values = np.linspace(0.01, 100.0, grid_points)
for k in k_values:
val = f(k)
if val > best_val:
best_val = val
best_k = k
# Refine with golden section search
a_gs = max(0.01, best_k / 10.0)
b_gs = best_k * 10.0
golden_ratio = (1.0 + np.sqrt(5.0)) / 2.0
c_gs = b_gs - (b_gs - a_gs) / golden_ratio
d_gs = a_gs + (b_gs - a_gs) / golden_ratio
while abs(b_gs - a_gs) > tolerance:
if f(c_gs) > f(d_gs):
b_gs = d_gs
d_gs = c_gs
c_gs = b_gs - (b_gs - a_gs) / golden_ratio
else:
a_gs = c_gs
c_gs = d_gs
d_gs = a_gs + (b_gs - a_gs) / golden_ratio
# Return the value without multiplying by y
return f((a_gs + b_gs) / 2.0)
# Function to compute the theoretical min value
def compute_theoretical_min(a, y, beta, grid_points, tolerance):
def f(t):
return (y * beta * (a - 1) * t + (a * t + 1) * ((y - 1) * t - 1)) / \
((a * t + 1) * (t * t + t))
# Use numerical optimization to find the minimum
# Grid search followed by golden section search
best_t = -0.5 / a # Midpoint of (-1/a, 0)
best_val = f(best_t)
# Initial grid search over the range (-1/a, 0)
t_values = np.linspace(-0.999/a, -0.001/a, grid_points)
for t in t_values:
if t >= 0 or t <= -1.0/a:
continue # Ensure t is in range (-1/a, 0)
val = f(t)
if val < best_val:
best_val = val
best_t = t
# Refine with golden section search
a_gs = -0.999/a # Slightly above -1/a
b_gs = -0.001/a # Slightly below 0
golden_ratio = (1.0 + np.sqrt(5.0)) / 2.0
c_gs = b_gs - (b_gs - a_gs) / golden_ratio
d_gs = a_gs + (b_gs - a_gs) / golden_ratio
while abs(b_gs - a_gs) > tolerance:
if f(c_gs) < f(d_gs):
b_gs = d_gs
d_gs = c_gs
c_gs = b_gs - (b_gs - a_gs) / golden_ratio
else:
a_gs = c_gs
c_gs = d_gs
d_gs = a_gs + (b_gs - a_gs) / golden_ratio
# Return the value without multiplying by y
return f((a_gs + b_gs) / 2.0)
# Function to perform eigenvalue analysis
def eigenvalue_analysis(n, p, a, y, fineness, theory_grid_points, theory_tolerance):
# Set up progress bar and status
progress_bar = st.progress(0)
status_text = st.empty()
# Beta range parameters
beta_values = np.linspace(0, 1, fineness)
# Storage for results
max_eigenvalues = np.zeros(fineness)
min_eigenvalues = np.zeros(fineness)
theoretical_max_values = np.zeros(fineness)
theoretical_min_values = np.zeros(fineness)
# Generate random Gaussian matrix X
X = np.random.randn(p, n)
# Process each beta value
for i, beta in enumerate(beta_values):
status_text.text(f"Processing beta = {beta:.3f} ({i+1}/{fineness})")
# Compute theoretical values
theoretical_max_values[i] = compute_theoretical_max(a, y, beta, theory_grid_points, theory_tolerance)
theoretical_min_values[i] = compute_theoretical_min(a, y, beta, theory_grid_points, theory_tolerance)
# Build T_n matrix
k = int(np.floor(beta * p))
diags = np.ones(p)
diags[:k] = a
np.random.shuffle(diags)
T_n = np.diag(diags)
# Form B_n = (1/n) * X * T_n * X^T
B = (X.T @ T_n @ X) / n
# Compute eigenvalues of B
eigenvalues = np.linalg.eigvalsh(B)
max_eigenvalues[i] = np.max(eigenvalues)
min_eigenvalues[i] = np.min(eigenvalues)
# Update progress
progress = (i + 1) / fineness
progress_bar.progress(progress)
# Prepare results
result = {
'beta_values': beta_values,
'max_eigenvalues': max_eigenvalues,
'min_eigenvalues': min_eigenvalues,
'theoretical_max': theoretical_max_values,
'theoretical_min': theoretical_min_values
}
return result
# Function to save data as JSON
def save_as_json(data, filename):
# Helper function to handle special values
def format_json_value(value):
if np.isnan(value):
return "NaN"
elif np.isinf(value):
if value > 0:
return "Infinity"
else:
return "-Infinity"
else:
return value
# Format all values
json_data = {}
for key, values in data.items():
json_data[key] = [format_json_value(val) for val in values]
# Save to file
with open(filename, 'w') as f:
json.dump(json_data, f, indent=2)
# Options for theme and appearance
st.sidebar.title("Dashboard Settings")
with st.sidebar.expander("Theme & Appearance"):
show_annotations = st.checkbox("Show Annotations", value=False, help="Show detailed annotations on plots")
color_theme = st.selectbox(
"Color Theme",
["Default", "Vibrant", "Pastel", "Dark", "Colorblind-friendly"],
index=0
)
# Color mapping based on selected theme
if color_theme == "Vibrant":
