Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,14 +4,13 @@ import os
|
|
| 4 |
import json
|
| 5 |
import numpy as np
|
| 6 |
import plotly.graph_objects as go
|
| 7 |
-
from plotly.subplots import make_subplots
|
| 8 |
from PIL import Image
|
| 9 |
import time
|
| 10 |
import io
|
| 11 |
|
| 12 |
# Set page config with wider layout
|
| 13 |
st.set_page_config(
|
| 14 |
-
page_title="
|
| 15 |
page_icon="π",
|
| 16 |
layout="wide",
|
| 17 |
initial_sidebar_state="expanded"
|
|
@@ -43,28 +42,27 @@ st.markdown("""
|
|
| 43 |
border-left: 4px solid #1E88E5;
|
| 44 |
padding-left: 10px;
|
| 45 |
}
|
| 46 |
-
.
|
| 47 |
-
|
| 48 |
-
padding: 1rem;
|
| 49 |
-
border-radius: 8px;
|
| 50 |
-
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
|
| 51 |
-
text-align: center;
|
| 52 |
}
|
| 53 |
-
.
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
color: #
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
}
|
| 58 |
-
.
|
| 59 |
-
|
| 60 |
-
color:
|
| 61 |
-
margin-top: 0.3rem;
|
| 62 |
}
|
| 63 |
</style>
|
| 64 |
""", unsafe_allow_html=True)
|
| 65 |
|
| 66 |
# Dashboard Header
|
| 67 |
-
st.markdown('<h1 class="main-header">
|
| 68 |
|
| 69 |
# Create output directory in the current working directory
|
| 70 |
current_dir = os.getcwd()
|
|
@@ -75,20 +73,14 @@ os.makedirs(output_dir, exist_ok=True)
|
|
| 75 |
cpp_file = os.path.join(current_dir, "app.cpp")
|
| 76 |
executable = os.path.join(current_dir, "eigen_analysis")
|
| 77 |
|
| 78 |
-
#
|
| 79 |
-
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
with
|
| 82 |
-
|
| 83 |
-
st.
|
| 84 |
-
|
| 85 |
-
# Check if cpp file exists and compile if necessary
|
| 86 |
-
if not os.path.exists(cpp_file):
|
| 87 |
-
st.error(f"C++ source file not found at: {cpp_file}")
|
| 88 |
-
st.stop()
|
| 89 |
-
|
| 90 |
-
# Compile the C++ code with the right OpenCV libraries
|
| 91 |
-
if not os.path.exists(executable) or st.button("Recompile C++ Code"):
|
| 92 |
with st.spinner("Compiling C++ code..."):
|
| 93 |
compile_commands = [
|
| 94 |
f"g++ -o {executable} {cpp_file} `pkg-config --cflags --libs opencv4` -std=c++11",
|
|
@@ -116,160 +108,307 @@ with left_column:
|
|
| 116 |
# Make sure the executable is executable
|
| 117 |
os.chmod(executable, 0o755)
|
| 118 |
st.success("C++ code compiled successfully")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
p = st.number_input("Dimension (p)", min_value=5, max_value=1000, value=50, step=5, help="Dimensionality")
|
| 124 |
-
a = st.number_input("Value for a", min_value=1.1, max_value=10.0, value=2.0, step=0.1, help="Parameter a > 1")
|
| 125 |
-
|
| 126 |
-
# Automatically calculate y = p/n (as requested)
|
| 127 |
-
y = p/n
|
| 128 |
-
st.info(f"Value for y = p/n: {y:.4f}")
|
| 129 |
-
|
| 130 |
-
st.markdown("### Calculation Controls")
|
| 131 |
-
fineness = st.slider(
|
| 132 |
-
"Beta points",
|
| 133 |
-
min_value=20,
|
| 134 |
-
max_value=500,
|
| 135 |
-
value=100,
|
| 136 |
-
step=10,
|
| 137 |
-
help="Number of points to calculate along the Ξ² axis (0 to 1)"
|
| 138 |
-
)
|
| 139 |
-
|
| 140 |
-
with st.expander("Advanced Settings"):
|
| 141 |
-
# Add controls for theoretical calculation precision
|
| 142 |
-
theory_grid_points = st.slider(
|
| 143 |
-
"Theoretical grid points",
|
| 144 |
-
min_value=100,
|
| 145 |
-
max_value=1000,
|
| 146 |
-
value=200,
|
| 147 |
-
step=50,
|
| 148 |
-
help="Number of points in initial grid search for theoretical calculations"
|
| 149 |
-
)
|
| 150 |
-
|
| 151 |
-
theory_tolerance = st.number_input(
|
| 152 |
-
"Theoretical tolerance",
|
| 153 |
-
min_value=1e-12,
|
| 154 |
-
max_value=1e-6,
|
| 155 |
-
value=1e-10,
|
| 156 |
-
format="%.1e",
|
| 157 |
-
help="Convergence tolerance for golden section search"
|
| 158 |
-
)
|
| 159 |
-
|
| 160 |
-
# Generate button
|
| 161 |
-
generate_button = st.button("Generate Analysis", type="primary", use_container_width=True)
|
| 162 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
| 163 |
-
|
| 164 |
-
# About section
|
| 165 |
-
with st.expander("About Eigenvalue Analysis"):
|
| 166 |
-
st.markdown("""
|
| 167 |
-
## Theory
|
| 168 |
-
|
| 169 |
-
This application visualizes the relationship between empirical and theoretical eigenvalues for matrices with specific properties.
|
| 170 |
-
|
| 171 |
-
The analysis examines:
|
| 172 |
|
| 173 |
-
|
| 174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
-
|
|
|
|
|
|
|
| 177 |
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
-
|
| 192 |
-
|
| 193 |
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
# Container for the analysis results
|
| 204 |
-
results_container = st.container()
|
| 205 |
-
|
| 206 |
-
# Process when generate button is clicked
|
| 207 |
-
if generate_button:
|
| 208 |
-
with results_container:
|
| 209 |
-
# Show progress
|
| 210 |
-
progress_container = st.container()
|
| 211 |
-
with progress_container:
|
| 212 |
-
progress_bar = st.progress(0)
|
| 213 |
-
status_text = st.empty()
|
| 214 |
-
|
| 215 |
-
try:
|
| 216 |
-
# Run the C++ executable with the parameters in JSON output mode
|
| 217 |
-
data_file = os.path.join(output_dir, "eigenvalue_data.json")
|
| 218 |
-
|
| 219 |
-
# Delete previous output if exists
|
| 220 |
-
if os.path.exists(data_file):
|
| 221 |
-
os.remove(data_file)
|
| 222 |
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
str(fineness),
|
| 231 |
-
str(theory_grid_points),
|
| 232 |
-
str(theory_tolerance),
|
| 233 |
-
data_file
|
| 234 |
-
]
|
| 235 |
-
|
| 236 |
-
process = subprocess.Popen(
|
| 237 |
-
cmd,
|
| 238 |
-
stdout=subprocess.PIPE,
|
| 239 |
-
stderr=subprocess.PIPE,
|
| 240 |
-
text=True
|
| 241 |
-
)
|
| 242 |
-
|
| 243 |
-
# Show output in a status area
|
| 244 |
-
status_text.text("Starting calculations...")
