File size: 82,196 Bytes
dd5ca7d
1126f78
 
3940b3d
 
f84f14b
1126f78
 
13b3948
06d8fdb
aceb3e5
 
1aa7fa4
aeff02a
80ed07e
7795d08
1126f78
aeff02a
 
80ed07e
1aa7fa4
aeff02a
1126f78
aeff02a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7795d08
 
aeff02a
7795d08
 
 
 
 
 
 
 
aeff02a
7795d08
 
 
aeff02a
e906ec1
 
 
 
 
 
8e6bfb8
 
 
 
 
 
 
 
 
 
 
 
 
aceb3e5
 
 
 
 
 
 
 
 
 
 
 
8e6bfb8
 
 
 
 
 
 
 
aeff02a
 
 
 
7795d08
1126f78
a2a65af
 
 
 
1126f78
aceb3e5
cb0df60
 
aceb3e5
 
7795d08
06d8fdb
aceb3e5
06d8fdb
 
 
 
10e2411
 
 
 
 
 
 
aceb3e5
 
10e2411
 
aceb3e5
 
 
 
 
 
 
 
 
 
 
 
 
06d8fdb
aceb3e5
 
 
 
10e2411
 
 
 
06d8fdb
aceb3e5
 
8e6bfb8
aceb3e5
8e6bfb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aceb3e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7795d08
 
 
 
 
 
 
359367f
7795d08
 
 
aeff02a
7795d08
8e6bfb8
7795d08
 
 
 
 
 
 
aeff02a
7795d08
 
 
8e6bfb8
aeff02a
8e6bfb8
7795d08
 
 
 
 
 
 
 
 
 
8e6bfb8
aeff02a
7795d08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06d8fdb
 
 
aceb3e5
 
 
 
 
 
 
 
 
 
aeff02a
7795d08
 
 
 
 
 
 
 
 
 
 
aeff02a
7795d08
 
aeff02a
7795d08
 
 
 
 
 
 
 
aeff02a
7795d08
06d8fdb
7795d08
 
 
 
 
aeff02a
10e2411
7795d08
 
10e2411
 
 
 
 
 
7795d08
 
 
 
 
10e2411
06d8fdb
7795d08
10e2411
aceb3e5
 
 
 
7795d08
10e2411
 
 
 
 
aceb3e5
 
 
10e2411
 
 
 
aceb3e5
 
 
10e2411
aceb3e5
 
 
 
 
 
 
 
10e2411
 
 
 
aceb3e5
 
 
 
 
 
 
 
 
 
 
 
 
10e2411
 
 
 
 
 
 
aceb3e5
 
10e2411
 
7795d08
06d8fdb
 
 
 
 
 
7795d08
aceb3e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
891dadc
aceb3e5
 
 
7795d08
aceb3e5
891dadc
aceb3e5
 
 
 
 
 
 
 
 
7795d08
aceb3e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7795d08
 
 
06d8fdb
 
7795d08
 
 
 
 
 
aeff02a
 
 
 
 
 
 
 
 
 
f84f14b
 
aeff02a
f84f14b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeff02a
f84f14b
 
 
 
 
 
 
 
 
 
 
 
 
 
aeff02a
f84f14b
 
 
 
 
 
 
 
 
 
 
 
 
 
aeff02a
f84f14b
 
 
 
 
 
 
 
 
 
 
 
 
 
aeff02a
f84f14b
 
 
7795d08
f84f14b
 
 
 
 
 
 
891dadc
f84f14b
 
 
 
 
891dadc
f84f14b
 
 
 
 
 
 
 
 
 
 
 
 
 
7795d08
f84f14b
aeff02a
f84f14b
 
7795d08
 
 
e906ec1
7795d08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e6bfb8
7795d08
 
 
 
 
 
 
8e6bfb8
7795d08
8e6bfb8
7795d08
 
 
 
 
 
 
 
 
 
 
06d8fdb
 
 
aceb3e5
 
 
 
 
 
 
 
 
8e6bfb8
aceb3e5
7795d08
e906ec1
7795d08
 
e906ec1
7795d08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f84f14b
7795d08
 
 
aeff02a
06d8fdb
7795d08
 
10e2411
 
 
 
7795d08
 
 
aeff02a
10e2411
7795d08
aeff02a
10e2411
aceb3e5
7795d08
10e2411
aceb3e5
10e2411
aceb3e5
10e2411
 
7795d08
 
06d8fdb
 
 
 
 
aceb3e5
 
 
 
 
 
 
 
 
 
 
8e6bfb8
 
 
 
aceb3e5
8e6bfb8
 
aceb3e5
8e6bfb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aceb3e5
8e6bfb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aceb3e5
 
 
 