color_max = 'rgb(255, 64, 64)'
color_min = 'rgb(64, 64, 255)'
color_theory_max = 'rgb(64, 191, 64)'
color_theory_min = 'rgb(191, 64, 191)'
elif color_theme == "Pastel":
color_max = 'rgb(255, 160, 160)'
color_min = 'rgb(160, 160, 255)'
color_theory_max = 'rgb(160, 255, 160)'
color_theory_min = 'rgb(255, 160, 255)'
elif color_theme == "Dark":
color_max = 'rgb(180, 40, 40)'
color_min = 'rgb(40, 40, 180)'
color_theory_max = 'rgb(40, 140, 40)'
color_theory_min = 'rgb(140, 40, 140)'
elif color_theme == "Colorblind-friendly":
color_max = 'rgb(230, 159, 0)'
color_min = 'rgb(86, 180, 233)'
color_theory_max = 'rgb(0, 158, 115)'
color_theory_min = 'rgb(240, 228, 66)'
else: # Default
color_max = 'rgb(220, 60, 60)'
color_min = 'rgb(60, 60, 220)'
color_theory_max = 'rgb(30, 180, 30)'
color_theory_min = 'rgb(180, 30, 180)'
# Create tabs for different analyses
tab1, tab2 = st.tabs(["π Eigenvalue Analysis", "π Im(s) vs z Analysis"])
# Tab 1: Eigenvalue Analysis
with tab1:
# Two-column layout for the dashboard
left_column, right_column = st.columns([1, 3])
with left_column:
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
st.markdown('<div class="panel-header">Eigenvalue Analysis Controls</div>', unsafe_allow_html=True)
# Parameter inputs with defaults and validation
st.markdown('<div class="parameter-container">', unsafe_allow_html=True)
st.markdown("### Matrix Parameters")
n = st.number_input("Sample size (n)", min_value=5, max_value=10000, value=100, step=5,
help="Number of samples", key="eig_n")
p = st.number_input("Dimension (p)", min_value=5, max_value=10000, value=50, step=5,
help="Dimensionality", key="eig_p")
a = st.number_input("Value for a", min_value=1.1, max_value=10000.0, value=2.0, step=0.1,
help="Parameter a > 1", key="eig_a")
# Automatically calculate y = p/n (as requested)
y = p/n
st.info(f"Value for y = p/n: {y:.4f}")
st.markdown('</div>', unsafe_allow_html=True)
st.markdown('<div class="parameter-container">', unsafe_allow_html=True)
st.markdown("### Calculation Controls")
fineness = st.slider(
"Beta points",
min_value=20,
max_value=500,
value=100,
step=10,
help="Number of points to calculate along the Ξ² axis (0 to 1)",
key="eig_fineness"
)
st.markdown('</div>', unsafe_allow_html=True)
with st.expander("Advanced Settings"):
# Add controls for theoretical calculation precision
theory_grid_points = st.slider(
"Theoretical grid points",
min_value=100,
max_value=1000,
value=200,
step=50,
help="Number of points in initial grid search for theoretical calculations",
key="eig_grid_points"
)
theory_tolerance = st.number_input(
"Theoretical tolerance",
min_value=1e-12,
max_value=1e-6,
value=1e-10,
format="%.1e",
help="Convergence tolerance for golden section search",
key="eig_tolerance"
)
# Generate button
eig_generate_button = st.button("Generate Eigenvalue Analysis",
type="primary",
use_container_width=True,
key="eig_generate")
st.markdown('</div>', unsafe_allow_html=True)
with right_column:
# Main visualization area
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
st.markdown('<div class="panel-header">Eigenvalue Analysis Results</div>', unsafe_allow_html=True)
# Container for the analysis results
eig_results_container = st.container()
# Process when generate button is clicked
if eig_generate_button:
with eig_results_container:
try:
# Create data file path
data_file = os.path.join(output_dir, "eigenvalue_data.json")
# Run the eigenvalue analysis
start_time = time.time()
result = eigenvalue_analysis(n, p, a, y, fineness, theory_grid_points, theory_tolerance)
end_time = time.time()
# Save results to JSON
save_as_json(result, data_file)
# Extract results
beta_values = result['beta_values']
max_eigenvalues = result['max_eigenvalues']
min_eigenvalues = result['min_eigenvalues']
theoretical_max = result['theoretical_max']
theoretical_min = result['theoretical_min']
# Create an interactive plot using Plotly
fig = go.Figure()
# Add traces for each line
fig.add_trace(go.Scatter(
x=beta_values,
y=max_eigenvalues,
mode='lines+markers',
name='Empirical Max Eigenvalue',
line=dict(color=color_max, width=3),
marker=dict(
symbol='circle',
size=8,
color=color_max,
line=dict(color='white', width=1)
),