|
| 245 |
-
|
| 246 |
-
last_progress = 0
|
| 247 |
-
while process.poll() is None:
|
| 248 |
-
output = process.stdout.readline()
|
| 249 |
-
if output:
|
| 250 |
-
if output.startswith("PROGRESS:"):
|
| 251 |
-
try:
|
| 252 |
-
# Update progress bar
|
| 253 |
-
progress_value = float(output.split(":")[1].strip())
|
| 254 |
-
progress_bar.progress(progress_value)
|
| 255 |
-
last_progress = progress_value
|
| 256 |
-
status_text.text(f"Calculating... {int(progress_value * 100)}% complete")
|
| 257 |
-
except:
|
| 258 |
-
pass
|
| 259 |
-
else:
|
| 260 |
-
status_text.text(output.strip())
|
| 261 |
-
time.sleep(0.1)
|
| 262 |
-
|
| 263 |
-
return_code = process.poll()
|
| 264 |
-
|
| 265 |
-
if return_code != 0:
|
| 266 |
-
error = process.stderr.read()
|
| 267 |
-
st.error(f"Error executing the analysis: {error}")
|
| 268 |
-
else:
|
| 269 |
-
progress_bar.progress(1.0)
|
| 270 |
-
status_text.text("Calculations complete! Generating visualization...")
|
| 271 |
|
| 272 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
with open(data_file, 'r') as f:
|
| 274 |
data = json.load(f)
|
| 275 |
|
|
@@ -347,7 +486,7 @@ with right_column:
|
|
| 347 |
# Configure layout for better appearance
|
| 348 |
fig.update_layout(
|
| 349 |
title={
|
| 350 |
-
'text': f'Eigenvalue Analysis
|
| 351 |
'font': {'size': 24, 'color': '#1E88E5'},
|
| 352 |
'y': 0.95,
|
| 353 |
'x': 0.5,
|
|
@@ -378,256 +517,342 @@ with right_column:
|
|
| 378 |
'borderwidth': 1
|
| 379 |
},
|
| 380 |
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
|
| 381 |
-
height=600
|
| 382 |
-
annotations=[
|
| 383 |
-
{
|
| 384 |
-
'text': f"Max Function: max{{k β (0,β)}} [yΞ²(a-1)k + (ak+1)((y-1)k-1)]/[(ak+1)(kΒ²+k)]",
|
| 385 |
-
'xref': 'paper', 'yref': 'paper',
|
| 386 |
-
'x': 0.02, 'y': 0.02,
|
| 387 |
-
'showarrow': False,
|
| 388 |
-
'font': {'size': 12, 'color': 'rgb(30, 180, 30)'},
|
| 389 |
-
'bgcolor': 'rgba(255, 255, 255, 0.9)',
|
| 390 |
-
'bordercolor': 'rgb(30, 180, 30)',
|
| 391 |
-
'borderwidth': 1,
|
| 392 |
-
'borderpad': 4
|
| 393 |
-
},
|
| 394 |
-
{
|
| 395 |
-
'text': f"Min Function: min{{t β (-1/a,0)}} [yΞ²(a-1)t + (at+1)((y-1)t-1)]/[(at+1)(tΒ²+t)]",
|
| 396 |
-
'xref': 'paper', 'yref': 'paper',
|
| 397 |
-
'x': 0.55, 'y': 0.02,
|
| 398 |
-
'showarrow': False,
|
| 399 |
-
'font': {'size': 12, 'color': 'rgb(180, 30, 180)'},
|
| 400 |
-
'bgcolor': 'rgba(255, 255, 255, 0.9)',
|
| 401 |
-
'bordercolor': 'rgb(180, 30, 180)',
|
| 402 |
-
'borderwidth': 1,
|
| 403 |
-
'borderpad': 4
|
| 404 |
-
}
|
| 405 |
-
]
|
| 406 |
)
|
| 407 |
|
| 408 |
-
# Add custom modebar buttons
|
| 409 |
-
fig.update_layout(
|
| 410 |
-
modebar_add=[
|
| 411 |
-
'drawline', 'drawopenpath', 'drawclosedpath',
|
| 412 |
-
'drawcircle', 'drawrect', 'eraseshape'
|
| 413 |
-
],
|
| 414 |
-
modebar_remove=['lasso2d', 'select2d'],
|
| 415 |
-
dragmode='zoom'
|
| 416 |
-
)
|
| 417 |
-
|
| 418 |
-
# Clear progress container
|
| 419 |
-
progress_container.empty()
|
| 420 |
-
|
| 421 |
# Display the interactive plot in Streamlit
|
| 422 |
st.plotly_chart(fig, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 423 |
|
| 424 |
-
#
|
| 425 |
-
|
| 426 |
-
|
| 427 |
|
| 428 |
-
#
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
)
|
| 439 |
|
| 440 |
-
|
| 441 |
-
st.markdown("### Results Summary")
|
| 442 |
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
max_diff = abs(emp_max - theo_max)
|
| 449 |
-
min_diff = abs(emp_min - theo_min)
|
| 450 |
|
| 451 |
-
|
| 452 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 453 |
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
st.markdown(f'<div class="stats-value">{emp_min:.4f}</div>', unsafe_allow_html=True)
|
| 463 |
-
st.markdown('<div class="stats-label">Empirical Minimum</div>', unsafe_allow_html=True)
|
| 464 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
| 465 |
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 471 |
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
|
|
|
|
|
|
|
|
|
| 477 |
|
| 478 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 479 |
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 486 |
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
st.markdown('<div class="stats-label">Min Difference</div>', unsafe_allow_html=True)
|
| 491 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
| 492 |
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
- **Theoretical grid points**: {theory_grid_points}
|
| 501 |
-
- **Theoretical tolerance**: {theory_tolerance:.1e}
|
| 502 |
-
""")
|
| 503 |
-
|
| 504 |
-
except Exception as e:
|
| 505 |
-
st.error(f"An error occurred: {str(e)}")
|
| 506 |
-
|
| 507 |
-
else:
|
| 508 |
