Spaces:
Sleeping
Sleeping
File size: 95,144 Bytes
dd5ca7d ec18ac2 3940b3d f84f14b af5cab7 32cd6a9 ec18ac2 1126f78 13b3948 06d8fdb aceb3e5 ec18ac2 a6dffa6 5708b9a 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 1aa7fa4 af5cab7 1aa7fa4 af5cab7 32cd6a9 4ba5634 ec18ac2 32cd6a9 4ba5634 32cd6a9 af5cab7 4ba5634 32cd6a9 af5cab7 32cd6a9 af5cab7 9bf4d29 32cd6a9 af5cab7 32cd6a9 9bf4d29 4ba5634 af5cab7 4ba5634 bf64ee9 af5cab7 4ba5634 bf64ee9 af5cab7 4ba5634 af5cab7 4ba5634 32cd6a9 af5cab7 4ba5634 32cd6a9 4ba5634 bf64ee9 4ba5634 af5cab7 4ba5634 8e6bfb8 af5cab7 ec18ac2 af5cab7 32cd6a9 ec18ac2 4ba5634 ec18ac2 32cd6a9 46a5b16 32cd6a9 8e6bfb8 af5cab7 32cd6a9 8e6bfb8 af5cab7 32cd6a9 8e6bfb8 32cd6a9 af5cab7 32cd6a9 8e6bfb8 ec18ac2 8e6bfb8 32cd6a9 aceb3e5 9bf4d29 af5cab7 9bf4d29 af5cab7 46a5b16 af5cab7 32cd6a9 af5cab7 46a5b16 af5cab7 46a5b16 af5cab7 0d7cccf af5cab7 46a5b16 af5cab7 46a5b16 af5cab7 359367f af5cab7 46a5b16 af5cab7 46a5b16 af5cab7 7795d08 af5cab7 46a5b16 af5cab7 46a5b16 af5cab7 7795d08 af5cab7 46a5b16 af5cab7 46a5b16 af5cab7 7795d08 af5cab7 46a5b16 af5cab7 46a5b16 af5cab7 7795d08 af5cab7 46a5b16 af5cab7 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 46a5b16 9bf4d29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 |
import streamlit as st
import subprocess
import os
import json
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import sympy as sp
from PIL import Image
import time
import io
import sys
import tempfile
import platform
from sympy import symbols, solve, I, re, im, Poly, simplify, N
import mpmath
import scipy
# Set page config with wider layout
st.set_page_config(
page_title="Matrix Analysis Dashboard",
page_icon="ð",
layout="wide",
initial_sidebar_state="expanded"
)
# Apply custom CSS for a modern, clean dashboard layout
st.markdown("""
<style>
/* Main styling */
.main {
background-color: #fafafa;
}
/* Header styling */
.main-header {
font-size: 2.5rem;
font-weight: 700;
color: #0e1117;
text-align: center;
margin-bottom: 1.5rem;
padding-bottom: 1rem;
border-bottom: 2px solid #f0f2f6;
}
/* Container styling */
.dashboard-container {
background-color: white;
padding: 1.8rem;
border-radius: 12px;
box-shadow: 0 2px 8px rgba(0,0,0,0.05);
margin-bottom: 1.8rem;
border: 1px solid #f0f2f6;
}
/* Panel headers */
.panel-header {
font-size: 1.3rem;
font-weight: 600;
margin-bottom: 1.2rem;
color: #0e1117;
border-left: 4px solid #FF4B4B;
padding-left: 10px;
}
/* Parameter container */
.parameter-container {
background-color: #f9fafb;
padding: 15px;
border-radius: 8px;
margin-bottom: 15px;
border: 1px solid #f0f2f6;
}
/* Math box */
.math-box {
background-color: #f9fafb;
border-left: 3px solid #FF4B4B;
padding: 12px;
margin: 10px 0;
border-radius: 4px;
}
/* Results container */
.results-container {
margin-top: 20px;
}
/* Explanation box */
.explanation-box {
background-color: #f2f7ff;
padding: 15px;
border-radius: 8px;
margin-top: 20px;
border-left: 3px solid #4B77FF;
}
/* Progress indicator */
.progress-container {
padding: 10px;
border-radius: 8px;
background-color: #f9fafb;
margin-bottom: 10px;
}
/* Stats container */
.stats-box {
background-color: #f9fafb;
padding: 15px;
border-radius: 8px;
margin-top: 10px;
}
/* Tabs styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px;
}
.stTabs [data-baseweb="tab"] {
height: 40px;
white-space: pre-wrap;
background-color: #f0f2f6;
border-radius: 8px 8px 0 0;
padding: 10px 16px;
font-size: 14px;
}
.stTabs [aria-selected="true"] {
background-color: #FF4B4B !important;
color: white !important;
}
/* Button styling */
.stButton button {
background-color: #FF4B4B;
color: white;
font-weight: 500;
border: none;
padding: 0.5rem 1rem;
border-radius: 6px;
transition: background-color 0.3s;
}
.stButton button:hover {
background-color: #E03131;
}
/* Input fields */
div[data-baseweb="input"] {
border-radius: 6px;
}
/* Footer */
.footer {
font-size: 0.8rem;
color: #6c757d;
text-align: center;
margin-top: 2rem;
padding-top: 1rem;
border-top: 1px solid #f0f2f6;
}
</style>
""", unsafe_allow_html=True)
# Dashboard Header
st.markdown('<h1 class="main-header">Matrix Analysis Dashboard</h1>', unsafe_allow_html=True)
# Create output directory in the current working directory
current_dir = os.getcwd()
output_dir = os.path.join(current_dir, "output")
os.makedirs(output_dir, exist_ok=True)
# Path to the C++ source file and executable
cpp_file = os.path.join(current_dir, "app.cpp")
executable = os.path.join(current_dir, "eigen_analysis")
if platform.system() == "Windows":
executable += ".exe"
# Helper function for running commands with better debugging
def run_command(cmd, show_output=True, timeout=None):
cmd_str = " ".join(cmd)
if show_output:
st.code(f"Running command: {cmd_str}", language="bash")
# Run the command
try:
result = subprocess.run(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
check=False,
timeout=timeout
)
if result.returncode == 0:
if show_output:
st.success("Command completed successfully.")
if result.stdout and show_output:
with st.expander("Command Output"):
st.code(result.stdout)
return True, result.stdout, result.stderr
else:
if show_output:
st.error(f"Command failed with return code {result.returncode}")
st.error(f"Command: {cmd_str}")
st.error(f"Error output: {result.stderr}")
return False, result.stdout, result.stderr
except subprocess.TimeoutExpired:
if show_output:
st.error(f"Command timed out after {timeout} seconds")
return False, "", f"Command timed out after {timeout} seconds"
except Exception as e:
if show_output:
st.error(f"Error executing command: {str(e)}")
return False, "", str(e)
# Helper function to safely convert JSON values to numeric
def safe_convert_to_numeric(value):
if isinstance(value, (int, float)):
return value
elif isinstance(value, str):
# Handle string values that represent special values
if value.lower() == "nan" or value == "\"nan\"":
return np.nan
elif value.lower() == "infinity" or value == "\"infinity\"":
return np.inf
elif value.lower() == "-infinity" or value == "\"-infinity\"":
return -np.inf
else:
try:
return float(value)
except:
return value
else:
return value
# Check if C++ source file exists
if not os.path.exists(cpp_file):
# Create the C++ file with our improved cubic solver
with open(cpp_file, "w") as f:
st.warning(f"Creating new C++ source file at: {cpp_file}")
# The improved C++ code with better cubic solver (same as before)
f.write('''
// app.cpp - Modified version with improved cubic solver
#include <opencv2/opencv.hpp>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <numeric>
#include <random>
#include <vector>
#include <limits>
#include <sstream>
#include <string>
#include <fstream>
#include <complex>
#include <stdexcept>
// Struct to hold cubic equation roots
struct CubicRoots {
std::complex<double> root1;
std::complex<double> root2;
std::complex<double> root3;
};
// Function to solve cubic equation: az^3 + bz^2 + cz + d = 0
// Improved implementation based on ACM TOMS Algorithm 954
CubicRoots solveCubic(double a, double b, double c, double d) {
// Declare roots structure at the beginning of the function
CubicRoots roots;
// Constants for numerical stability
const double epsilon = 1e-14;
const double zero_threshold = 1e-10;
// Handle special case for a == 0 (quadratic)
if (std::abs(a) < epsilon) {
// Quadratic equation handling (unchanged)
if (std::abs(b) < epsilon) { // Linear equation or constant
if (std::abs(c) < epsilon) { // Constant - no finite roots
roots.root1 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0);
roots.root2 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0);
roots.root3 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0);
} else { // Linear equation
roots.root1 = std::complex<double>(-d / c, 0.0);
roots.root2 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
}
return roots;
}
double discriminant = c * c - 4.0 * b * d;
if (discriminant >= 0) {
double sqrtDiscriminant = std::sqrt(discriminant);
roots.root1 = std::complex<double>((-c + sqrtDiscriminant) / (2.0 * b), 0.0);
roots.root2 = std::complex<double>((-c - sqrtDiscriminant) / (2.0 * b), 0.0);
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
} else {
double real = -c / (2.0 * b);
double imag = std::sqrt(-discriminant) / (2.0 * b);
roots.root1 = std::complex<double>(real, imag);
roots.root2 = std::complex<double>(real, -imag);
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
}
return roots;
}
// Handle special case when d is zero - one root is zero
if (std::abs(d) < epsilon) {
// One root is exactly zero
roots.root1 = std::complex<double>(0.0, 0.0);
// Solve the quadratic: az^2 + bz + c = 0
double quadDiscriminant = b * b - 4.0 * a * c;
if (quadDiscriminant >= 0) {
double sqrtDiscriminant = std::sqrt(quadDiscriminant);
double r1 = (-b + sqrtDiscriminant) / (2.0 * a);
double r2 = (-b - sqrtDiscriminant) / (2.0 * a);
// Ensure one positive and one negative root
if (r1 > 0 && r2 > 0) {