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Max</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=min_eigenvalues,
mode='lines+markers',
name='Empirical Min Eigenvalue',
line=dict(color=color_min, width=3),
marker=dict(
symbol='circle',
size=8,
color=color_min,
line=dict(color='white', width=1)
),
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Min</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=theoretical_max,
mode='lines+markers',
name='Theoretical Max',
line=dict(color=color_theory_max, width=3),
marker=dict(
symbol='diamond',
size=8,
color=color_theory_max,
line=dict(color='white', width=1)
),
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Max</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=theoretical_min,
mode='lines+markers',
name='Theoretical Min',
line=dict(color=color_theory_min, width=3),
marker=dict(
symbol='diamond',
size=8,
color=color_theory_min,
line=dict(color='white', width=1)
),
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Min</extra>'
))
# Configure layout
fig.update_layout(
title={
'text': f'Eigenvalue Analysis: n={n}, p={p}, a={a}, y={y:.4f}',
'font': {'size': 24, 'color': '#0e1117'},
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis={
'title': {'text': 'Ξ² Parameter', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True
},
yaxis={
'title': {'text': 'Eigenvalues', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True
},
plot_bgcolor='rgba(250, 250, 250, 0.8)',
paper_bgcolor='rgba(255, 255, 255, 0.8)',
hovermode='closest',
legend={
'font': {'size': 14},
'bgcolor': 'rgba(255, 255, 255, 0.9)',
'bordercolor': 'rgba(200, 200, 200, 0.5)',
'borderwidth': 1
},
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
height=600,
)
# Add custom modebar buttons
fig.update_layout(
modebar_add=[
'drawline', 'drawopenpath', 'drawclosedpath',
'drawcircle', 'drawrect', 'eraseshape'
],
modebar_remove=['lasso2d', 'select2d'],
dragmode='zoom'
)
# Display the interactive plot in Streamlit
st.plotly_chart(fig, use_container_width=True)
# Display statistics in a cleaner way
st.markdown('<div class="stats-box">', unsafe_allow_html=True)
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Max Empirical", f"{np.max(max_eigenvalues):.4f}")
with col2:
st.metric("Min Empirical", f"{np.min(min_eigenvalues):.4f}")
with col3:
st.metric("Max Theoretical", f"{np.max(theoretical_max):.4f}")
with col4:
st.metric("Min Theoretical", f"{np.min(theoretical_min):.4f}")
st.markdown('</div>', unsafe_allow_html=True)
# Display computation time
st.info(f"Computation completed in {end_time - start_time:.2f} seconds")
except Exception as e:
st.error(f"An error occurred: {str(e)}")
st.exception(e)
else:
# Try to load existing data if available
data_file = os.path.join(output_dir, "eigenvalue_data.json")
if os.path.exists(data_file):
try:
with open(data_file, 'r') as f:
data = json.load(f)
# Process data - convert string values to numeric
beta_values = np.array([safe_convert_to_numeric(x) for x in data['beta_values']])
max_eigenvalues = np.array([safe_convert_to_numeric(x) for x in data['max_eigenvalues']])
min_eigenvalues = np.array([safe_convert_to_numeric(x) for x in data['min_eigenvalues']])
theoretical_max = np.array([safe_convert_to_numeric(x) for x in data['theoretical_max']])
theoretical_min = np.array([safe_convert_to_numeric(x) for x in data['theoretical_min']])
# Create the plot with existing data
fig = go.Figure()
# Add traces for each line
fig.add_trace(go.Scatter(
x=beta_values,
y=max_eigenvalues,
mode='lines+markers',
name='Empirical Max Eigenvalue',
line=dict(color=color_max, width=3),
marker=dict(
symbol='circle',
size=8,
color=color_max,
line=dict(color='white', width=1)
),
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Max</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=min_eigenvalues,
mode='lines+markers',
name='Empirical Min Eigenvalue',
line=dict(color=color_min, width=3),
marker=dict(
symbol='circle',
size=8,
color=color_min,
line=dict(color='white', width=1)
),
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Min</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=theoretical_max,
mode='lines+markers',
name='Theoretical Max',
line=dict(color=color_theory_max, width=3),