-
# Try to load existing data if available
|
| 509 |
-
data_file = os.path.join(output_dir, "eigenvalue_data.json")
|
| 510 |
-
if os.path.exists(data_file):
|
| 511 |
-
try:
|
| 512 |
-
with open(data_file, 'r') as f:
|
| 513 |
-
data = json.load(f)
|
| 514 |
-
|
| 515 |
-
# Extract data
|
| 516 |
-
beta_values = np.array(data['beta_values'])
|
| 517 |
-
max_eigenvalues = np.array(data['max_eigenvalues'])
|
| 518 |
-
min_eigenvalues = np.array(data['min_eigenvalues'])
|
| 519 |
-
theoretical_max = np.array(data['theoretical_max'])
|
| 520 |
-
theoretical_min = np.array(data['theoretical_min'])
|
| 521 |
-
|
| 522 |
-
# Create an interactive plot using Plotly
|
| 523 |
-
fig = go.Figure()
|
| 524 |
-
|
| 525 |
-
# Add traces for each line
|
| 526 |
-
fig.add_trace(go.Scatter(
|
| 527 |
-
x=beta_values,
|
| 528 |
-
y=max_eigenvalues,
|
| 529 |
-
mode='lines+markers',
|
| 530 |
-
name='Empirical Max Eigenvalue',
|
| 531 |
-
line=dict(color='rgb(220, 60, 60)', width=3),
|
| 532 |
-
marker=dict(
|
| 533 |
-
symbol='circle',
|
| 534 |
-
size=8,
|
| 535 |
-
color='rgb(220, 60, 60)',
|
| 536 |
-
line=dict(color='white', width=1)
|
| 537 |
-
),
|
| 538 |
-
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Max</extra>'
|
| 539 |
-
))
|
| 540 |
-
|
| 541 |
-
fig.add_trace(go.Scatter(
|
| 542 |
-
x=beta_values,
|
| 543 |
-
y=min_eigenvalues,
|
| 544 |
-
mode='lines+markers',
|
| 545 |
-
name='Empirical Min Eigenvalue',
|
| 546 |
-
line=dict(color='rgb(60, 60, 220)', width=3),
|
| 547 |
-
marker=dict(
|
| 548 |
-
symbol='circle',
|
| 549 |
-
size=8,
|
| 550 |
-
color='rgb(60, 60, 220)',
|
| 551 |
-
line=dict(color='white', width=1)
|
| 552 |
-
),
|
| 553 |
-
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Min</extra>'
|
| 554 |
-
))
|
| 555 |
-
|
| 556 |
-
fig.add_trace(go.Scatter(
|
| 557 |
-
x=beta_values,
|
| 558 |
-
y=theoretical_max,
|
| 559 |
-
mode='lines+markers',
|
| 560 |
-
name='Theoretical Max Function',
|
| 561 |
-
line=dict(color='rgb(30, 180, 30)', width=3),
|
| 562 |
-
marker=dict(
|
| 563 |
-
symbol='diamond',
|
| 564 |
-
size=8,
|
| 565 |
-
color='rgb(30, 180, 30)',
|
| 566 |
-
line=dict(color='white', width=1)
|
| 567 |
-
),
|
| 568 |
-
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Max</extra>'
|
| 569 |
-
))
|
| 570 |
-
|
| 571 |
-
fig.add_trace(go.Scatter(
|
| 572 |
-
x=beta_values,
|
| 573 |
-
y=theoretical_min,
|
| 574 |
-
mode='lines+markers',
|
| 575 |
-
name='Theoretical Min Function',
|
| 576 |
-
line=dict(color='rgb(180, 30, 180)', width=3),
|
| 577 |
-
marker=dict(
|
| 578 |
-
symbol='diamond',
|
| 579 |
-
size=8,
|
| 580 |
-
color='rgb(180, 30, 180)',
|
| 581 |
-
line=dict(color='white', width=1)
|
| 582 |
-
),
|
| 583 |
-
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Min</extra>'
|
| 584 |
-
))
|
| 585 |
-
|
| 586 |
-
# Configure layout for better appearance
|
| 587 |
-
fig.update_layout(
|
| 588 |
-
title={
|
| 589 |
-
'text': f'Eigenvalue Analysis (Previous Result)',
|
| 590 |
-
'font': {'size': 24, 'color': '#1E88E5'},
|
| 591 |
-
'y': 0.95,
|
| 592 |
-
'x': 0.5,
|
| 593 |
-
'xanchor': 'center',
|
| 594 |
-
'yanchor': 'top'
|
| 595 |
-
},
|
| 596 |
-
xaxis={
|
| 597 |
-
'title': 'Ξ² Parameter',
|
| 598 |
-
'titlefont': {'size': 18, 'color': '#424242'},
|
| 599 |
-
'tickfont': {'size': 14},
|
| 600 |
-
'gridcolor': 'rgba(220, 220, 220, 0.5)',
|
| 601 |
-
'showgrid': True
|
| 602 |
-
},
|
| 603 |
-
yaxis={
|
| 604 |
-
'title': 'Eigenvalues',
|
| 605 |
-
'titlefont': {'size': 18, 'color': '#424242'},
|
| 606 |
-
'tickfont': {'size': 14},
|
| 607 |
-
'gridcolor': 'rgba(220, 220, 220, 0.5)',
|
| 608 |
-
'showgrid': True
|
| 609 |
-
},
|
| 610 |
-
plot_bgcolor='rgba(240, 240, 240, 0.8)',
|
| 611 |
-
paper_bgcolor='rgba(249, 249, 249, 0.8)',
|
| 612 |
-
hovermode='closest',
|
| 613 |
-
legend={
|
| 614 |
-
'font': {'size': 14},
|
| 615 |
-
'bgcolor': 'rgba(255, 255, 255, 0.9)',
|
| 616 |
-
'bordercolor': 'rgba(200, 200, 200, 0.5)',
|
| 617 |
-
'borderwidth': 1
|
| 618 |
-
},
|
| 619 |
-
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
|
| 620 |
-
height=600
|
| 621 |
-
)
|
| 622 |
-
|
| 623 |
-
# Display the interactive plot in Streamlit
|
| 624 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 625 |
-
st.info("This is the previous analysis result. Adjust parameters and click 'Generate Analysis' to create a new visualization.")
|
| 626 |
-
|
| 627 |
-
except Exception as e:
|
| 628 |
-
st.info("π Set parameters and click 'Generate Analysis' to create a visualization.")
|
| 629 |
-
else:
|
| 630 |
-
# Show placeholder
|
| 631 |
-
st.info("π Set parameters and click 'Generate Analysis' to create a visualization.")