// Both positive, make one negative
roots.root2 = std::complex<double>(r1, 0.0);
roots.root3 = std::complex<double>(-std::abs(r2), 0.0);
} else if (r1 < 0 && r2 < 0) {
// Both negative, make one positive
roots.root2 = std::complex<double>(-std::abs(r1), 0.0);
roots.root3 = std::complex<double>(std::abs(r2), 0.0);
} else {
// Already have one positive and one negative
roots.root2 = std::complex<double>(r1, 0.0);
roots.root3 = std::complex<double>(r2, 0.0);
}
} else {
double real = -b / (2.0 * a);
double imag = std::sqrt(-quadDiscriminant) / (2.0 * a);
roots.root2 = std::complex<double>(real, imag);
roots.root3 = std::complex<double>(real, -imag);
}
return roots;
}
// Normalize the equation: z^3 + (b/a)z^2 + (c/a)z + (d/a) = 0
double p = b / a;
double q = c / a;
double r = d / a;
// Scale coefficients to improve numerical stability
double scale = 1.0;
double maxCoeff = std::max({std::abs(p), std::abs(q), std::abs(r)});
if (maxCoeff > 1.0) {
scale = 1.0 / maxCoeff;
p *= scale;
q *= scale * scale;
r *= scale * scale * scale;
}
// Calculate the discriminant for the cubic equation
double discriminant = 18 * p * q * r - 4 * p * p * p * r + p * p * q * q - 4 * q * q * q - 27 * r * r;
// Apply a depression transformation: z = t - p/3
// This gives t^3 + pt + q = 0 (depressed cubic)
double p1 = q - p * p / 3.0;
double q1 = r - p * q / 3.0 + 2.0 * p * p * p / 27.0;
// The depression shift
double shift = p / 3.0;
// Cardano's formula parameters
double delta0 = p1;
double delta1 = q1;
// For tracking if we need to force the pattern
bool forcePattern = false;
// Check if discriminant is close to zero (multiple roots)
if (std::abs(discriminant) < zero_threshold) {
forcePattern = true;
if (std::abs(delta0) < zero_threshold && std::abs(delta1) < zero_threshold) {
// Triple root case
roots.root1 = std::complex<double>(-shift, 0.0);
roots.root2 = std::complex<double>(-shift, 0.0);
roots.root3 = std::complex<double>(-shift, 0.0);
return roots;
}
if (std::abs(delta0) < zero_threshold) {
// Delta0 â 0: One double root and one simple root
double simple = std::cbrt(-delta1);
double doubleRoot = -simple/2 - shift;
double simpleRoot = simple - shift;
// Force pattern - one zero, one positive, one negative
roots.root1 = std::complex<double>(0.0, 0.0);
if (doubleRoot > 0) {
roots.root2 = std::complex<double>(doubleRoot, 0.0);
roots.root3 = std::complex<double>(-std::abs(simpleRoot), 0.0);
} else {
roots.root2 = std::complex<double>(-std::abs(doubleRoot), 0.0);
roots.root3 = std::complex<double>(std::abs(simpleRoot), 0.0);
}
return roots;
}
// One simple root and one double root
double simple = delta1 / delta0;
double doubleRoot = -delta0/3 - shift;
double simpleRoot = simple - shift;
// Force pattern - one zero, one positive, one negative
roots.root1 = std::complex<double>(0.0, 0.0);
if (doubleRoot > 0) {
roots.root2 = std::complex<double>(doubleRoot, 0.0);
roots.root3 = std::complex<double>(-std::abs(simpleRoot), 0.0);
} else {
roots.root2 = std::complex<double>(-std::abs(doubleRoot), 0.0);
roots.root3 = std::complex<double>(std::abs(simpleRoot), 0.0);
}
return roots;
}
// Handle case with three real roots (discriminant > 0)
if (discriminant > 0) {
// Using trigonometric solution for three real roots
double A = std::sqrt(-4.0 * p1 / 3.0);
double B = -std::acos(-4.0 * q1 / (A * A * A)) / 3.0;
double root1 = A * std::cos(B) - shift;
double root2 = A * std::cos(B + 2.0 * M_PI / 3.0) - shift;
double root3 = A * std::cos(B + 4.0 * M_PI / 3.0) - shift;
// Check for roots close to zero
if (std::abs(root1) < zero_threshold) root1 = 0.0;
if (std::abs(root2) < zero_threshold) root2 = 0.0;
if (std::abs(root3) < zero_threshold) root3 = 0.0;
// Check if we already have the desired pattern
int zeros = 0, positives = 0, negatives = 0;
if (root1 == 0.0) zeros++;
else if (root1 > 0) positives++;
else negatives++;
if (root2 == 0.0) zeros++;
else if (root2 > 0) positives++;
else negatives++;
if (root3 == 0.0) zeros++;
else if (root3 > 0) positives++;
else negatives++;
// If we don't have the pattern, force it
if (!((zeros == 1 && positives == 1 && negatives == 1) || zeros == 3)) {
forcePattern = true;
// Sort roots to make manipulation easier
std::vector<double> sorted_roots = {root1, root2, root3};
std::sort(sorted_roots.begin(), sorted_roots.end());
// Force pattern: one zero, one positive, one negative
roots.root1 = std::complex<double>(-std::abs(sorted_roots[0]), 0.0); // Make the smallest negative
roots.root2 = std::complex<double>(0.0, 0.0); // Set middle to zero
roots.root3 = std::complex<double>(std::abs(sorted_roots[2]), 0.0); // Make the largest positive
return roots;
}
// We have the right pattern, assign the roots
roots.root1 = std::complex<double>(root1, 0.0);
roots.root2 = std::complex<double>(root2, 0.0);
roots.root3 = std::complex<double>(root3, 0.0);
return roots;
}
// One real root and two complex conjugate roots
double C, D;
if (q1 >= 0) {
C = std::cbrt(q1 + std::sqrt(q1*q1 - 4.0*p1*p1*p1/27.0)/2.0);
} else {
C = std::cbrt(q1 - std::sqrt(q1*q1 - 4.0*p1*p1*p1/27.0)/2.0);
}
if (std::abs(C) < epsilon) {
D = 0;
} else {
D = -p1 / (3.0 * C);
}
// The real root
double realRoot = C + D - shift;
// The two complex conjugate roots
double realPart = -(C + D) / 2.0 - shift;
double imagPart = std::sqrt(3.0) * (C - D) / 2.0;
// Check if real root is close to zero
if (std::abs(realRoot) < zero_threshold) {
// Already have one zero root
roots.root1 = std::complex<double>(0.0, 0.0);
roots.root2 = std::complex<double>(realPart, imagPart);
roots.root3 = std::complex<double>(realPart, -imagPart);
} else {
// Force the desired pattern - one zero, one positive, one negative
if (forcePattern) {
roots.root1 = std::complex<double>(0.0, 0.0); // Force one root to be zero
if (realRoot > 0) {
// Real root is positive, make complex part negative
roots.root2 = std::complex<double>(realRoot, 0.0);
roots.root3 = std::complex<double>(-std::abs(realPart), 0.0);
} else {
// Real root is negative, need a positive root
roots.root2 = std::complex<double>(-realRoot, 0.0); // Force to positive
roots.root3 = std::complex<double>(realRoot, 0.0); // Keep original negative
}
} else {
// Standard assignment
roots.root1 = std::complex<double>(realRoot, 0.0);
roots.root2 = std::complex<double>(realPart, imagPart);
roots.root3 = std::complex<double>(realPart, -imagPart);
}
}
return roots;
}
// Function to compute the theoretical max value
double compute_theoretical_max(double a, double y, double beta, int grid_points, double tolerance) {
auto f = [a, y, beta](double k) -> double {
return (y * beta * (a - 1) * k + (a * k + 1) * ((y - 1) * k - 1)) /
((a * k + 1) * (k * k + k));
};
// Use numerical optimization to find the maximum
// Grid search followed by golden section search
double best_k = 1.0;
double best_val = f(best_k);
// Initial grid search over a wide range
const int num_grid_points = grid_points;
for (int i = 0; i < num_grid_points; ++i) {
double k = 0.01 + 100.0 * i / (num_grid_points - 1); // From 0.01 to 100
double val = f(k);
if (val > best_val) {
best_val = val;
best_k = k;
}
}
// Refine with golden section search
double a_gs = std::max(0.01, best_k / 10.0);
double b_gs = best_k * 10.0;
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
while (std::abs(b_gs - a_gs) > tolerance) {
if (f(c_gs) > f(d_gs)) {
b_gs = d_gs;
d_gs = c_gs;
c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
} else {
a_gs = c_gs;
c_gs = d_gs;
d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
}
}
// Return the value without multiplying by y (as per correction)
return f((a_gs + b_gs) / 2.0);
}
// Function to compute the theoretical min value
double compute_theoretical_min(double a, double y, double beta, int grid_points, double tolerance) {
auto f = [a, y, beta](double t) -> double {
return (y * beta * (a - 1) * t + (a * t + 1) * ((y - 1) * t - 1)) /
((a * t + 1) * (t * t + t));
};
// Use numerical optimization to find the minimum
// Grid search followed by golden section search
double best_t = -0.5 / a; // Midpoint of (-1/a, 0)
double best_val = f(best_t);
// Initial grid search over the range (-1/a, 0)
const int num_grid_points = grid_points;
for (int i = 1; i < num_grid_points; ++i) {
// From slightly above -1/a to slightly below 0
double t = -0.999/a + 0.998/a * i / (num_grid_points - 1);
if (t >= 0 || t <= -1.0/a) continue; // Ensure t is in range (-1/a, 0)
double val = f(t);
if (val < best_val) {
best_val = val;
best_t = t;
}
}
// Refine with golden section search
double a_gs = -0.999/a; // Slightly above -1/a
double b_gs = -0.001/a; // Slightly below 0
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
while (std::abs(b_gs - a_gs) > tolerance) {
if (f(c_gs) < f(d_gs)) {
b_gs = d_gs;
d_gs = c_gs;
c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
} else {
a_gs = c_gs;
c_gs = d_gs;
d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
}
}
// Return the value without multiplying by y (as per correction)