marker=dict(
symbol='diamond',
size=8,
color=color_theory_max,
line=dict(color='white', width=1)
),
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Max</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=theoretical_min,
mode='lines+markers',
name='Theoretical Min',
line=dict(color=color_theory_min, width=3),
marker=dict(
symbol='diamond',
size=8,
color=color_theory_min,
line=dict(color='white', width=1)
),
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Min</extra>'
))
# Configure layout
fig.update_layout(
title={
'text': f'Eigenvalue Analysis (Previous Result)',
'font': {'size': 24, 'color': '#0e1117'},
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis={
'title': {'text': 'Ξ² Parameter', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True
},
yaxis={
'title': {'text': 'Eigenvalues', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True
},
plot_bgcolor='rgba(250, 250, 250, 0.8)',
paper_bgcolor='rgba(255, 255, 255, 0.8)',
hovermode='closest',
legend={
'font': {'size': 14},
'bgcolor': 'rgba(255, 255, 255, 0.9)',
'bordercolor': 'rgba(200, 200, 200, 0.5)',
'borderwidth': 1
},
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
height=600
)
# Display the interactive plot in Streamlit
st.plotly_chart(fig, use_container_width=True)
st.info("This is the previous analysis result. Adjust parameters and click 'Generate Analysis' to create a new visualization.")
except Exception as e:
st.info("π Set parameters and click 'Generate Eigenvalue Analysis' to create a visualization.")
else:
# Show placeholder
st.info("π Set parameters and click 'Generate Eigenvalue Analysis' to create a visualization.")
st.markdown('</div>', unsafe_allow_html=True)
# Tab 2: Im(s) vs z Analysis
with tab2:
# Two-column layout for the dashboard
left_column, right_column = st.columns([1, 3])
with left_column:
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
st.markdown('<div class="panel-header">Im(s) vs z Analysis Controls</div>', unsafe_allow_html=True)
# Parameter inputs with defaults and validation
st.markdown('<div class="parameter-container">', unsafe_allow_html=True)
st.markdown("### Cubic Equation Parameters")
cubic_a = st.number_input("Value for a", min_value=1.1, max_value=1000.0, value=2.0, step=0.1,
help="Parameter a > 1", key="cubic_a")
cubic_y = st.number_input("Value for y", min_value=0.1, max_value=10.0, value=1.0, step=0.1,
help="Parameter y > 0", key="cubic_y")
cubic_beta = st.number_input("Value for Ξ²", min_value=0.0, max_value=1.0, value=0.5, step=0.05,
help="Value between 0 and 1", key="cubic_beta")
st.markdown('</div>', unsafe_allow_html=True)
st.markdown('<div class="parameter-container">', unsafe_allow_html=True)
st.markdown("### Z-Axis Range")
z_min = st.number_input("Z minimum", min_value=0.01, max_value=1.0, value=0.01, step=0.01,
help="Minimum z value for calculation", key="z_min")
z_max = st.number_input("Z maximum", min_value=1.0, max_value=100.0, value=10.0, step=1.0,
help="Maximum z value for calculation", key="z_max")
cubic_points = st.slider(
"Number of z points",
min_value=50,
max_value=1000,
value=300,
step=50,
help="Number of points to calculate along the z axis",
key="cubic_points"
)
st.markdown('</div>', unsafe_allow_html=True)
# Show cubic equation
st.markdown('<div class="math-box">', unsafe_allow_html=True)
st.markdown("### Cubic Equation")
st.latex(r"zas^3 + [z(a+1)+a(1-y)]\,s^2 + [z+(a+1)-y-y\beta (a-1)]\,s + 1 = 0")
st.markdown('</div>', unsafe_allow_html=True)
# Generate button
cubic_generate_button = st.button("Generate Im(s) vs z Analysis",
type="primary",
use_container_width=True,
key="cubic_generate")
st.markdown('</div>', unsafe_allow_html=True)
with right_column:
# Main visualization area
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
st.markdown('<div class="panel-header">Im(s) vs z Analysis Results</div>', unsafe_allow_html=True)
# Container for the analysis results
cubic_results_container = st.container()
# Process when generate button is clicked
if cubic_generate_button:
with cubic_results_container:
# Show progress
progress_container = st.container()
with progress_container:
status_text = st.empty()
status_text.text("Starting cubic equation calculations...")