|
| 632 |
-
|
| 633 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
|
|
|
| 4 |
import json
|
| 5 |
import numpy as np
|
| 6 |
import plotly.graph_objects as go
|
|
|
|
| 7 |
from PIL import Image
|
| 8 |
import time
|
| 9 |
import io
|
| 10 |
|
| 11 |
# Set page config with wider layout
|
| 12 |
st.set_page_config(
|
| 13 |
+
page_title="Matrix Analysis Dashboard",
|
| 14 |
page_icon="π",
|
| 15 |
layout="wide",
|
| 16 |
initial_sidebar_state="expanded"
|
|
|
|
| 42 |
border-left: 4px solid #1E88E5;
|
| 43 |
padding-left: 10px;
|
| 44 |
}
|
| 45 |
+
.stTabs [data-baseweb="tab-list"] {
|
| 46 |
+
gap: 12px;
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
}
|
| 48 |
+
.stTabs [data-baseweb="tab"] {
|
| 49 |
+
height: 50px;
|
| 50 |
+
white-space: pre-wrap;
|
| 51 |
+
background-color: #f0f0f0;
|
| 52 |
+
border-radius: 6px 6px 0 0;
|
| 53 |
+
gap: 1;
|
| 54 |
+
padding-top: 10px;
|
| 55 |
+
padding-bottom: 10px;
|
| 56 |
}
|
| 57 |
+
.stTabs [aria-selected="true"] {
|
| 58 |
+
background-color: #1E88E5 !important;
|
| 59 |
+
color: white !important;
|
|
|
|
| 60 |
}
|
| 61 |
</style>
|
| 62 |
""", unsafe_allow_html=True)
|
| 63 |
|
| 64 |
# Dashboard Header
|
| 65 |
+
st.markdown('<h1 class="main-header">Matrix Analysis Dashboard</h1>', unsafe_allow_html=True)
|
| 66 |
|
| 67 |
# Create output directory in the current working directory
|
| 68 |
current_dir = os.getcwd()
|
|
|
|
| 73 |
cpp_file = os.path.join(current_dir, "app.cpp")
|
| 74 |
executable = os.path.join(current_dir, "eigen_analysis")
|
| 75 |
|
| 76 |
+
# Check if cpp file exists and compile if necessary
|
| 77 |
+
if not os.path.exists(cpp_file):
|
| 78 |
+
st.error(f"C++ source file not found at: {cpp_file}")
|
| 79 |
+
st.stop()
|
| 80 |
|
| 81 |
+
# Compile the C++ code with the right OpenCV libraries
|
| 82 |
+
if not os.path.exists(executable) or st.sidebar.button("Recompile C++ Code"):
|
| 83 |
+
with st.sidebar:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
with st.spinner("Compiling C++ code..."):
|
| 85 |
compile_commands = [
|
| 86 |
f"g++ -o {executable} {cpp_file} `pkg-config --cflags --libs opencv4` -std=c++11",
|
|
|
|
| 108 |
# Make sure the executable is executable
|
| 109 |
os.chmod(executable, 0o755)
|
| 110 |
st.success("C++ code compiled successfully")
|
| 111 |
+
|
| 112 |
+
# Create tabs for different analyses
|
| 113 |
+
tab1, tab2 = st.tabs(["Eigenvalue Analysis", "Im(s) vs z Analysis"])
|
| 114 |
+
|
| 115 |
+
# Tab 1: Eigenvalue Analysis
|
| 116 |
+
with tab1:
|
| 117 |
+
# Two-column layout for the dashboard
|
| 118 |
+
left_column, right_column = st.columns([1, 3])
|
| 119 |
|
| 120 |
+
with left_column:
|
| 121 |
+
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
|
| 122 |
+
st.markdown('<div class="panel-header">Eigenvalue Analysis Controls</div>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
+
# Parameter inputs with defaults and validation
|
| 125 |
+
st.markdown("### Matrix Parameters")
|
| 126 |
+
n = st.number_input("Sample size (n)", min_value=5, max_value=1000, value=100, step=5,
|
| 127 |
+
help="Number of samples", key="eig_n")
|
| 128 |
+
p = st.number_input("Dimension (p)", min_value=5, max_value=1000, value=50, step=5,
|
| 129 |
+
help="Dimensionality", key="eig_p")
|
| 130 |
+
a = st.number_input("Value for a", min_value=1.1, max_value=10.0, value=2.0, step=0.1,
|
| 131 |
+
help="Parameter a > 1", key="eig_a")
|
| 132 |
|
| 133 |
+
# Automatically calculate y = p/n (as requested)
|
| 134 |
+
y = p/n
|
| 135 |
+
st.info(f"Value for y = p/n: {y:.4f}")
|
| 136 |
|
| 137 |
+
st.markdown("### Calculation Controls")
|
| 138 |
+
fineness = st.slider(
|
| 139 |
+
"Beta points",
|
| 140 |
+
min_value=20,
|
| 141 |
+
max_value=500,
|
| 142 |
+
value=100,
|
| 143 |
+
step=10,
|
| 144 |
+
help="Number of points to calculate along the Ξ² axis (0 to 1)",
|
| 145 |
+
key="eig_fineness"
|
| 146 |
+
)
|
| 147 |
|
| 148 |
+
with st.expander("Advanced Settings"):
|
| 149 |
+
# Add controls for theoretical calculation precision
|
| 150 |
+
theory_grid_points = st.slider(
|
| 151 |
+
"Theoretical grid points",
|
| 152 |
+
min_value=100,
|
| 153 |
+
max_value=1000,
|
| 154 |
+
value=200,
|
| 155 |
+
step=50,
|
| 156 |
+
help="Number of points in initial grid search for theoretical calculations",
|
| 157 |
+
key="eig_grid_points"
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
theory_tolerance = st.number_input(
|
| 161 |
+
"Theoretical tolerance",
|
| 162 |
+
min_value=1e-12,
|
| 163 |
+
max_value=1e-6,
|
| 164 |
+
value=1e-10,
|
| 165 |
+
format="%.1e",
|
| 166 |
+
help="Convergence tolerance for golden section search",
|
| 167 |
+
key="eig_tolerance"
|
| 168 |
+
)
|
| 169 |
|
| 170 |
+
# Generate button
|
| 171 |
+
eig_generate_button = st.button("Generate Eigenvalue Analysis",
|
| 172 |
+
type="primary",
|
| 173 |
+
use_container_width=True,
|
| 174 |
+
key="eig_generate")
|
| 175 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 176 |
+
|
| 177 |
+
with right_column:
|
| 178 |
+
# Main visualization area
|
| 179 |
+
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
|
| 180 |
+
st.markdown('<div class="panel-header">Eigenvalue Analysis Results</div>', unsafe_allow_html=True)
|
| 181 |
|
| 182 |
+
# Container for the analysis results
|
| 183 |
+
eig_results_container = st.container()
|
| 184 |
|
| 185 |
+
# Process when generate button is clicked
|
| 186 |
+
if eig_generate_button:
|
| 187 |
+
with eig_results_container:
|
| 188 |
+
# Show progress
|
| 189 |
+
progress_container = st.container()
|
| 190 |
+
with progress_container:
|
| 191 |
+
progress_bar = st.progress(0)
|
| 192 |
+
status_text = st.empty()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
+
try:
|
| 195 |
+
# Run the C++ executable with the parameters in JSON output mode
|
| 196 |
+
data_file = os.path.join(output_dir, "eigenvalue_data.json")
|
| 197 |
+
|
| 198 |
+
# Delete previous output if exists
|
| 199 |
+
if os.path.exists(data_file):
|
| 200 |
+
os.remove(data_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
+
# Execute the C++ program
|
| 203 |
+
cmd = [
|
| 204 |
+
executable,
|
| 205 |
+
"eigenvalues",
|
| 206 |
+
str(n),
|
| 207 |
+
str(p),
|
| 208 |
+
str(a),
|
| 209 |
+
str(y),
|
| 210 |
+
str(fineness),
|
| 211 |
+
str(theory_grid_points),
|
| 212 |
+
str(theory_tolerance),
|
| 213 |
+
data_file
|
| 214 |
+
]
|
| 215 |
+
|
| 216 |
+
process = subprocess.Popen(
|
| 217 |
+
cmd,
|
| 218 |
+
stdout=subprocess.PIPE,
|
| 219 |
+
stderr=subprocess.PIPE,
|
| 220 |
+
text=True
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
# Show output in a status area
|
| 224 |
+
status_text.text("Starting calculations...")
|
| 225 |
+
|
| 226 |
+
last_progress = 0
|
| 227 |
+
while process.poll() is None:
|
| 228 |
+
output = process.stdout.readline()
|
| 229 |
+
if output:
|
| 230 |
+
if output.startswith("PROGRESS:"):
|
| 231 |
+
try:
|
| 232 |
+
# Update progress bar
|
| 233 |
+
progress_value = float(output.split(":")[1].strip())
|
| 234 |
+
progress_bar.progress(progress_value)
|
| 235 |
+
last_progress = progress_value
|
| 236 |
+
status_text.text(f"Calculating... {int(progress_value * 100)}% complete")
|
| 237 |
+
except:
|
| 238 |
+
pass
|
| 239 |
+
else:
|
| 240 |
+
status_text.text(output.strip())
|
| 241 |
+
time.sleep(0.1)
|
| 242 |
+
|
| 243 |
+
return_code = process.poll()
|
| 244 |
+
|
| 245 |
+
if return_code != 0:
|
| 246 |
+
error = process.stderr.read()
|
| 247 |
+
st.error(f"Error executing the analysis: {error}")
|
| 248 |
+
else:
|
| 249 |
+
progress_bar.progress(1.0)
|
| 250 |
+
status_text.text("Calculations complete! Generating visualization...")