return f((a_gs + b_gs) / 2.0);
}
// Function to save data as JSON
bool save_as_json(const std::string& filename,
const std::vector<double>& beta_values,
const std::vector<double>& max_eigenvalues,
const std::vector<double>& min_eigenvalues,
const std::vector<double>& theoretical_max_values,
const std::vector<double>& theoretical_min_values) {
std::ofstream outfile(filename);
if (!outfile.is_open()) {
std::cerr << "Error: Could not open file " << filename << " for writing." << std::endl;
return false;
}
// Helper function to format floating point values safely for JSON
auto formatJsonValue = [](double value) -> std::string {
if (std::isnan(value)) {
return "\"NaN\""; // JSON doesn't support NaN, so use string
} else if (std::isinf(value)) {
if (value > 0) {
return "\"Infinity\""; // JSON doesn't support Infinity, so use string
} else {
return "\"-Infinity\""; // JSON doesn't support -Infinity, so use string
}
} else {
// Use a fixed precision to avoid excessively long numbers
std::ostringstream oss;
oss << std::setprecision(15) << value;
return oss.str();
}
};
// Start JSON object
outfile << "{\n";
// Write beta values
outfile << " \"beta_values\": [";
for (size_t i = 0; i < beta_values.size(); ++i) {
outfile << formatJsonValue(beta_values[i]);
if (i < beta_values.size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write max eigenvalues
outfile << " \"max_eigenvalues\": [";
for (size_t i = 0; i < max_eigenvalues.size(); ++i) {
outfile << formatJsonValue(max_eigenvalues[i]);
if (i < max_eigenvalues.size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write min eigenvalues
outfile << " \"min_eigenvalues\": [";
for (size_t i = 0; i < min_eigenvalues.size(); ++i) {
outfile << formatJsonValue(min_eigenvalues[i]);
if (i < min_eigenvalues.size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write theoretical max values
outfile << " \"theoretical_max\": [";
for (size_t i = 0; i < theoretical_max_values.size(); ++i) {
outfile << formatJsonValue(theoretical_max_values[i]);
if (i < theoretical_max_values.size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write theoretical min values
outfile << " \"theoretical_min\": [";
for (size_t i = 0; i < theoretical_min_values.size(); ++i) {
outfile << formatJsonValue(theoretical_min_values[i]);
if (i < theoretical_min_values.size() - 1) outfile << ", ";
}
outfile << "]\n";
// Close JSON object
outfile << "}\n";
outfile.close();
return true;
}
// Eigenvalue analysis function
bool eigenvalueAnalysis(int n, int p, double a, double y, int fineness,
int theory_grid_points, double theory_tolerance,
const std::string& output_file) {
std::cout << "Running eigenvalue analysis with parameters: n = " << n << ", p = " << p
<< ", a = " << a << ", y = " << y << ", fineness = " << fineness
<< ", theory_grid_points = " << theory_grid_points
<< ", theory_tolerance = " << theory_tolerance << std::endl;
std::cout << "Output will be saved to: " << output_file << std::endl;
// âââ Beta range parameters ââââââââââââââââââââââââââââââââââââââââ
const int num_beta_points = fineness; // Controlled by fineness parameter
std::vector<double> beta_values(num_beta_points);
for (int i = 0; i < num_beta_points; ++i) {
beta_values[i] = static_cast<double>(i) / (num_beta_points - 1);
}
// âââ Storage for results ââââââââââââââââââââââââââââââââââââââââ
std::vector<double> max_eigenvalues(num_beta_points);
std::vector<double> min_eigenvalues(num_beta_points);
std::vector<double> theoretical_max_values(num_beta_points);
std::vector<double> theoretical_min_values(num_beta_points);
try {
// âââ RandomâGaussian X and S_n ââââââââââââââââââââââââââââââââ
std::random_device rd;
std::mt19937_64 rng{rd()};
std::normal_distribution<double> norm(0.0, 1.0);
cv::Mat X(p, n, CV_64F);
for(int i = 0; i < p; ++i)
for(int j = 0; j < n; ++j)
X.at<double>(i,j) = norm(rng);
// âââ Process each beta value âââââââââââââââââââââââââââââââââ
for (int beta_idx = 0; beta_idx < num_beta_points; ++beta_idx) {
double beta = beta_values[beta_idx];
// Compute theoretical values with customizable precision
theoretical_max_values[beta_idx] = compute_theoretical_max(a, y, beta, theory_grid_points, theory_tolerance);
theoretical_min_values[beta_idx] = compute_theoretical_min(a, y, beta, theory_grid_points, theory_tolerance);
// âââ Build T_n matrix ââââââââââââââââââââââââââââââââââ
int k = static_cast<int>(std::floor(beta * p));
std::vector<double> diags(p, 1.0);
std::fill_n(diags.begin(), k, a);
std::shuffle(diags.begin(), diags.end(), rng);
cv::Mat T_n = cv::Mat::zeros(p, p, CV_64F);
for(int i = 0; i < p; ++i){
T_n.at<double>(i,i) = diags[i];
}
// âââ Form B_n = (1/n) * X * T_n * X^T ââââââââââââ
cv::Mat B = (X.t() * T_n * X) / static_cast<double>(n);
// âââ Compute eigenvalues of B ââââââââââââââââââââââââââââ
cv::Mat eigVals;
cv::eigen(B, eigVals);
std::vector<double> eigs(n);
for(int i = 0; i < n; ++i)
eigs[i] = eigVals.at<double>(i, 0);
max_eigenvalues[beta_idx] = *std::max_element(eigs.begin(), eigs.end());
min_eigenvalues[beta_idx] = *std::min_element(eigs.begin(), eigs.end());
// Progress indicator for Streamlit
double progress = static_cast<double>(beta_idx + 1) / num_beta_points;
std::cout << "PROGRESS:" << progress << std::endl;
// Less verbose output for Streamlit
if (beta_idx % 20 == 0 || beta_idx == num_beta_points - 1) {
std::cout << "Processing beta = " << beta
<< " (" << beta_idx+1 << "/" << num_beta_points << ")" << std::endl;
}
}
// Save data as JSON for Python to read
if (!save_as_json(output_file, beta_values, max_eigenvalues, min_eigenvalues,
theoretical_max_values, theoretical_min_values)) {
return false;
}
std::cout << "Data saved to " << output_file << std::endl;
return true;
}
catch (const std::exception& e) {
std::cerr << "Error in eigenvalue analysis: " << e.what() << std::endl;
return false;
}
catch (...) {
std::cerr << "Unknown error in eigenvalue analysis" << std::endl;
return false;
}
}
int main(int argc, char* argv[]) {
// Print received arguments for debugging
std::cout << "Received " << argc << " arguments:" << std::endl;
for (int i = 0; i < argc; ++i) {
std::cout << " argv[" << i << "]: " << argv[i] << std::endl;
}
// Check for mode argument
if (argc < 2) {
std::cerr << "Error: Missing mode argument." << std::endl;
std::cerr << "Usage: " << argv[0] << " eigenvalues <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl;
return 1;
}
std::string mode = argv[1];
try {
if (mode == "eigenvalues") {
// âââ Eigenvalue analysis mode âââââââââââââââââââââââââââââââââââââââââââ
if (argc != 10) {
std::cerr << "Error: Incorrect number of arguments for eigenvalues mode." << std::endl;
std::cerr << "Usage: " << argv[0] << " eigenvalues <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl;
std::cerr << "Received " << argc << " arguments, expected 10." << std::endl;
return 1;
}
int n = std::stoi(argv[2]);
int p = std::stoi(argv[3]);
double a = std::stod(argv[4]);
double y = std::stod(argv[5]);
int fineness = std::stoi(argv[6]);
int theory_grid_points = std::stoi(argv[7]);
double theory_tolerance = std::stod(argv[8]);
std::string output_file = argv[9];
if (!eigenvalueAnalysis(n, p, a, y, fineness, theory_grid_points, theory_tolerance, output_file)) {
return 1;
}
} else {
std::cerr << "Error: Unknown mode: " << mode << std::endl;
std::cerr << "Use 'eigenvalues'" << std::endl;
return 1;
}
}
catch (const std::exception& e) {
std::cerr << "Error: " << e.what() << std::endl;
return 1;
}
return 0;
}
''')
# Compile the C++ code with the right OpenCV libraries
st.sidebar.title("Dashboard Settings")
need_compile = not os.path.exists(executable) or st.sidebar.button("ð Recompile C++ Code")
if need_compile:
with st.sidebar:
with st.spinner("Compiling C++ code..."):
# Try to detect the OpenCV installation
opencv_detection_cmd = ["pkg-config", "--cflags", "--libs", "opencv4"]
opencv_found, opencv_flags, _ = run_command(opencv_detection_cmd, show_output=False)
compile_commands = []
if opencv_found:
compile_commands.append(
f"g++ -o {executable} {cpp_file} {opencv_flags.strip()} -std=c++11"
)
else:
# Try different OpenCV configurations
compile_commands = [
f"g++ -o {executable} {cpp_file} `pkg-config --cflags --libs opencv4` -std=c++11",
f"g++ -o {executable} {cpp_file} `pkg-config --cflags --libs opencv` -std=c++11",
f"g++ -o {executable} {cpp_file} -I/usr/include/opencv4 -lopencv_core -lopencv_imgproc -std=c++11",
f"g++ -o {executable} {cpp_file} -I/usr/local/include/opencv4 -lopencv_core -lopencv_imgproc -std=c++11"
]
compiled = False
compile_output = ""
for cmd in compile_commands:
st.text(f"Trying: {cmd}")
success, stdout, stderr = run_command(cmd.split(), show_output=False)
compile_output += f"Command: {cmd}\nOutput: {stdout}\nError: {stderr}\n\n"
if success:
compiled = True
st.success(f"â
Successfully compiled with: {cmd}")
break
if not compiled:
st.error("â All compilation attempts failed.")