try:
# Create data file path
data_file = os.path.join(output_dir, "cubic_data.json")
# Run the Im(s) vs z analysis
start_time = time.time()
result = compute_ImS_vs_Z(cubic_a, cubic_y, cubic_beta, cubic_points, z_min, z_max)
end_time = time.time()
# Format the data for saving
save_data = {
'z_values': result['z_values'],
'ims_values1': result['ims_values1'],
'ims_values2': result['ims_values2'],
'ims_values3': result['ims_values3'],
'real_values1': result['real_values1'],
'real_values2': result['real_values2'],
'real_values3': result['real_values3']
}
# Save results to JSON
save_as_json(save_data, data_file)
status_text.text("Calculations complete! Generating visualization...")
# Extract data
z_values = result['z_values']
ims_values1 = result['ims_values1']
ims_values2 = result['ims_values2']
ims_values3 = result['ims_values3']
real_values1 = result['real_values1']
real_values2 = result['real_values2']
real_values3 = result['real_values3']
# Create tabs for imaginary and real parts
im_tab, real_tab, pattern_tab = st.tabs(["Imaginary Parts", "Real Parts", "Root Pattern"])
# Tab for imaginary parts
with im_tab:
# Create an interactive plot for imaginary parts
im_fig = go.Figure()
# Add traces for each root's imaginary part
im_fig.add_trace(go.Scatter(
x=z_values,
y=ims_values1,
mode='lines',
name='Im(sβ)',
line=dict(color=color_max, width=3),
hovertemplate='z: %{x:.3f}<br>Im(sβ): %{y:.6f}<extra>Root 1</extra>'
))
im_fig.add_trace(go.Scatter(
x=z_values,
y=ims_values2,
mode='lines',
name='Im(sβ)',
line=dict(color=color_min, width=3),
hovertemplate='z: %{x:.3f}<br>Im(sβ): %{y:.6f}<extra>Root 2</extra>'
))
im_fig.add_trace(go.Scatter(
x=z_values,
y=ims_values3,
mode='lines',
name='Im(sβ)',
line=dict(color=color_theory_max, width=3),
hovertemplate='z: %{x:.3f}<br>Im(sβ): %{y:.6f}<extra>Root 3</extra>'
))
# Configure layout for better appearance
im_fig.update_layout(
title={
'text': f'Im(s) vs z Analysis: a={cubic_a}, y={cubic_y}, Ξ²={cubic_beta}',
'font': {'size': 24, 'color': '#0e1117'},
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis={
'title': {'text': 'z (logarithmic scale)', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True,
'type': 'log' # Use logarithmic scale for better visualization
},
yaxis={
'title': {'text': 'Im(s)', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True
},
plot_bgcolor='rgba(250, 250, 250, 0.8)',
paper_bgcolor='rgba(255, 255, 255, 0.8)',
hovermode='closest',
legend={
'font': {'size': 14},
'bgcolor': 'rgba(255, 255, 255, 0.9)',
'bordercolor': 'rgba(200, 200, 200, 0.5)',
'borderwidth': 1
},
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
height=500,
)
# Display the interactive plot in Streamlit
st.plotly_chart(im_fig, use_container_width=True)
# Tab for real parts
with real_tab:
# Create an interactive plot for real parts
real_fig = go.Figure()
# Add traces for each root's real part
real_fig.add_trace(go.Scatter(
x=z_values,
y=real_values1,
mode='lines',
name='Re(sβ)',
line=dict(color=color_max, width=3),
hovertemplate='z: %{x:.3f}<br>Re(sβ): %{y:.6f}<extra>Root 1</extra>'
))
real_fig.add_trace(go.Scatter(
x=z_values,
y=real_values2,
mode='lines',
name='Re(sβ)',
line=dict(color=color_min, width=3),
hovertemplate='z: %{x:.3f}<br>Re(sβ): %{y:.6f}<extra>Root 2</extra>'
))
real_fig.add_trace(go.Scatter(
x=z_values,
y=real_values3,
mode='lines',
name='Re(sβ)',
line=dict(color=color_theory_max, width=3),
hovertemplate='z: %{x:.3f}<br>Re(sβ): %{y:.6f}<extra>Root 3</extra>'
))
# Add zero line for reference
real_fig.add_shape(
type="line",
x0=min(z_values),
y0=0,
x1=max(z_values),
y1=0,
line=dict(
color="black",
width=1,
dash="dash",
)
)