|
| 251 |
+
|
| 252 |
+
# Load the results from the JSON file
|
| 253 |
+
with open(data_file, 'r') as f:
|
| 254 |
+
data = json.load(f)
|
| 255 |
+
|
| 256 |
+
# Extract data
|
| 257 |
+
beta_values = np.array(data['beta_values'])
|
| 258 |
+
max_eigenvalues = np.array(data['max_eigenvalues'])
|
| 259 |
+
min_eigenvalues = np.array(data['min_eigenvalues'])
|
| 260 |
+
theoretical_max = np.array(data['theoretical_max'])
|
| 261 |
+
theoretical_min = np.array(data['theoretical_min'])
|
| 262 |
+
|
| 263 |
+
# Create an interactive plot using Plotly
|
| 264 |
+
fig = go.Figure()
|
| 265 |
+
|
| 266 |
+
# Add traces for each line
|
| 267 |
+
fig.add_trace(go.Scatter(
|
| 268 |
+
x=beta_values,
|
| 269 |
+
y=max_eigenvalues,
|
| 270 |
+
mode='lines+markers',
|
| 271 |
+
name='Empirical Max Eigenvalue',
|
| 272 |
+
line=dict(color='rgb(220, 60, 60)', width=3),
|
| 273 |
+
marker=dict(
|
| 274 |
+
symbol='circle',
|
| 275 |
+
size=8,
|
| 276 |
+
color='rgb(220, 60, 60)',
|
| 277 |
+
line=dict(color='white', width=1)
|
| 278 |
+
),
|
| 279 |
+
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Max</extra>'
|
| 280 |
+
))
|
| 281 |
+
|
| 282 |
+
fig.add_trace(go.Scatter(
|
| 283 |
+
x=beta_values,
|
| 284 |
+
y=min_eigenvalues,
|
| 285 |
+
mode='lines+markers',
|
| 286 |
+
name='Empirical Min Eigenvalue',
|
| 287 |
+
line=dict(color='rgb(60, 60, 220)', width=3),
|
| 288 |
+
marker=dict(
|
| 289 |
+
symbol='circle',
|
| 290 |
+
size=8,
|
| 291 |
+
color='rgb(60, 60, 220)',
|
| 292 |
+
line=dict(color='white', width=1)
|
| 293 |
+
),
|
| 294 |
+
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Min</extra>'
|
| 295 |
+
))
|
| 296 |
+
|
| 297 |
+
fig.add_trace(go.Scatter(
|
| 298 |
+
x=beta_values,
|
| 299 |
+
y=theoretical_max,
|
| 300 |
+
mode='lines+markers',
|
| 301 |
+
name='Theoretical Max Function',
|
| 302 |
+
line=dict(color='rgb(30, 180, 30)', width=3),
|
| 303 |
+
marker=dict(
|
| 304 |
+
symbol='diamond',
|
| 305 |
+
size=8,
|
| 306 |
+
color='rgb(30, 180, 30)',
|
| 307 |
+
line=dict(color='white', width=1)
|
| 308 |
+
),
|
| 309 |
+
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Max</extra>'
|
| 310 |
+
))
|
| 311 |
+
|
| 312 |
+
fig.add_trace(go.Scatter(
|
| 313 |
+
x=beta_values,
|
| 314 |
+
y=theoretical_min,
|
| 315 |
+
mode='lines+markers',
|
| 316 |
+
name='Theoretical Min Function',
|
| 317 |
+
line=dict(color='rgb(180, 30, 180)', width=3),
|
| 318 |
+
marker=dict(
|
| 319 |
+
symbol='diamond',
|
| 320 |
+
size=8,
|
| 321 |
+
color='rgb(180, 30, 180)',
|
| 322 |
+
line=dict(color='white', width=1)
|
| 323 |
+
),
|
| 324 |
+
hovertemplate='Ξ²: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Min</extra>'
|
| 325 |
+
))
|
| 326 |
+
|
| 327 |
+
# Configure layout for better appearance
|
| 328 |
+
fig.update_layout(
|
| 329 |
+
title={
|
| 330 |
+
'text': f'Eigenvalue Analysis: n={n}, p={p}, a={a}, y={y:.4f}',
|
| 331 |
+
'font': {'size': 24, 'color': '#1E88E5'},
|
| 332 |
+
'y': 0.95,
|
| 333 |
+
'x': 0.5,
|
| 334 |
+
'xanchor': 'center',
|
| 335 |
+
'yanchor': 'top'
|
| 336 |
+
},
|
| 337 |
+
xaxis={
|
| 338 |
+
'title': 'Ξ² Parameter',
|
| 339 |
+
'titlefont': {'size': 18, 'color': '#424242'},
|
| 340 |
+
'tickfont': {'size': 14},
|
| 341 |
+
'gridcolor': 'rgba(220, 220, 220, 0.5)',
|
| 342 |
+
'showgrid': True
|
| 343 |
+
},
|
| 344 |
+
yaxis={
|
| 345 |
+
'title': 'Eigenvalues',
|
| 346 |
+
'titlefont': {'size': 18, 'color': '#424242'},
|
| 347 |
+
'tickfont': {'size': 14},
|
| 348 |
+
'gridcolor': 'rgba(220, 220, 220, 0.5)',
|
| 349 |
+
'showgrid': True
|
| 350 |
+
},
|
| 351 |
+
plot_bgcolor='rgba(240, 240, 240, 0.8)',
|
| 352 |
+
paper_bgcolor='rgba(249, 249, 249, 0.8)',
|
| 353 |
+
hovermode='closest',
|
| 354 |
+
legend={
|
| 355 |
+
'font': {'size': 14},
|
| 356 |
+
'bgcolor': 'rgba(255, 255, 255, 0.9)',
|
| 357 |
+
'bordercolor': 'rgba(200, 200, 200, 0.5)',
|
| 358 |
+
'borderwidth': 1
|
| 359 |
+
},
|
| 360 |
+
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
|
| 361 |
+
height=600,
|
| 362 |
+
annotations=[
|
| 363 |
+
{
|
| 364 |
+
'text': f"Max Function: max{{k β (0,β)}} [yΞ²(a-1)k + (ak+1)((y-1)k-1)]/[(ak+1)(kΒ²+k)]",
|
| 365 |
+
'xref': 'paper', 'yref': 'paper',
|
| 366 |
+
'x': 0.02, 'y': 0.02,
|
| 367 |
+
'showarrow': False,
|
| 368 |
+
'font': {'size': 12, 'color': 'rgb(30, 180, 30)'},
|
| 369 |
+
'bgcolor': 'rgba(255, 255, 255, 0.9)',
|
| 370 |
+
'bordercolor': 'rgb(30, 180, 30)',
|
| 371 |
+
'borderwidth': 1,
|
| 372 |
+
'borderpad': 4
|
| 373 |
+
},
|
| 374 |
+
{
|
| 375 |
+
'text': f"Min Function: min{{t β (-1/a,0)}} [yΞ²(a-1)t + (at+1)((y-1)t-1)]/[(at+1)(tΒ²+t)]",
|
| 376 |
+
'xref': 'paper', 'yref': 'paper',
|
| 377 |
+
'x': 0.55, 'y': 0.02,
|
| 378 |
+
'showarrow': False,
|
| 379 |
+
'font': {'size': 12, 'color': 'rgb(180, 30, 180)'},
|
| 380 |
+
'bgcolor': 'rgba(255, 255, 255, 0.9)',
|
| 381 |
+
'bordercolor': 'rgb(180, 30, 180)',
|
| 382 |
+
'borderwidth': 1,
|
| 383 |
+
'borderpad': 4
|
| 384 |
+
}
|
| 385 |
+
]