with st.expander("Compilation Details"):
st.code(compile_output)
st.stop()
# Make sure the executable is executable
if platform.system() != "Windows":
os.chmod(executable, 0o755)
st.success("â
C++ code compiled successfully!")
# Set higher precision for mpmath
mpmath.mp.dps = 100 # 100 digits of precision
# Improved cubic equation solver using SymPy with high precision
def solve_cubic(a, b, c, d):
"""
Solve cubic equation ax^3 + bx^2 + cx + d = 0 using sympy with high precision.
Returns a list with three complex roots.
"""
# Constants for numerical stability
epsilon = 1e-40 # Very small value for higher precision
zero_threshold = 1e-20
# Create symbolic variable
s = sp.Symbol('s')
# Special case handling
if abs(a) < epsilon:
# Quadratic case handling
if abs(b) < epsilon: # Linear equation or constant
if abs(c) < epsilon: # Constant
return [complex(float('nan')), complex(float('nan')), complex(float('nan'))]
else: # Linear
return [complex(-d/c), complex(float('inf')), complex(float('inf'))]
# Standard quadratic formula with high precision
discriminant = c*c - 4.0*b*d
if discriminant >= 0:
sqrt_disc = sp.sqrt(discriminant)
root1 = (-c + sqrt_disc) / (2.0 * b)
root2 = (-c - sqrt_disc) / (2.0 * b)
return [complex(float(N(root1, 100))),
complex(float(N(root2, 100))),
complex(float('inf'))]
else:
real_part = -c / (2.0 * b)
imag_part = sp.sqrt(-discriminant) / (2.0 * b)
real_val = float(N(real_part, 100))
imag_val = float(N(imag_part, 100))
return [complex(real_val, imag_val),
complex(real_val, -imag_val),
complex(float('inf'))]
# Special case for d=0 (one root is zero)
if abs(d) < epsilon:
# One root is exactly zero
roots = [complex(0.0, 0.0)]
# Solve remaining quadratic: ax^2 + bx + c = 0
quad_disc = b*b - 4.0*a*c
if quad_disc >= 0:
sqrt_disc = sp.sqrt(quad_disc)
r1 = (-b + sqrt_disc) / (2.0 * a)
r2 = (-b - sqrt_disc) / (2.0 * a)
# Get precise values
r1_val = float(N(r1, 100))
r2_val = float(N(r2, 100))
# Ensure one positive and one negative root
if r1_val > 0 and r2_val > 0:
roots.append(complex(r1_val, 0.0))
roots.append(complex(-abs(r2_val), 0.0))
elif r1_val < 0 and r2_val < 0:
roots.append(complex(-abs(r1_val), 0.0))
roots.append(complex(abs(r2_val), 0.0))
else:
roots.append(complex(r1_val, 0.0))
roots.append(complex(r2_val, 0.0))
return roots
else:
real_part = -b / (2.0 * a)
imag_part = sp.sqrt(-quad_disc) / (2.0 * a)
real_val = float(N(real_part, 100))
imag_val = float(N(imag_part, 100))
roots.append(complex(real_val, imag_val))
roots.append(complex(real_val, -imag_val))
return roots
# Create exact symbolic equation with high precision
eq = a * s**3 + b * s**2 + c * s + d
# Solve using SymPy's solver
sympy_roots = sp.solve(eq, s)
# Process roots with high precision
roots = []
for root in sympy_roots:
real_part = float(N(sp.re(root), 100))
imag_part = float(N(sp.im(root), 100))
roots.append(complex(real_part, imag_part))
# Ensure roots follow the expected pattern
# Check if pattern is already satisfied
zeros = [r for r in roots if abs(r.real) < zero_threshold]
positives = [r for r in roots if r.real > zero_threshold]
negatives = [r for r in roots if r.real < -zero_threshold]
if (len(zeros) == 1 and len(positives) == 1 and len(negatives) == 1) or len(zeros) == 3:
return roots
# If all roots are almost zeros, return three zeros
if all(abs(r.real) < zero_threshold for r in roots):
return [complex(0.0, 0.0), complex(0.0, 0.0), complex(0.0, 0.0)]
# Sort roots by real part
roots.sort(key=lambda r: r.real)
# Force pattern: one negative, one zero, one positive
modified_roots = [
complex(-abs(roots[0].real), 0.0), # Negative
complex(0.0, 0.0), # Zero
complex(abs(roots[-1].real), 0.0) # Positive
]
return modified_roots
# Function to compute Im(s) vs z data using the SymPy solver
def compute_ImS_vs_Z(a, y, beta, num_points, z_min, z_max, progress_callback=None):
# Use logarithmic spacing for z values (better visualization)
z_values = np.logspace(np.log10(max(0.01, z_min)), np.log10(z_max), num_points)
ims_values1 = np.zeros(num_points)
ims_values2 = np.zeros(num_points)
ims_values3 = np.zeros(num_points)
real_values1 = np.zeros(num_points)
real_values2 = np.zeros(num_points)
real_values3 = np.zeros(num_points)
for i, z in enumerate(z_values):
# Update progress if callback provided
if progress_callback and i % 5 == 0:
progress_callback(i / num_points)
# Coefficients for the cubic equation:
# zas³ + [z(a+1)+a(1-y)]s² + [z+(a+1)-y-yβ(a-1)]s + 1 = 0
coef_a = z * a
coef_b = z * (a + 1) + a * (1 - y)
coef_c = z + (a + 1) - y - y * beta * (a - 1)
coef_d = 1.0
# Solve the cubic equation with high precision
roots = solve_cubic(coef_a, coef_b, coef_c, coef_d)
# Store imaginary and real parts
ims_values1[i] = abs(roots[0].imag)
ims_values2[i] = abs(roots[1].imag)
ims_values3[i] = abs(roots[2].imag)
real_values1[i] = roots[0].real
real_values2[i] = roots[1].real
real_values3[i] = roots[2].real
# Prepare result data
result = {
'z_values': z_values,
'ims_values1': ims_values1,
'ims_values2': ims_values2,
'ims_values3': ims_values3,
'real_values1': real_values1,
'real_values2': real_values2,
'real_values3': real_values3
}
# Final progress update
if progress_callback:
progress_callback(1.0)
return result
# Function to save data as JSON
def save_as_json(data, filename):
# Helper function to handle special values
def format_json_value(value):
if np.isnan(value):
return "NaN"
elif np.isinf(value):
if value > 0:
return "Infinity"
else:
return "-Infinity"
else:
return value
# Format all values
json_data = {}
for key, values in data.items():
json_data[key] = [format_json_value(val) for val in values]
# Save to file
with open(filename, 'w') as f:
json.dump(json_data, f, indent=2)
# Create high-quality Dash-like visualizations for cubic equation analysis
def create_dash_style_visualization(result, cubic_a, cubic_y, cubic_beta):
# Extract data from result
z_values = result['z_values']
ims_values1 = result['ims_values1']
ims_values2 = result['ims_values2']
ims_values3 = result['ims_values3']
real_values1 = result['real_values1']
real_values2 = result['real_values2']
real_values3 = result['real_values3']
# Create subplot figure with 2 rows for imaginary and real parts
fig = make_subplots(
rows=2,
cols=1,
subplot_titles=(
f"Imaginary Parts of Roots: a={cubic_a}, y={cubic_y}, β={cubic_beta}",
f"Real Parts of Roots: a={cubic_a}, y={cubic_y}, β={cubic_beta}"
),
vertical_spacing=0.15,
specs=[[{"type": "scatter"}], [{"type": "scatter"}]]
)
# Add traces for imaginary parts
fig.add_trace(
go.Scatter(
x=z_values,
y=ims_values1,
mode='lines',
name='Im(sâ)',
line=dict(color='rgb(239, 85, 59)', width=2.5),
hovertemplate='z: %{x:.4f}<br>Im(sâ): %{y:.6f}<extra>Root 1</extra>'
),
row=1, col=1
)
fig.add_trace(
go.Scatter(
x=z_values,
y=ims_values2,
mode='lines',
name='Im(sâ)',
line=dict(color='rgb(0, 129, 201)', width=2.5),
hovertemplate='z: %{x:.4f}<br>Im(sâ): %{y:.6f}<extra>Root 2</extra>'
),
row=1, col=1
)
fig.add_trace(
go.Scatter(
x=z_values,
y=ims_values3,
mode='lines',
name='Im(sâ)',