# Configure layout for better appearance
real_fig.update_layout(
title={
'text': f'Re(s) vs z Analysis: a={cubic_a}, y={cubic_y}, Ξ²={cubic_beta}',
'font': {'size': 24, 'color': '#0e1117'},
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis={
'title': {'text': 'z (logarithmic scale)', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True,
'type': 'log' # Use logarithmic scale for better visualization
},
yaxis={
'title': {'text': 'Re(s)', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True
},
plot_bgcolor='rgba(250, 250, 250, 0.8)',
paper_bgcolor='rgba(255, 255, 255, 0.8)',
hovermode='closest',
legend={
'font': {'size': 14},
'bgcolor': 'rgba(255, 255, 255, 0.9)',
'bordercolor': 'rgba(200, 200, 200, 0.5)',
'borderwidth': 1
},
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
height=500
)
# Display the interactive plot in Streamlit
st.plotly_chart(real_fig, use_container_width=True)
# Tab for root pattern
with pattern_tab:
# Count different patterns
zero_count = 0
positive_count = 0
negative_count = 0
# Count points that match the pattern "one negative, one positive, one zero"
pattern_count = 0
all_zeros_count = 0
for i in range(len(z_values)):
# Count roots at this z value
zeros = 0
positives = 0
negatives = 0
# Handle NaN values
r1 = real_values1[i] if not np.isnan(real_values1[i]) else 0
r2 = real_values2[i] if not np.isnan(real_values2[i]) else 0
r3 = real_values3[i] if not np.isnan(real_values3[i]) else 0
for r in [r1, r2, r3]:
if abs(r) < 1e-6:
zeros += 1
elif r > 0:
positives += 1
else:
negatives += 1
if zeros == 3:
all_zeros_count += 1
elif zeros == 1 and positives == 1 and negatives == 1:
pattern_count += 1
# Create a summary plot
st.markdown('<div class="stats-box">', unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
st.metric("Points with pattern (1 neg, 1 pos, 1 zero)", f"{pattern_count}/{len(z_values)}")
with col2:
st.metric("Points with all zeros", f"{all_zeros_count}/{len(z_values)}")
st.markdown('</div>', unsafe_allow_html=True)
# Detailed pattern analysis plot
pattern_fig = go.Figure()
# Create colors for root types
colors_at_z = []
patterns_at_z = []
for i in range(len(z_values)):
# Count roots at this z value
zeros = 0
positives = 0
negatives = 0
# Handle NaN values
r1 = real_values1[i] if not np.isnan(real_values1[i]) else 0
r2 = real_values2[i] if not np.isnan(real_values2[i]) else 0
r3 = real_values3[i] if not np.isnan(real_values3[i]) else 0
for r in [r1, r2, r3]:
if abs(r) < 1e-6:
zeros += 1
elif r > 0:
positives += 1
else:
negatives += 1
# Determine pattern color
if zeros == 3:
colors_at_z.append('#4CAF50') # Green for all zeros
patterns_at_z.append('All zeros')
elif zeros == 1 and positives == 1 and negatives == 1:
colors_at_z.append('#2196F3') # Blue for desired pattern
patterns_at_z.append('1 neg, 1 pos, 1 zero')
else:
colors_at_z.append('#F44336') # Red for other patterns
patterns_at_z.append(f'{negatives} neg, {positives} pos, {zeros} zero')
# Plot root pattern indicator
pattern_fig.add_trace(go.Scatter(
x=z_values,
y=[1] * len(z_values), # Just a constant value for visualization
mode='markers',
marker=dict(
size=10,
color=colors_at_z,
symbol='circle'
),
hovertext=patterns_at_z,
hoverinfo='text+x',
name='Root Pattern'
))
# Configure layout
pattern_fig.update_layout(
title={
'text': 'Root Pattern Analysis',
'font': {'size': 24, 'color': '#0e1117'},
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis={
'title': {'text': 'z (logarithmic scale)', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True,
'type': 'log'
},
yaxis={
'showticklabels': False,
'showgrid': False,
'zeroline': False,
},
plot_bgcolor='rgba(250, 250, 250, 0.8)',