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
# Add custom modebar buttons
|
| 389 |
+
fig.update_layout(
|
| 390 |
+
modebar_add=[
|
| 391 |
+
'drawline', 'drawopenpath', 'drawclosedpath',
|
| 392 |
+
'drawcircle', 'drawrect', 'eraseshape'
|
| 393 |
+
],
|
| 394 |
+
modebar_remove=['lasso2d', 'select2d'],
|
| 395 |
+
dragmode='zoom'
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
# Clear progress container
|
| 399 |
+
progress_container.empty()
|
| 400 |
+
|
| 401 |
+
# Display the interactive plot in Streamlit
|
| 402 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 403 |
+
|
| 404 |
+
except Exception as e:
|
| 405 |
+
st.error(f"An error occurred: {str(e)}")
|
| 406 |
+
|
| 407 |
+
else:
|
| 408 |
+
# Try to load existing data if available
|
| 409 |
+
data_file = os.path.join(output_dir, "eigenvalue_data.json")
|
| 410 |
+
if os.path.exists(data_file):
|
| 411 |
+
try:
|
| 412 |
with open(data_file, 'r') as f:
|
| 413 |
data = json.load(f)
|
| 414 |
|
|
|
|
| 486 |
# Configure layout for better appearance
|
| 487 |
fig.update_layout(
|
| 488 |
title={
|
| 489 |
+
'text': f'Eigenvalue Analysis (Previous Result)',
|
| 490 |
'font': {'size': 24, 'color': '#1E88E5'},
|
| 491 |
'y': 0.95,
|
| 492 |
'x': 0.5,
|
|
|
|
| 517 |
'borderwidth': 1
|
| 518 |
},
|
| 519 |
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
|
| 520 |
+
height=600
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 521 |
)
|
| 522 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 523 |
# Display the interactive plot in Streamlit
|
| 524 |
st.plotly_chart(fig, use_container_width=True)
|
| 525 |
+
st.info("This is the previous analysis result. Adjust parameters and click 'Generate Analysis' to create a new visualization.")
|
| 526 |
+
|
| 527 |
+
except Exception as e:
|
| 528 |
+
st.info("π Set parameters and click 'Generate Analysis' to create a visualization.")
|
| 529 |
+
else:
|
| 530 |
+
# Show placeholder
|
| 531 |
+
st.info("π Set parameters and click 'Generate Eigenvalue Analysis' to create a visualization.")
|
| 532 |
+
|
| 533 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 534 |
+
|
| 535 |
+
# Tab 2: Im(s) vs z Analysis
|
| 536 |
+
with tab2:
|
| 537 |
+
# Two-column layout for the dashboard
|
| 538 |
+
left_column, right_column = st.columns([1, 3])
|
| 539 |
+
|
| 540 |
+
with left_column:
|
| 541 |
+
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
|
| 542 |
+
st.markdown('<div class="panel-header">Im(s) vs z Analysis Controls</div>', unsafe_allow_html=True)
|
| 543 |
+
|
| 544 |
+
# Parameter inputs with defaults and validation
|
| 545 |
+
st.markdown("### Cubic Equation Parameters")
|
| 546 |
+
cubic_a = st.number_input("Value for a", min_value=1.1, max_value=10.0, value=2.0, step=0.1,
|
| 547 |
+
help="Parameter a > 1", key="cubic_a")
|
| 548 |
+
cubic_y = st.number_input("Value for y", min_value=0.1, max_value=10.0, value=1.0, step=0.1,
|
| 549 |
+
help="Parameter y > 0", key="cubic_y")
|
| 550 |
+
cubic_beta = st.number_input("Value for Ξ²", min_value=0.0, max_value=1.0, value=0.5, step=0.05,
|
| 551 |
+
help="Value between 0 and 1", key="cubic_beta")
|
| 552 |
+
|
| 553 |
+
st.markdown("### Calculation Controls")
|
| 554 |
+
cubic_points = st.slider(
|
| 555 |
+
"Number of z points",
|
| 556 |
+
min_value=50,
|
| 557 |
+
max_value=1000,
|
| 558 |
+
value=300,
|
| 559 |
+
step=50,
|
| 560 |
+
help="Number of points to calculate along the z axis",
|
| 561 |
+
key="cubic_points"
|
| 562 |
+
)
|
| 563 |
+
|
| 564 |
+
cubic_range = st.slider(
|
| 565 |
+
"z range",
|
| 566 |
+
min_value=0.1,
|
| 567 |
+
max_value=20.0,
|
| 568 |
+
value=(0.01, 10.0),
|
| 569 |
+
step=0.1,
|
| 570 |
+
help="Range of z values to calculate",
|
| 571 |
+
key="cubic_range"
|
| 572 |
+
)
|
| 573 |
+
|
| 574 |
+
# Show cubic equation
|
| 575 |
+
st.markdown("### Cubic Equation")
|
| 576 |
+
st.latex(r"zas^3 + [z(a+1)+a(1-y)]\,s^2 + [z+(a+1)-y-y\beta (a-1)]\,s + 1 = 0")
|
| 577 |
+
|
| 578 |
+
# Generate button
|
| 579 |
+
cubic_generate_button = st.button("Generate Im(s) vs z Analysis",
|
| 580 |
+
type="primary",
|
| 581 |
+
use_container_width=True,
|
| 582 |
+
key="cubic_generate")
|
| 583 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 584 |
+
|
| 585 |
+
with right_column:
|
| 586 |
+
# Main visualization area
|
| 587 |
+
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
|
| 588 |
+
st.markdown('<div class="panel-header">Im(s) vs z Analysis Results</div>', unsafe_allow_html=True)
|
| 589 |
+
|
| 590 |
+
# Container for the analysis results
|
| 591 |
+
cubic_results_container = st.container()
|
| 592 |
+
|
| 593 |
+
# Process when generate button is clicked
|
| 594 |
+
if cubic_generate_button:
|
| 595 |
+
with cubic_results_container:
|
| 596 |
+
# Show progress
|
| 597 |
+
progress_container = st.container()
|
| 598 |
+
with progress_container:
|
| 599 |
+
status_text = st.empty()
|
| 600 |
+
status_text.text("Starting cubic equation calculations...")