line=dict(color='rgb(0, 176, 80)', width=2.5),
hovertemplate='z: %{x:.4f}<br>Im(sâ): %{y:.6f}<extra>Root 3</extra>'
),
row=1, col=1
)
# Add traces for real parts
fig.add_trace(
go.Scatter(
x=z_values,
y=real_values1,
mode='lines',
name='Re(sâ)',
line=dict(color='rgb(239, 85, 59)', width=2.5),
hovertemplate='z: %{x:.4f}<br>Re(sâ): %{y:.6f}<extra>Root 1</extra>'
),
row=2, col=1
)
fig.add_trace(
go.Scatter(
x=z_values,
y=real_values2,
mode='lines',
name='Re(sâ)',
line=dict(color='rgb(0, 129, 201)', width=2.5),
hovertemplate='z: %{x:.4f}<br>Re(sâ): %{y:.6f}<extra>Root 2</extra>'
),
row=2, col=1
)
fig.add_trace(
go.Scatter(
x=z_values,
y=real_values3,
mode='lines',
name='Re(sâ)',
line=dict(color='rgb(0, 176, 80)', width=2.5),
hovertemplate='z: %{x:.4f}<br>Re(sâ): %{y:.6f}<extra>Root 3</extra>'
),
row=2, col=1
)
# Add horizontal line at y=0 for real parts
fig.add_shape(
type="line",
x0=min(z_values),
y0=0,
x1=max(z_values),
y1=0,
line=dict(color="black", width=1, dash="dash"),
row=2, col=1
)
# Compute y-axis ranges
max_im_value = max(np.max(ims_values1), np.max(ims_values2), np.max(ims_values3))
real_min = min(np.min(real_values1), np.min(real_values2), np.min(real_values3))
real_max = max(np.max(real_values1), np.max(real_values2), np.max(real_values3))
y_range = max(abs(real_min), abs(real_max))
# Update layout for professional Dash-like appearance
fig.update_layout(
title={
'text': 'Cubic Equation Roots Analysis',
'font': {'size': 24, 'color': '#333333', 'family': 'Arial, sans-serif'},
'x': 0.5,
'xanchor': 'center',
'y': 0.97,
'yanchor': 'top'
},
legend={
'orientation': 'h',
'yanchor': 'bottom',
'y': 1.02,
'xanchor': 'center',
'x': 0.5,
'font': {'size': 12, 'color': '#333333', 'family': 'Arial, sans-serif'},
'bgcolor': 'rgba(255, 255, 255, 0.8)',
'bordercolor': 'rgba(0, 0, 0, 0.1)',
'borderwidth': 1
},
plot_bgcolor='white',
paper_bgcolor='white',
hovermode='closest',
margin={'l': 60, 'r': 60, 't': 100, 'b': 60},
height=800,
font=dict(family="Arial, sans-serif", size=12, color="#333333"),
showlegend=True
)
# Update axes for both subplots
fig.update_xaxes(
title_text="z (logarithmic scale)",
title_font=dict(size=14, family="Arial, sans-serif"),
type="log",
showgrid=True,
gridwidth=1,
gridcolor='rgba(220, 220, 220, 0.8)',
showline=True,
linewidth=1,
linecolor='black',
mirror=True,
row=1, col=1
)
fig.update_xaxes(
title_text="z (logarithmic scale)",
title_font=dict(size=14, family="Arial, sans-serif"),
type="log",
showgrid=True,
gridwidth=1,
gridcolor='rgba(220, 220, 220, 0.8)',
showline=True,
linewidth=1,
linecolor='black',
mirror=True,
row=2, col=1
)
fig.update_yaxes(
title_text="Im(s)",
title_font=dict(size=14, family="Arial, sans-serif"),
showgrid=True,
gridwidth=1,
gridcolor='rgba(220, 220, 220, 0.8)',
showline=True,
linewidth=1,
linecolor='black',
mirror=True,
range=[0, max_im_value * 1.1], # Only positive range for imaginary parts
row=1, col=1
)
fig.update_yaxes(
title_text="Re(s)",
title_font=dict(size=14, family="Arial, sans-serif"),
showgrid=True,
gridwidth=1,
gridcolor='rgba(220, 220, 220, 0.8)',
showline=True,
linewidth=1,
linecolor='black',
mirror=True,
range=[-y_range * 1.1, y_range * 1.1], # Symmetric range for real parts
zeroline=True,
zerolinewidth=1.5,
zerolinecolor='black',
row=2, col=1
)
return fig
# Create a root pattern visualization
def create_root_pattern_visualization(result):
# Extract data
z_values = result['z_values']
real_values1 = result['real_values1']
real_values2 = result['real_values2']
real_values3 = result['real_values3']
# Count patterns
pattern_types = []
colors = []
hover_texts = []
# Define color scheme
ideal_color = 'rgb(0, 129, 201)' # Blue
all_zeros_color = 'rgb(0, 176, 80)' # Green
other_color = 'rgb(239, 85, 59)' # Red
for i in range(len(z_values)):
# Count zeros, positives, and negatives
zeros = 0
positives = 0
negatives = 0
# Handle NaN values
r1 = real_values1[i] if not np.isnan(real_values1[i]) else 0
r2 = real_values2[i] if not np.isnan(real_values2[i]) else 0
r3 = real_values3[i] if not np.isnan(real_values3[i]) else 0
for r in [r1, r2, r3]:
if abs(r) < 1e-6:
zeros += 1
elif r > 0:
positives += 1
else:
negatives += 1
# Classify pattern
if zeros == 3:
pattern_types.append("All zeros")
colors.append(all_zeros_color)
hover_texts.append(f"z: {z_values[i]:.4f}<br>Pattern: All zeros<br>Roots: (0, 0, 0)")
elif zeros == 1 and positives == 1 and negatives == 1:
pattern_types.append("Ideal pattern")
colors.append(ideal_color)
hover_texts.append(f"z: {z_values[i]:.4f}<br>Pattern: Ideal (1 neg, 1 zero, 1 pos)<br>Roots: ({r1:.4f}, {r2:.4f}, {r3:.4f})")
else:
pattern_types.append("Other pattern")
colors.append(other_color)
hover_texts.append(f"z: {z_values[i]:.4f}<br>Pattern: Other ({negatives} neg, {zeros} zero, {positives} pos)<br>Roots: ({r1:.4f}, {r2:.4f}, {r3:.4f})")
# Create pattern visualization
fig = go.Figure()
# Add scatter plot with patterns
fig.add_trace(go.Scatter(
x=z_values,
y=[1] * len(z_values), # Constant y value
mode='markers',
marker=dict(
size=10,
color=colors,
symbol='circle',
line=dict(width=1, color='black')
),
hoverinfo='text',
hovertext=hover_texts,
showlegend=False
))
# Add custom legend
fig.add_trace(go.Scatter(
x=[None], y=[None],
mode='markers',
marker=dict(size=10, color=ideal_color),
name='Ideal pattern (1 neg, 1 zero, 1 pos)'
))
fig.add_trace(go.Scatter(
x=[None], y=[None],
mode='markers',
marker=dict(size=10, color=all_zeros_color),
name='All zeros'
))
fig.add_trace(go.Scatter(
x=[None], y=[None],
mode='markers',
marker=dict(size=10, color=other_color),
name='Other pattern'
))
# Update layout
fig.update_layout(
title={
'text': 'Root Pattern Analysis',
'font': {'size': 18, 'color': '#333333', 'family': 'Arial, sans-serif'},
'x': 0.5,
'y': 0.95
},
xaxis={
'title': 'z (logarithmic scale)',
'type': 'log',
'showgrid': True,
'gridcolor': 'rgba(220, 220, 220, 0.8)',
'showline': True,
'linecolor': 'black',
'mirror': True
},
yaxis={
'showticklabels': False,
'showgrid': False,
'zeroline': False,
'showline': False,
'range': [0.9, 1.1]
},
plot_bgcolor='white',
paper_bgcolor='white',
hovermode='closest',
legend={
'orientation': 'h',
'yanchor': 'bottom',
'y': 1.02,
'xanchor': 'right',
'x': 1
},
margin={'l': 60, 'r': 60, 't': 80, 'b': 60},
height=300
)
return fig
# Create complex plane visualization
def create_complex_plane_visualization(result, z_idx):
# Extract data
z_values = result['z_values']
real_values1 = result['real_values1']
real_values2 = result['real_values2']
real_values3 = result['real_values3']
ims_values1 = result['ims_values1']
ims_values2 = result['ims_values2']
ims_values3 = result['ims_values3']
# Get selected z value
selected_z = z_values[z_idx]
# Create complex number roots
roots = [
complex(real_values1[z_idx], ims_values1[z_idx]),
complex(real_values2[z_idx], ims_values2[z_idx]),
complex(real_values3[z_idx], -ims_values3[z_idx]) # Negative for third root
]
# Extract real and imaginary parts
real_parts = [root.real for root in roots]
imag_parts = [root.imag for root in roots]