 
8e6bfb8
aceb3e5
8e6bfb8
aceb3e5
8e6bfb8
aceb3e5
8e6bfb8
 
 
aceb3e5
8e6bfb8
 
 
 
aceb3e5
8e6bfb8
 
aceb3e5
8e6bfb8
aceb3e5
 
 
 
 
 
 
7795d08
 
 
06d8fdb
 
7795d08
 
 
 
 
 
 
 
aeff02a
7795d08
 
 
 
 
aeff02a
8e6bfb8
 
 
 
 
 
7795d08
aeff02a
7795d08
 
 
 
 
 
 
 
 
aeff02a
7795d08
 
 
 
 
 
 
 
aeff02a
7795d08
 
 
 
 
 
 
 
aeff02a
7795d08
 
 
 
 
 
 
 
 
 
 
891dadc
7795d08
 
 
 
 
 
891dadc
7795d08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeff02a
7795d08
 
 
aeff02a
7795d08
 
 
 
 
 
aceb3e5
 
 
 
 
 
 
 
 
 
 
8e6bfb8
aceb3e5
 
8e6bfb8
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
import streamlit as st
import subprocess
import os
import json
import numpy as np
import plotly.graph_objects as go
from PIL import Image
import time
import io
import sys
import tempfile
import platform

# Set page config with wider layout
st.set_page_config(
    page_title="Matrix Analysis Dashboard",
    page_icon="📊",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Apply custom CSS for a dashboard-like appearance
st.markdown("""
<style>
    .main-header {
        font-size: 2.5rem;
        color: #1E88E5;
        text-align: center;
        margin-bottom: 1rem;
        padding-bottom: 1rem;
        border-bottom: 2px solid #f0f0f0;
    }
    .dashboard-container {
        background-color: #f9f9f9;
        padding: 1.5rem;
        border-radius: 10px;
        box-shadow: 0 2px 5px rgba(0,0,0,0.1);
        margin-bottom: 1.5rem;
    }
    .panel-header {
        font-size: 1.3rem;
        font-weight: bold;
        margin-bottom: 1rem;
        color: #424242;
        border-left: 4px solid #1E88E5;
        padding-left: 10px;
    }
    .stTabs [data-baseweb="tab-list"] {
        gap: 12px;
    }
    .stTabs [data-baseweb="tab"] {
        height: 50px;
        white-space: pre-wrap;
        background-color: #f0f0f0;
        border-radius: 6px 6px 0 0;
        gap: 1;
        padding-top: 10px;
        padding-bottom: 10px;
    }
    .stTabs [aria-selected="true"] {
        background-color: #1E88E5 !important;
        color: white !important;
    }
    .math-box {
        background-color: #f8f9fa;
        border-left: 3px solid #1E88E5;
        padding: 10px;
        margin: 10px 0;
    }
    .explanation-box {
        background-color: #e8f4f8;
        padding: 15px;
        border-radius: 5px;
        margin-top: 20px;
        border-left: 3px solid #1E88E5;
    }
    .parameter-container {
        background-color: #f0f7fa;
        padding: 15px;
        border-radius: 5px;
        margin-bottom: 15px;
    }
    .stWarning {
        background-color: #fff3cd;
        padding: 10px;
        border-left: 3px solid #ffc107;
        margin: 10px 0;
    }
    .stSuccess {
        background-color: #d4edda;
        padding: 10px;
        border-left: 3px solid #28a745;
        margin: 10px 0;
    }
    .plot-container {
        margin-top: 1.5rem;
    }
    .footnote {
        font-size: 0.8rem;
        color: #6c757d;
        margin-top: 2rem;
    }
</style>
""", unsafe_allow_html=True)

# Dashboard Header
st.markdown('<h1 class="main-header">Matrix Analysis Dashboard</h1>', unsafe_allow_html=True)

# Create output directory in the current working directory
current_dir = os.getcwd()
output_dir = os.path.join(current_dir, "output")
os.makedirs(output_dir, exist_ok=True)

# Path to the C++ source file and executable
cpp_file = os.path.join(current_dir, "app.cpp")
executable = os.path.join(current_dir, "eigen_analysis")
if platform.system() == "Windows":
    executable += ".exe"

# Helper function for running commands with better debugging
def run_command(cmd, show_output=True, timeout=None):
    cmd_str = " ".join(cmd)
    if show_output:
        st.code(f"Running command: {cmd_str}", language="bash")
    