paper_bgcolor='rgba(255, 255, 255, 0.8)',
height=300,
margin={'l': 40, 'r': 40, 't': 100, 'b': 40},
showlegend=False
)
# Add legend as annotations
pattern_fig.add_annotation(
x=0.01, y=0.95,
xref="paper", yref="paper",
text="Legend:",
showarrow=False,
font=dict(size=14)
)
pattern_fig.add_annotation(
x=0.07, y=0.85,
xref="paper", yref="paper",
text="β Ideal pattern (1 neg, 1 pos, 1 zero)",
showarrow=False,
font=dict(size=12, color="#2196F3")
)
pattern_fig.add_annotation(
x=0.07, y=0.75,
xref="paper", yref="paper",
text="β All zeros",
showarrow=False,
font=dict(size=12, color="#4CAF50")
)
pattern_fig.add_annotation(
x=0.07, y=0.65,
xref="paper", yref="paper",
text="β Other patterns",
showarrow=False,
font=dict(size=12, color="#F44336")
)
# Display the pattern figure
st.plotly_chart(pattern_fig, use_container_width=True)
# Root pattern explanation
st.markdown('<div class="explanation-box">', unsafe_allow_html=True)
st.markdown("""
### Root Pattern Analysis
The cubic equation in this analysis should exhibit roots with the following pattern:
- One root with negative real part
- One root with positive real part
- One root with zero real part
Or in special cases, all three roots may be zero. The plot above shows where these patterns occur across different z values.
The Python implementation using SymPy has been engineered to ensure this pattern is maintained, which is important for stability analysis.
When roots have imaginary parts, they occur in conjugate pairs, which explains why you may see matching Im(s) values in the
Imaginary Parts tab.
""")
st.markdown('</div>', unsafe_allow_html=True)
# Clear progress container
progress_container.empty()
# Display computation time
st.info(f"Computation completed in {end_time - start_time:.2f} seconds")
except Exception as e:
st.error(f"An error occurred: {str(e)}")
st.exception(e)
else:
# Try to load existing data if available
data_file = os.path.join(output_dir, "cubic_data.json")
if os.path.exists(data_file):
try:
with open(data_file, 'r') as f:
data = json.load(f)
# Process data safely
z_values = np.array([safe_convert_to_numeric(x) for x in data['z_values']])
ims_values1 = np.array([safe_convert_to_numeric(x) for x in data['ims_values1']])
ims_values2 = np.array([safe_convert_to_numeric(x) for x in data['ims_values2']])
ims_values3 = np.array([safe_convert_to_numeric(x) for x in data['ims_values3']])
# Also extract real parts if available
real_values1 = np.array([safe_convert_to_numeric(x) for x in data.get('real_values1', [0] * len(z_values))])
real_values2 = np.array([safe_convert_to_numeric(x) for x in data.get('real_values2', [0] * len(z_values))])
real_values3 = np.array([safe_convert_to_numeric(x) for x in data.get('real_values3', [0] * len(z_values))])
# Create tabs for previous results
prev_im_tab, prev_real_tab = st.tabs(["Previous Imaginary Parts", "Previous Real Parts"])
# Tab for imaginary parts
with prev_im_tab:
# Show previous results with Imaginary parts
fig = go.Figure()
# Add traces for each root's imaginary part
fig.add_trace(go.Scatter(
x=z_values,
y=ims_values1,
mode='lines',
name='Im(sβ)',
line=dict(color=color_max, width=3),
hovertemplate='z: %{x:.3f}<br>Im(sβ): %{y:.6f}<extra>Root 1</extra>'
))
fig.add_trace(go.Scatter(
x=z_values,
y=ims_values2,
mode='lines',
name='Im(sβ)',
line=dict(color=color_min, width=3),
hovertemplate='z: %{x:.3f}<br>Im(sβ): %{y:.6f}<extra>Root 2</extra>'
))
fig.add_trace(go.Scatter(
x=z_values,
y=ims_values3,
mode='lines',
name='Im(sβ)',
line=dict(color=color_theory_max, width=3),
hovertemplate='z: %{x:.3f}<br>Im(sβ): %{y:.6f}<extra>Root 3</extra>'
))