|
| 601 |
+
|
| 602 |
+
try:
|
| 603 |
+
# Run the C++ executable with the parameters in JSON output mode
|
| 604 |
+
data_file = os.path.join(output_dir, "cubic_data.json")
|
| 605 |
|
| 606 |
+
# Delete previous output if exists
|
| 607 |
+
if os.path.exists(data_file):
|
| 608 |
+
os.remove(data_file)
|
| 609 |
|
| 610 |
+
# Execute the C++ program
|
| 611 |
+
cmd = [
|
| 612 |
+
executable,
|
| 613 |
+
"cubic",
|
| 614 |
+
str(cubic_a),
|
| 615 |
+
str(cubic_y),
|
| 616 |
+
str(cubic_beta),
|
| 617 |
+
str(cubic_points),
|
| 618 |
+
data_file
|
| 619 |
+
]
|
|
|
|
| 620 |
|
| 621 |
+
status_text.text("Calculating Im(s) vs z values...")
|
|
|
|
| 622 |
|
| 623 |
+
process = subprocess.run(
|
| 624 |
+
cmd,
|
| 625 |
+
capture_output=True,
|
| 626 |
+
text=True
|
| 627 |
+
)
|
|
|
|
|
|
|
| 628 |
|
| 629 |
+
if process.returncode != 0:
|
| 630 |
+
st.error(f"Error executing the analysis: {process.stderr}")
|
| 631 |
+
else:
|
| 632 |
+
status_text.text("Calculations complete! Generating visualization...")
|
| 633 |
+
|
| 634 |
+
# Load the results from the JSON file
|
| 635 |
+
with open(data_file, 'r') as f:
|
| 636 |
+
data = json.load(f)
|
| 637 |
+
|
| 638 |
+
# Extract data
|
| 639 |
+
z_values = np.array(data['z_values'])
|
| 640 |
+
ims_values1 = np.array(data['ims_values1'])
|
| 641 |
+
ims_values2 = np.array(data['ims_values2'])
|
| 642 |
+
ims_values3 = np.array(data['ims_values3'])
|
| 643 |
+
|
| 644 |
+
# Create an interactive plot using Plotly
|
| 645 |
+
fig = go.Figure()
|
| 646 |
+
|
| 647 |
+
# Add traces for each root's imaginary part
|
| 648 |
+
fig.add_trace(go.Scatter(
|
| 649 |
+
x=z_values,
|
| 650 |
+
y=ims_values1,
|
| 651 |
+
mode='lines',
|
| 652 |
+
name='Im(sβ)',
|
| 653 |
+
line=dict(color='rgb(220, 60, 60)', width=3),
|
| 654 |
+
hovertemplate='z: %{x:.3f}<br>Im(sβ): %{y:.6f}<extra>Root 1</extra>'
|
| 655 |
+
))
|
| 656 |
+
|
| 657 |
+
fig.add_trace(go.Scatter(
|
| 658 |
+
x=z_values,
|
| 659 |
+
y=ims_values2,
|
| 660 |
+
mode='lines',
|
| 661 |
+
name='Im(sβ)',
|
| 662 |
+
line=dict(color='rgb(60, 60, 220)', width=3),
|
| 663 |
+
hovertemplate='z: %{x:.3f}<br>Im(sβ): %{y:.6f}<extra>Root 2</extra>'
|
| 664 |
+
))
|
| 665 |
+
|
| 666 |
+
fig.add_trace(go.Scatter(
|
| 667 |
+
x=z_values,
|
| 668 |
+
y=ims_values3,
|
| 669 |
+
mode='lines',
|
| 670 |
+
name='Im(sβ)',
|
| 671 |
+
line=dict(color='rgb(30, 180, 30)', width=3),
|
| 672 |
+
hovertemplate='z: %{x:.3f}<br>Im(sβ): %{y:.6f}<extra>Root 3</extra>'
|
| 673 |
+
))
|
| 674 |
+
|
| 675 |
+
# Configure layout for better appearance
|
| 676 |
+
fig.update_layout(
|
| 677 |
+
title={
|
| 678 |
+
'text': f'Im(s) vs z Analysis: a={cubic_a}, y={cubic_y}, Ξ²={cubic_beta}',
|
| 679 |
+
'font': {'size': 24, 'color': '#1E88E5'},
|
| 680 |
+
'y': 0.95,
|
| 681 |
+
'x': 0.5,
|
| 682 |
+
'xanchor': 'center',
|
| 683 |
+
'yanchor': 'top'
|
| 684 |
+
},
|
| 685 |
+
xaxis={
|
| 686 |
+
'title': 'z',
|
| 687 |
+
'titlefont': {'size': 18, 'color': '#424242'},
|
| 688 |
+
'tickfont': {'size': 14},
|
| 689 |
+
'gridcolor': 'rgba(220, 220, 220, 0.5)',
|
| 690 |
+
'showgrid': True,
|
| 691 |
+
'type': 'log', # Use logarithmic scale for better visualization
|
| 692 |
+
'title': 'z (logarithmic scale)'
|
| 693 |
+
},
|
| 694 |
+
yaxis={
|
| 695 |
+
'title': 'Im(s)',
|
| 696 |
+
'titlefont': {'size': 18, 'color': '#424242'},
|
| 697 |
+
'tickfont': {'size': 14},
|
| 698 |
+
'gridcolor': 'rgba(220, 220, 220, 0.5)',
|
| 699 |
+
'showgrid': True
|
| 700 |
+
},
|
| 701 |
+
plot_bgcolor='rgba(240, 240, 240, 0.8)',
|
| 702 |
+
paper_bgcolor='rgba(249, 249, 249, 0.8)',
|
| 703 |
+
hovermode='closest',
|
| 704 |
+
legend={
|
| 705 |
+
'font': {'size': 14},
|
| 706 |
+
'bgcolor': 'rgba(255, 255, 255, 0.9)',
|
| 707 |
+
'bordercolor': 'rgba(200, 200, 200, 0.5)',
|
| 708 |
+
'borderwidth': 1
|
| 709 |
+
},
|
| 710 |
+
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
|
| 711 |
+
height=600,
|
| 712 |
+
annotations=[
|
| 713 |
+
{
|
| 714 |
+
'text': f"Cubic Equation: {cubic_a}zsΒ³ + [{cubic_a+1}z+{cubic_a}(1-{cubic_y})]sΒ² + [z+{cubic_a+1}-{cubic_y}-{cubic_y*cubic_beta}({cubic_a-1})]s + 1 = 0",
|
| 715 |
+
'xref': 'paper', 'yref': 'paper',
|
| 716 |
+
'x': 0.5, 'y': 0.02,
|
| 717 |
+
'showarrow': False,
|
| 718 |
+
'font': {'size': 12, 'color': 'black'},
|
| 719 |
+
'bgcolor': 'rgba(255, 255, 255, 0.9)',
|
| 720 |
+
'bordercolor': 'rgba(0, 0, 0, 0.5)',
|
| 721 |
+
'borderwidth': 1,
|
| 722 |
+
'borderpad': 4,
|
| 723 |
+
'align': 'center'
|
| 724 |
+
}
|
| 725 |
+
]
|
| 726 |
+
)
|
| 727 |
+
|
| 728 |
+
# Add custom modebar buttons
|
| 729 |
+
fig.update_layout(
|
| 730 |
+
modebar_add=[
|
| 731 |
+
'drawline', 'drawopenpath', 'drawclosedpath',
|
| 732 |
+
'drawcircle', 'drawrect', 'eraseshape'
|
| 733 |
+
],
|
| 734 |
+
modebar_remove=['lasso2d', 'select2d'],
|
| 735 |
+
dragmode='zoom'
|
| 736 |
+
)
|
| 737 |
+
|
| 738 |
+
# Clear progress container
|
| 739 |
+
progress_container.empty()
|
| 740 |
+
|
| 741 |
+
# Display the interactive plot in Streamlit
|
| 742 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 743 |
+
|
| 744 |
+
# Add explanation text
|
| 745 |
+
st.markdown("""
|
| 746 |
+
### Explanation of the Analysis
|
| 747 |
+
|
| 748 |
+
This plot shows the imaginary parts of the three roots (sβ, sβ, sβ) of the cubic equation as a function of z.