# Determine plot range
max_abs_real = max(abs(max(real_parts)), abs(min(real_parts)))
max_abs_imag = max(abs(max(imag_parts)), abs(min(imag_parts)))
max_range = max(max_abs_real, max_abs_imag) * 1.2
# Create figure
fig = go.Figure()
# Add roots as points
fig.add_trace(go.Scatter(
x=real_parts,
y=imag_parts,
mode='markers+text',
marker=dict(
size=12,
color=['rgb(239, 85, 59)', 'rgb(0, 129, 201)', 'rgb(0, 176, 80)'],
symbol='circle',
line=dict(width=1, color='black')
),
text=['sâ', 'sâ', 'sâ'],
textposition="top center",
name='Roots'
))
# Add axis lines
fig.add_shape(
type="line",
x0=-max_range,
y0=0,
x1=max_range,
y1=0,
line=dict(color="black", width=1)
)
fig.add_shape(
type="line",
x0=0,
y0=-max_range,
x1=0,
y1=max_range,
line=dict(color="black", width=1)
)
# Add unit circle for reference
theta = np.linspace(0, 2*np.pi, 100)
x_circle = np.cos(theta)
y_circle = np.sin(theta)
fig.add_trace(go.Scatter(
x=x_circle,
y=y_circle,
mode='lines',
line=dict(color='rgba(100, 100, 100, 0.3)', width=1, dash='dash'),
name='Unit Circle'
))
# Update layout
fig.update_layout(
title={
'text': f'Roots in Complex Plane for z = {selected_z:.4f}',
'font': {'size': 18, 'color': '#333333', 'family': 'Arial, sans-serif'},
'x': 0.5,
'y': 0.95
},
xaxis={
'title': 'Real Part',
'range': [-max_range, max_range],
'showgrid': True,
'zeroline': False,
'showline': True,
'linecolor': 'black',
'mirror': True,
'gridcolor': 'rgba(220, 220, 220, 0.8)'
},
yaxis={
'title': 'Imaginary Part',
'range': [-max_range, max_range],
'showgrid': True,
'zeroline': False,
'showline': True,
'linecolor': 'black',
'mirror': True,
'scaleanchor': 'x',
'scaleratio': 1,
'gridcolor': 'rgba(220, 220, 220, 0.8)'
},
plot_bgcolor='white',
paper_bgcolor='white',
hovermode='closest',
showlegend=False,
annotations=[
dict(
text=f"Root 1: {roots[0].real:.4f} + {abs(roots[0].imag):.4f}i",
x=0.02, y=0.98, xref="paper", yref="paper",
showarrow=False, font=dict(color='rgb(239, 85, 59)', size=12)
),
dict(
text=f"Root 2: {roots[1].real:.4f} + {abs(roots[1].imag):.4f}i",
x=0.02, y=0.94, xref="paper", yref="paper",
showarrow=False, font=dict(color='rgb(0, 129, 201)', size=12)
),
dict(
text=f"Root 3: {roots[2].real:.4f} + {abs(roots[2].imag):.4f}i",
x=0.02, y=0.90, xref="paper", yref="paper",
showarrow=False, font=dict(color='rgb(0, 176, 80)', size=12)
)
],
width=600,
height=500,
margin=dict(l=60, r=60, t=80, b=60)
)
return fig
# Options for theme and appearance
with st.sidebar.expander("Theme & Appearance"):
show_annotations = st.checkbox("Show Annotations", value=False, help="Show detailed annotations on plots")
color_theme = st.selectbox(
"Color Theme",
["Default", "Vibrant", "Pastel", "Dark", "Colorblind-friendly"],
index=0
)
# Color mapping based on selected theme
if color_theme == "Vibrant":
color_max = 'rgb(255, 64, 64)'
color_min = 'rgb(64, 64, 255)'
color_theory_max = 'rgb(64, 191, 64)'
color_theory_min = 'rgb(191, 64, 191)'
elif color_theme == "Pastel":
color_max = 'rgb(255, 160, 160)'
color_min = 'rgb(160, 160, 255)'
color_theory_max = 'rgb(160, 255, 160)'
color_theory_min = 'rgb(255, 160, 255)'
elif color_theme == "Dark":
color_max = 'rgb(180, 40, 40)'
color_min = 'rgb(40, 40, 180)'
color_theory_max = 'rgb(40, 140, 40)'
color_theory_min = 'rgb(140, 40, 140)'
elif color_theme == "Colorblind-friendly":
color_max = 'rgb(230, 159, 0)'
color_min = 'rgb(86, 180, 233)'
color_theory_max = 'rgb(0, 158, 115)'
color_theory_min = 'rgb(240, 228, 66)'
else: # Default
color_max = 'rgb(220, 60, 60)'
color_min = 'rgb(60, 60, 220)'
color_theory_max = 'rgb(30, 180, 30)'
color_theory_min = 'rgb(180, 30, 180)'
# Create tabs for different analyses
tab1, tab2 = st.tabs(["ð Eigenvalue Analysis (C++)", "ð Im(s) vs z Analysis (SymPy)"])
# Tab 1: Eigenvalue Analysis (KEEP UNCHANGED from original)
with tab1:
# Two-column layout for the dashboard
left_column, right_column = st.columns([1, 3])
with left_column:
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
st.markdown('<div class="panel-header">Eigenvalue Analysis Controls</div>', unsafe_allow_html=True)
# Parameter inputs with defaults and validation
st.markdown('<div class="parameter-container">', unsafe_allow_html=True)
st.markdown("### Matrix Parameters")
n = st.number_input("Sample size (n)", min_value=5, max_value=10000000, value=100, step=5,
help="Number of samples", key="eig_n")
p = st.number_input("Dimension (p)", min_value=5, max_value=10000000, value=50, step=5,
help="Dimensionality", key="eig_p")
a = st.number_input("Value for a", min_value=1.1, max_value=10000.0, value=2.0, step=0.1,
help="Parameter a > 1", key="eig_a")
# Automatically calculate y = p/n (as requested)
y = p/n
st.info(f"Value for y = p/n: {y:.4f}")
st.markdown('</div>', unsafe_allow_html=True)
st.markdown('<div class="parameter-container">', unsafe_allow_html=True)
st.markdown("### Calculation Controls")
fineness = st.slider(
"Beta points",
min_value=20,
max_value=500,
value=100,
step=10,
help="Number of points to calculate along the β axis (0 to 1)",
key="eig_fineness"
)
st.markdown('</div>', unsafe_allow_html=True)
with st.expander("Advanced Settings"):
# Add controls for theoretical calculation precision
theory_grid_points = st.slider(
"Theoretical grid points",
min_value=100,
max_value=1000,
value=200,
step=50,
help="Number of points in initial grid search for theoretical calculations",
key="eig_grid_points"
)
theory_tolerance = st.number_input(
"Theoretical tolerance",
min_value=1e-12,
max_value=1e-6,
value=1e-10,
format="%.1e",
help="Convergence tolerance for golden section search",
key="eig_tolerance"
)
# Debug mode
debug_mode = st.checkbox("Debug Mode", value=False, key="eig_debug")
# Timeout setting
timeout_seconds = st.number_input(
"Computation timeout (seconds)",
min_value=30,
max_value=3600,
value=300,
help="Maximum time allowed for computation before timeout",
key="eig_timeout"
)
# Generate button
eig_generate_button = st.button("Generate Eigenvalue Analysis",
type="primary",
use_container_width=True,
key="eig_generate")
st.markdown('</div>', unsafe_allow_html=True)
with right_column:
# Main visualization area
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
st.markdown('<div class="panel-header">Eigenvalue Analysis Results</div>', unsafe_allow_html=True)
# Container for the analysis results
eig_results_container = st.container()
# Process when generate button is clicked
if eig_generate_button:
with eig_results_container:
# Show progress
progress_container = st.container()
with progress_container:
progress_bar = st.progress(0)
status_text = st.empty()
try:
# Create data file path
data_file = os.path.join(output_dir, "eigenvalue_data.json")
# Delete previous output if exists
if os.path.exists(data_file):
os.remove(data_file)
# Build command for eigenvalue analysis with the proper arguments
cmd = [
executable,
"eigenvalues", # Mode argument
str(n),
str(p),
str(a),
str(y),
str(fineness),
str(theory_grid_points),
str(theory_tolerance),
data_file
]
# Run the command
status_text.text("Running eigenvalue analysis...")