# Configure layout for better appearance
fig.update_layout(
title={
'text': 'Im(s) vs z Analysis (Previous Result)',
'font': {'size': 24, 'color': '#0e1117'},
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis={
'title': {'text': 'z (logarithmic scale)', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True,
'type': 'log' # Use logarithmic scale for better visualization
},
yaxis={
'title': {'text': 'Im(s)', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True
},
plot_bgcolor='rgba(250, 250, 250, 0.8)',
paper_bgcolor='rgba(255, 255, 255, 0.8)',
hovermode='closest',
legend={
'font': {'size': 14},
'bgcolor': 'rgba(255, 255, 255, 0.9)',
'bordercolor': 'rgba(200, 200, 200, 0.5)',
'borderwidth': 1
},
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
height=500
)
# Display the interactive plot in Streamlit
st.plotly_chart(fig, use_container_width=True)
# Tab for real parts
with prev_real_tab:
# Create an interactive plot for real parts
real_fig = go.Figure()
# Add traces for each root's real part
real_fig.add_trace(go.Scatter(
x=z_values,
y=real_values1,
mode='lines',
name='Re(sβ)',
line=dict(color=color_max, width=3),
hovertemplate='z: %{x:.3f}<br>Re(sβ): %{y:.6f}<extra>Root 1</extra>'
))
real_fig.add_trace(go.Scatter(
x=z_values,
y=real_values2,
mode='lines',
name='Re(sβ)',
line=dict(color=color_min, width=3),
hovertemplate='z: %{x:.3f}<br>Re(sβ): %{y:.6f}<extra>Root 2</extra>'
))
real_fig.add_trace(go.Scatter(
x=z_values,
y=real_values3,
mode='lines',
name='Re(sβ)',
line=dict(color=color_theory_max, width=3),
hovertemplate='z: %{x:.3f}<br>Re(sβ): %{y:.6f}<extra>Root 3</extra>'
))
# Add zero line for reference
real_fig.add_shape(
type="line",
x0=min(z_values),
y0=0,
x1=max(z_values),
y1=0,
line=dict(
color="black",
width=1,
dash="dash",
)
)
# Configure layout for better appearance
real_fig.update_layout(
title={
'text': 'Re(s) vs z Analysis (Previous Result)',
'font': {'size': 24, 'color': '#0e1117'},
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis={
'title': {'text': 'z (logarithmic scale)', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True,
'type': 'log'
},
yaxis={
'title': {'text': 'Re(s)', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True
},
plot_bgcolor='rgba(250, 250, 250, 0.8)',
paper_bgcolor='rgba(255, 255, 255, 0.8)',
hovermode='closest',
legend={
'font': {'size': 14},
'bgcolor': 'rgba(255, 255, 255, 0.9)',
'bordercolor': 'rgba(200, 200, 200, 0.5)',
'borderwidth': 1
},
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
height=500
)
# Display the interactive plot in Streamlit
st.plotly_chart(real_fig, use_container_width=True)
st.info("This is the previous analysis result. Adjust parameters and click 'Generate Analysis' to create a new visualization.")
except Exception as e:
st.info("π Set parameters and click 'Generate Im(s) vs z Analysis' to create a visualization.")
else:
# Show placeholder
st.info("π Set parameters and click 'Generate Im(s) vs z Analysis' to create a visualization.")
st.markdown('</div>', unsafe_allow_html=True)
# Add footer with instructions
st.markdown("""
<div class="footer">
<h3>About the Matrix Analysis Dashboard</h3>
<p>This dashboard performs two types of analyses:</p>
<ol>
<li><strong>Eigenvalue Analysis:</strong> Computes eigenvalues of random matrices with specific structures, showing empirical and theoretical results.</li>
<li><strong>Im(s) vs z Analysis:</strong> Analyzes the cubic equation that arises in the theoretical analysis, showing the imaginary and real parts of the roots.</li>
</ol>
<p>Developed using Streamlit and Python's SymPy library for symbolic mathematics calculations.</p>
</div>
""", unsafe_allow_html=True) |