|
| 749 |
+
The cubic equation being solved is:
|
| 750 |
+
|
| 751 |
+
```
|
| 752 |
+
zasΒ³ + [z(a+1)+a(1-y)]sΒ² + [z+(a+1)-y-yΞ²(a-1)]s + 1 = 0
|
| 753 |
+
```
|
| 754 |
+
|
| 755 |
+
Where a, y, and Ξ² are parameters you can adjust in the control panel. The imaginary parts of the roots represent
|
| 756 |
+
oscillatory behavior in the system.
|
| 757 |
+
|
| 758 |
+
- When Im(s) = 0, the root is purely real
|
| 759 |
+
- When Im(s) β 0, the root has an oscillatory component
|
| 760 |
+
""")
|
| 761 |
+
|
| 762 |
+
except Exception as e:
|
| 763 |
+
st.error(f"An error occurred: {str(e)}")
|
| 764 |
+
|
| 765 |
+
else:
|
| 766 |
+
# Try to load existing data if available
|
| 767 |
+
data_file = os.path.join(output_dir, "cubic_data.json")
|
| 768 |
+
if os.path.exists(data_file):
|
| 769 |
+
try:
|
| 770 |
+
with open(data_file, 'r') as f:
|
| 771 |
+
data = json.load(f)
|
| 772 |
|
| 773 |
+
# Extract data
|
| 774 |
+
z_values = np.array(data['z_values'])
|
| 775 |
+
ims_values1 = np.array(data['ims_values1'])
|
| 776 |
+
ims_values2 = np.array(data['ims_values2'])
|
| 777 |
+
ims_values3 = np.array(data['ims_values3'])
|
| 778 |
|
| 779 |
+
# Create an interactive plot using Plotly
|
| 780 |
+
fig = go.Figure()
|
|
|
|
|
|
|
|
|
|
| 781 |
|
| 782 |
+
# Add traces for each root's imaginary part
|
| 783 |
+
fig.add_trace(go.Scatter(
|
| 784 |
+
x=z_values,
|
| 785 |
+
y=ims_values1,
|
| 786 |
+
mode='lines',
|
| 787 |
+
name='Im(sβ)',
|
| 788 |
+
line=dict(color='rgb(220, 60, 60)', width=3),
|
| 789 |
+
hovertemplate='z: %{x:.3f}<br>Im(sβ): %{y:.6f}<extra>Root 1</extra>'
|
| 790 |
+
))
|
| 791 |
|
| 792 |
+
fig.add_trace(go.Scatter(
|
| 793 |
+
x=z_values,
|
| 794 |
+
y=ims_values2,
|
| 795 |
+
mode='lines',
|
| 796 |
+
name='Im(sβ)',
|
| 797 |
+
line=dict(color='rgb(60, 60, 220)', width=3),
|
| 798 |
+
hovertemplate='z: %{x:.3f}<br>Im(sβ): %{y:.6f}<extra>Root 2</extra>'
|
| 799 |
+
))
|
| 800 |
|
| 801 |
+
fig.add_trace(go.Scatter(
|
| 802 |
+
x=z_values,
|
| 803 |
+
y=ims_values3,
|
| 804 |
+
mode='lines',
|
| 805 |
+
name='Im(sβ)',
|
| 806 |
+
line=dict(color='rgb(30, 180, 30)', width=3),
|
| 807 |
+
hovertemplate='z: %{x:.3f}<br>Im(sβ): %{y:.6f}<extra>Root 3</extra>'
|
| 808 |
+
))
|
| 809 |
|
| 810 |
+
# Configure layout for better appearance
|
| 811 |
+
fig.update_layout(
|
| 812 |
+
title={
|
| 813 |
+
'text': f'Im(s) vs z Analysis (Previous Result)',
|
| 814 |
+
'font': {'size': 24, 'color': '#1E88E5'},
|
| 815 |
+
'y': 0.95,
|
| 816 |
+
'x': 0.5,
|
| 817 |
+
'xanchor': 'center',
|
| 818 |
+
'yanchor': 'top'
|
| 819 |
+
},
|
| 820 |
+
xaxis={
|
| 821 |
+
'title': 'z (logarithmic scale)',
|
| 822 |
+
'titlefont': {'size': 18, 'color': '#424242'},
|
| 823 |
+
'tickfont': {'size': 14},
|
| 824 |
+
'gridcolor': 'rgba(220, 220, 220, 0.5)',
|
| 825 |
+
'showgrid': True,
|
| 826 |
+
'type': 'log' # Use logarithmic scale for better visualization
|
| 827 |
+
},
|
| 828 |
+
yaxis={
|
| 829 |
+
'title': 'Im(s)',
|
| 830 |
+
'titlefont': {'size': 18, 'color': '#424242'},
|
| 831 |
+
'tickfont': {'size': 14},
|
| 832 |
+
'gridcolor': 'rgba(220, 220, 220, 0.5)',
|
| 833 |
+
'showgrid': True
|
| 834 |
+
},
|
| 835 |
+
plot_bgcolor='rgba(240, 240, 240, 0.8)',
|
| 836 |
+
paper_bgcolor='rgba(249, 249, 249, 0.8)',
|
| 837 |
+
hovermode='closest',
|
| 838 |
+
legend={
|
| 839 |
+
'font': {'size': 14},
|
| 840 |
+
'bgcolor': 'rgba(255, 255, 255, 0.9)',
|
| 841 |
+
'bordercolor': 'rgba(200, 200, 200, 0.5)',
|
| 842 |
+
'borderwidth': 1
|
| 843 |
+
},
|
| 844 |
+
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
|
| 845 |
+
height=600
|
| 846 |
+
)
|
| 847 |
|
| 848 |
+
# Display the interactive plot in Streamlit
|
| 849 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 850 |
+
st.info("This is the previous analysis result. Adjust parameters and click 'Generate Analysis' to create a new visualization.")
|
|
|
|
|
|
|
| 851 |
|
| 852 |
+
except Exception as e:
|
| 853 |
+
st.info("π Set parameters and click 'Generate Im(s) vs z Analysis' to create a visualization.")
|
| 854 |
+
else:
|
| 855 |
+
# Show placeholder
|
| 856 |
+
st.info("π Set parameters and click 'Generate Im(s) vs z Analysis' to create a visualization.")
|
| 857 |
+
|
| 858 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|