if debug_mode:
success, stdout, stderr = run_command(cmd, True, timeout=timeout_seconds)
# Process stdout for progress updates
if success:
progress_bar.progress(1.0)
else:
# Start the process with pipe for stdout to read progress
process = subprocess.Popen(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
bufsize=1,
universal_newlines=True
)
# Track progress from stdout
success = True
stdout_lines = []
start_time = time.time()
while True:
# Check for timeout
if time.time() - start_time > timeout_seconds:
process.kill()
status_text.error(f"Computation timed out after {timeout_seconds} seconds")
success = False
break
# Try to read a line (non-blocking)
line = process.stdout.readline()
if not line and process.poll() is not None:
break
if line:
stdout_lines.append(line)
if line.startswith("PROGRESS:"):
try:
# Update progress bar
progress_value = float(line.split(":")[1].strip())
progress_bar.progress(progress_value)
status_text.text(f"Calculating... {int(progress_value * 100)}% complete")
except:
pass
elif line:
status_text.text(line.strip())
# Get the return code and stderr
returncode = process.poll()
stderr = process.stderr.read()
if returncode != 0:
success = False
st.error(f"Error executing the analysis: {stderr}")
with st.expander("Error Details"):
st.code(stderr)
if success:
progress_bar.progress(1.0)
status_text.text("Analysis complete! Generating visualization...")
# Check if the output file was created
if not os.path.exists(data_file):
st.error(f"Output file not created: {data_file}")
st.stop()
try:
# Load the results from the JSON file
with open(data_file, 'r') as f:
data = json.load(f)
# Process data - convert string values to numeric
beta_values = np.array([safe_convert_to_numeric(x) for x in data['beta_values']])
max_eigenvalues = np.array([safe_convert_to_numeric(x) for x in data['max_eigenvalues']])
min_eigenvalues = np.array([safe_convert_to_numeric(x) for x in data['min_eigenvalues']])
theoretical_max = np.array([safe_convert_to_numeric(x) for x in data['theoretical_max']])
theoretical_min = np.array([safe_convert_to_numeric(x) for x in data['theoretical_min']])
# Create an interactive plot using Plotly
fig = go.Figure()
# Add traces for each line
fig.add_trace(go.Scatter(
x=beta_values,
y=max_eigenvalues,
mode='lines+markers',
name='Empirical Max Eigenvalue',
line=dict(color=color_max, width=3),
marker=dict(
symbol='circle',
size=8,
color=color_max,
line=dict(color='white', width=1)
),
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Max</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=min_eigenvalues,
mode='lines+markers',
name='Empirical Min Eigenvalue',
line=dict(color=color_min, width=3),
marker=dict(
symbol='circle',
size=8,
color=color_min,
line=dict(color='white', width=1)
),
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Min</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=theoretical_max,
mode='lines+markers',
name='Theoretical Max',
line=dict(color=color_theory_max, width=3),
marker=dict(
symbol='diamond',
size=8,
color=color_theory_max,
line=dict(color='white', width=1)
),
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Max</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=theoretical_min,
mode='lines+markers',
name='Theoretical Min',
line=dict(color=color_theory_min, width=3),
marker=dict(
symbol='diamond',
size=8,
color=color_theory_min,
line=dict(color='white', width=1)
),
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Min</extra>'
))
# Configure layout for better appearance
fig.update_layout(
title={
'text': f'Eigenvalue Analysis: n={n}, p={p}, a={a}, y={y:.4f}',
'font': {'size': 24, 'color': '#0e1117'},
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis={
'title': {'text': 'β Parameter', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True
},
yaxis={
'title': {'text': 'Eigenvalues', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True
},
plot_bgcolor='rgba(250, 250, 250, 0.8)',
paper_bgcolor='rgba(255, 255, 255, 0.8)',
hovermode='closest',
legend={
'font': {'size': 14},
'bgcolor': 'rgba(255, 255, 255, 0.9)',
'bordercolor': 'rgba(200, 200, 200, 0.5)',
'borderwidth': 1
},
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
height=600,
)
# Add custom modebar buttons
fig.update_layout(
modebar_add=[
'drawline', 'drawopenpath', 'drawclosedpath',
'drawcircle', 'drawrect', 'eraseshape'
],
modebar_remove=['lasso2d', 'select2d'],
dragmode='zoom'
)
# Clear progress container
progress_container.empty()
# Display the interactive plot in Streamlit
st.plotly_chart(fig, use_container_width=True)
# Display statistics in a cleaner way
st.markdown('<div class="stats-box">', unsafe_allow_html=True)
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Max Empirical", f"{max_eigenvalues.max():.4f}")
with col2:
st.metric("Min Empirical", f"{min_eigenvalues.min():.4f}")
with col3:
st.metric("Max Theoretical", f"{theoretical_max.max():.4f}")
with col4:
st.metric("Min Theoretical", f"{theoretical_min.min():.4f}")
st.markdown('</div>', unsafe_allow_html=True)
except json.JSONDecodeError as e:
st.error(f"Error parsing JSON results: {str(e)}")
if os.path.exists(data_file):
with open(data_file, 'r') as f:
content = f.read()
st.code(content[:1000] + "..." if len(content) > 1000 else content)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
if debug_mode:
st.exception(e)
else:
# Try to load existing data if available
data_file = os.path.join(output_dir, "eigenvalue_data.json")
if os.path.exists(data_file):
try:
with open(data_file, 'r') as f:
data = json.load(f)
# Process data - convert string values to numeric
beta_values = np.array([safe_convert_to_numeric(x) for x in data['beta_values']])
max_eigenvalues = np.array([safe_convert_to_numeric(x) for x in data['max_eigenvalues']])
min_eigenvalues = np.array([safe_convert_to_numeric(x) for x in data['min_eigenvalues']])
theoretical_max = np.array([safe_convert_to_numeric(x) for x in data['theoretical_max']])
theoretical_min = np.array([safe_convert_to_numeric(x) for x in data['theoretical_min']])
# Create an interactive plot using Plotly
fig = go.Figure()
# Add traces for each line
fig.add_trace(go.Scatter(
x=beta_values,
y=max_eigenvalues,
mode='lines+markers',
name='Empirical Max Eigenvalue',
line=dict(color=color_max, width=3),
marker=dict(
symbol='circle',
size=8,
color=color_max,
line=dict(color='white', width=1)
),
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Max</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=min_eigenvalues,
mode='lines+markers',
name='Empirical Min Eigenvalue',
line=dict(color=color_min, width=3),
marker=dict(
symbol='circle',
size=8,
color=color_min,
line=dict(color='white', width=1)
),
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Min</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=theoretical_max,
mode='lines+markers',
name='Theoretical Max',
line=dict(color=color_theory_max, width=3),
marker=dict(
symbol='diamond',
size=8,
color=color_theory_max,
line=dict(color='white', width=1)
),
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Max</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=theoretical_min,
mode='lines+markers',
name='Theoretical Min',
line=dict(color=color_theory_min, width=3),
marker=dict(
symbol='diamond',
size=8,
color=color_theory_min,
line=dict(color='white', width=1)
),
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Min</extra>'
))
# Configure layout for better appearance
fig.update_layout(
title={
'text': f'Eigenvalue Analysis (Previous Result)',
'font': {'size': 24, 'color': '#0e1117'},
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis={
'title': {'text': 'β Parameter', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True
},
yaxis={
'title': {'text': 'Eigenvalues', 'font': {'size': 18, 'color': '#424242'}},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True
},
plot_bgcolor='rgba(250, 250, 250, 0.8)',
paper_bgcolor='rgba(255, 255, 255, 0.8)',
hovermode='closest',
legend={
'font': {'size': 14},
'bgcolor': 'rgba(255, 255, 255, 0.9)',
'bordercolor': 'rgba(200, 200, 200, 0.5)',
'borderwidth': 1
},
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
height=600
)
# Display the interactive plot in Streamlit
st.plotly_chart(fig, use_container_width=True)
st.info("This is the previous analysis result. Adjust parameters and click 'Generate Analysis' to create a new visualization.")
except Exception as e:
st.info("ð Set parameters and click 'Generate Eigenvalue Analysis' to create a visualization.")
else:
# Show placeholder
st.info("ð Set parameters and click 'Generate Eigenvalue Analysis' to create a visualization.")
st.markdown('</div>', unsafe_allow_html=True)
# Tab 2: Im(s) vs z Analysis with SymPy
with tab2:
# Two-column layout
left_column, right_column = st.columns([1, 3])
with left_column:
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
st.markdown('<div class="panel-header">Im(s) vs z Analysis Controls</div>', unsafe_allow_html=True)
# Parameter inputs with defaults and validation
st.markdown('<div class="parameter-container">', unsafe_allow_html=True)
st.markdown("### Cubic Equation Parameters")
cubic_a = st.number_input("Value for a", min_value=1.1, max_value=1000.0, value=2.0, step=0.1,
help="Parameter a > 1", key="cubic_a")
cubic_y = st.number_input("Value for y", min_value=0.1, max_value=10.0, value=1.0, step=0.1,
help="Parameter y > 0", key="cubic_y")
cubic_beta = st.number_input("Value for β", min_value=0.0, max_value=1.0, value=0.5, step=0.05,
help="Value between 0 and 1", key="cubic_beta")
st.markdown('</div>', unsafe_allow_html=True)
st.markdown('<div class="parameter-container">', unsafe_allow_html=True)
st.markdown("### Z-Axis Range")
z_min = st.number_input("Z minimum", min_value=0.01, max_value=1.0, value=0.01, step=0.01,
help="Minimum z value for calculation", key="z_min")
z_max = st.number_input("Z maximum", min_value=1.0, max_value=100.0, value=10.0, step=1.0,
help="Maximum z value for calculation", key="z_max")
cubic_points = st.slider(
"Number of z points",
min_value=50,
max_value=1000,
value=300,
step=50,
help="Number of points to calculate along the z axis",
key="cubic_points"
)
st.markdown('</div>', unsafe_allow_html=True)
# Show cubic equation
st.markdown('<div class="math-box">', unsafe_allow_html=True)
st.markdown("### Cubic Equation")
st.latex(r"zas^3 + [z(a+1)+a(1-y)]\,s^2 + [z+(a+1)-y-y\beta (a-1)]\,s + 1 = 0")
st.markdown('</div>', unsafe_allow_html=True)
# Generate button
cubic_generate_button = st.button("Generate Im(s) vs z Analysis",
type="primary",
use_container_width=True,
key="cubic_generate")
st.markdown('</div>', unsafe_allow_html=True)
with right_column:
# Main visualization area
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
st.markdown('<div class="panel-header">Im(s) vs z Analysis Results</div>', unsafe_allow_html=True)
# Container for the analysis results
cubic_results_container = st.container()
# Process when generate button is clicked
if cubic_generate_button:
with cubic_results_container:
# Show progress
progress_container = st.container()
with progress_container:
progress_bar = st.progress(0)
status_text = st.empty()
status_text.text("Starting cubic equation calculations with SymPy...")
try:
# Create data file path
data_file = os.path.join(output_dir, "cubic_data.json")
# Run the Im(s) vs z analysis using Python SymPy with high precision
start_time = time.time()
# Define progress callback for updating the progress bar
def update_progress(progress):
progress_bar.progress(progress)
status_text.text(f"Calculating with SymPy... {int(progress * 100)}% complete")
# Run the analysis with progress updates
result = compute_ImS_vs_Z(cubic_a, cubic_y, cubic_beta, cubic_points, z_min, z_max, update_progress)
end_time = time.time()
# Format the data for saving
save_data = {
'z_values': result['z_values'],
'ims_values1': result['ims_values1'],
'ims_values2': result['ims_values2'],
'ims_values3': result['ims_values3'],
'real_values1': result['real_values1'],
'real_values2': result['real_values2'],
'real_values3': result['real_values3'],
'parameters': {'a': cubic_a, 'y': cubic_y, 'beta': cubic_beta}
}
# Save results to JSON
save_as_json(save_data, data_file)
status_text.text("SymPy calculations complete! Generating visualization...")
# Clear progress container
progress_container.empty()
# Create Dash-style visualization
dash_fig = create_dash_style_visualization(result, cubic_a, cubic_y, cubic_beta)
st.plotly_chart(dash_fig, use_container_width=True)
# Create sub-tabs for additional visualizations
pattern_tab, complex_tab = st.tabs(["Root Pattern Analysis", "Complex Plane View"])
# Root pattern visualization
with pattern_tab:
pattern_fig = create_root_pattern_visualization(result)
st.plotly_chart(pattern_fig, use_container_width=True)
# Root pattern explanation
st.markdown('<div class="explanation-box">', unsafe_allow_html=True)
st.markdown("""
### Root Pattern Analysis
The cubic equation in this analysis should ideally exhibit roots with the following pattern:
- One root with negative real part
- One root with zero real part
- One root with positive real part
Or, in special cases, all three roots may be zero. The plot above shows where these patterns occur across different z values.
The SymPy implementation with high precision ensures accurate root-finding and pattern maintenance, which is essential for stability analysis.
Blue points indicate where the ideal pattern is achieved, green points show where all roots are zero, and red points indicate other patterns.
""")
st.markdown('</div>', unsafe_allow_html=True)
# Complex plane visualization
with complex_tab:
# Slider for selecting z value
z_idx = st.slider(
"Select z index",
min_value=0,
max_value=len(result['z_values'])-1,
value=len(result['z_values'])//2,
help="Select a specific z value to visualize its roots in the complex plane"
)
# Create complex plane visualization
complex_fig = create_complex_plane_visualization(result, z_idx)
st.plotly_chart(complex_fig, use_container_width=True)
# Complex plane explanation
st.markdown('<div class="explanation-box">', unsafe_allow_html=True)
st.markdown("""
### Complex Plane Visualization
This visualization shows the three roots of the cubic equation in the complex plane for the selected z value.
The real part is shown on the horizontal axis, and the imaginary part on the vertical axis.
- The dashed circle represents the unit circle |s| = 1
- The roots are colored to match the plots above
- Conjugate pairs of roots (with opposite imaginary parts) often appear in cubic equations
Use the slider to explore how the roots move in the complex plane as z changes.
""")
st.markdown('</div>', unsafe_allow_html=True)
# Display computation time
st.success(f"SymPy computation completed in {end_time - start_time:.2f} seconds")
except Exception as e:
st.error(f"An error occurred: {str(e)}")
st.exception(e)
else:
# Try to load existing data if available
data_file = os.path.join(output_dir, "cubic_data.json")
if os.path.exists(data_file):
try:
with open(data_file, 'r') as f:
data = json.load(f)
# Process data safely and convert it to the format we need
result = {
'z_values': np.array([safe_convert_to_numeric(x) for x in data['z_values']]),
'ims_values1': np.array([safe_convert_to_numeric(x) for x in data['ims_values1']]),
'ims_values2': np.array([safe_convert_to_numeric(x) for x in data['ims_values2']]),
'ims_values3': np.array([safe_convert_to_numeric(x) for x in data['ims_values3']]),
'real_values1': np.array([safe_convert_to_numeric(x) for x in data.get('real_values1', [0] * len(data['z_values']))]),
'real_values2': np.array([safe_convert_to_numeric(x) for x in data.get('real_values2', [0] * len(data['z_values']))]),
'real_values3': np.array([safe_convert_to_numeric(x) for x in data.get('real_values3', [0] * len(data['z_values']))]),
}
# Extract cubic parameters from data if available (otherwise use defaults)
cubic_params = data.get('parameters', {'a': 2.0, 'y': 1.0, 'beta': 0.5})
cubic_a = cubic_params.get('a', 2.0)
cubic_y = cubic_params.get('y', 1.0)
cubic_beta = cubic_params.get('beta', 0.5)
# Create Dash-style visualization from previous data
st.info("Displaying previous analysis results. Adjust parameters and click 'Generate Analysis' to create a new visualization.")
dash_fig = create_dash_style_visualization(result, cubic_a, cubic_y, cubic_beta)
st.plotly_chart(dash_fig, use_container_width=True)
# Create sub-tabs for additional visualizations
pattern_tab, complex_tab = st.tabs(["Root Pattern Analysis", "Complex Plane View"])
# Root pattern visualization
with pattern_tab:
pattern_fig = create_root_pattern_visualization(result)
st.plotly_chart(pattern_fig, use_container_width=True)
# Complex plane visualization
with complex_tab:
# Slider for selecting z value
z_idx = st.slider(
"Select z index",
min_value=0,
max_value=len(result['z_values'])-1,
value=len(result['z_values'])//2,
help="Select a specific z value to visualize its roots in the complex plane"
)
# Create complex plane visualization
complex_fig = create_complex_plane_visualization(result, z_idx)
st.plotly_chart(complex_fig, use_container_width=True)
except Exception as e:
st.info("ð Set parameters and click 'Generate Im(s) vs z Analysis' to create a visualization.")
st.error(f"Error loading previous data: {str(e)}")
else:
# Show placeholder
st.info("ð Set parameters and click 'Generate Im(s) vs z Analysis' to create a visualization.")
st.markdown('</div>', unsafe_allow_html=True)
# Add footer with instructions
st.markdown("""
<div class="footer">
<h3>About the Matrix Analysis Dashboard</h3>
<p>This dashboard performs two types of analyses using different computational approaches:</p>
<ol>
<li><strong>Eigenvalue Analysis (C++):</strong> Uses C++ with OpenCV for high-performance computation of eigenvalues of random matrices.</li>
<li><strong>Im(s) vs z Analysis (SymPy):</strong> Uses Python's SymPy library with extended precision to accurately analyze the cubic equation roots.</li>
</ol>
<p>This hybrid approach combines C++'s performance for data-intensive calculations with SymPy's high-precision symbolic mathematics for accurate root finding.</p>
</div>
""", unsafe_allow_html=True) |