    # Run the command
    try:
        result = subprocess.run(
            cmd,
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            text=True,
            check=False,
            timeout=timeout
        )
        
        if result.returncode == 0:
            if show_output:
                st.success("Command completed successfully.")
                if result.stdout and show_output:
                    with st.expander("Command Output"):
                        st.code(result.stdout)
            return True, result.stdout, result.stderr
        else:
            if show_output:
                st.error(f"Command failed with return code {result.returncode}")
                st.error(f"Command: {cmd_str}")
                st.error(f"Error output: {result.stderr}")
            return False, result.stdout, result.stderr
    
    except subprocess.TimeoutExpired:
        if show_output:
            st.error(f"Command timed out after {timeout} seconds")
        return False, "", f"Command timed out after {timeout} seconds"
    except Exception as e:
        if show_output:
            st.error(f"Error executing command: {str(e)}")
        return False, "", str(e)

# Check if C++ source file exists
if not os.path.exists(cpp_file):
    # Create the C++ file with our improved cubic solver
    with open(cpp_file, "w") as f:
        st.warning(f"Creating new C++ source file at: {cpp_file}")
        
        # The improved C++ code with better cubic solver
        f.write('''
// app.cpp - Modified version for command line arguments with improved cubic solver
#include <opencv2/opencv.hpp>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <numeric>
#include <random>
#include <vector>
#include <limits>
#include <sstream>
#include <string>
#include <fstream>
#include <complex>
#include <stdexcept>

// Struct to hold cubic equation roots
struct CubicRoots {
    std::complex<double> root1;
    std::complex<double> root2;
    std::complex<double> root3;
};

// Function to solve cubic equation: az^3 + bz^2 + cz + d = 0
// Improved to properly handle zero roots and classification of positive/negative
CubicRoots solveCubic(double a, double b, double c, double d) {
    // Constants for numerical stability
    const double epsilon = 1e-14;
    const double zero_threshold = 1e-10;  // Threshold for considering a value as zero
    
    // Handle special case for a == 0 (quadratic)
    if (std::abs(a) < epsilon) {
        CubicRoots roots;
        // For a quadratic equation: bz^2 + cz + d = 0
        if (std::abs(b) < epsilon) {  // Linear equation or constant
            if (std::abs(c) < epsilon) {  // Constant - no finite roots
                roots.root1 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0);
                roots.root2 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0);
                roots.root3 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0);
            } else {  // Linear equation
                roots.root1 = std::complex<double>(-d / c, 0.0);
                roots.root2 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
                roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
            }
            return roots;
        }
        
        double discriminant = c * c - 4.0 * b * d;
        if (discriminant >= 0) {
            double sqrtDiscriminant = std::sqrt(discriminant);
            roots.root1 = std::complex<double>((-c + sqrtDiscriminant) / (2.0 * b), 0.0);
            roots.root2 = std::complex<double>((-c - sqrtDiscriminant) / (2.0 * b), 0.0);
            roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
        } else {
            double real = -c / (2.0 * b);
            double imag = std::sqrt(-discriminant) / (2.0 * b);
            roots.root1 = std::complex<double>(real, imag);
            roots.root2 = std::complex<double>(real, -imag);
            roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
        }
        return roots;
    }

    // Handle special case when d is zero - one root is zero
    if (std::abs(d) < epsilon) {
        // Factor out z: z(az^2 + bz + c) = 0
        CubicRoots roots;
        roots.root1 = std::complex<double>(0.0, 0.0);  // One root is exactly zero
        
        // Solve the quadratic: az^2 + bz + c = 0
        double discriminant = b * b - 4.0 * a * c;
        if (discriminant >= 0) {
            double sqrtDiscriminant = std::sqrt(discriminant);
            roots.root2 = std::complex<double>((-b + sqrtDiscriminant) / (2.0 * a), 0.0);
            roots.root3 = std::complex<double>((-b - sqrtDiscriminant) / (2.0 * a), 0.0);
        } else {
            double real = -b / (2.0 * a);
            double imag = std::sqrt(-discriminant) / (2.0 * a);
            roots.root2 = std::complex<double>(real, imag);
            roots.root3 = std::complex<double>(real, -imag);
        }
        return roots;
    }

    // Normalize equation: z^3 + (b/a)z^2 + (c/a)z + (d/a) = 0
    double p = b / a;
    double q = c / a;
    double r = d / a;

    // Substitute z = t - p/3 to get t^3 + pt^2 + qt + r = 0
    double p1 = q - p * p / 3.0;
    double q1 = r - p * q / 3.0 + 2.0 * p * p * p / 27.0;

    // Calculate discriminant
    double D = q1 * q1 / 4.0 + p1 * p1 * p1 / 27.0;

    // Precompute values
    const double two_pi = 2.0 * M_PI;
    const double third = 1.0 / 3.0;
    const double p_over_3 = p / 3.0;

    CubicRoots roots;

    // Handle the special case where the discriminant is close to zero (all real roots, at least two equal)
    if (std::abs(D) < zero_threshold) {
        // Special case where all roots are zero
        if (std::abs(p1) < zero_threshold && std::abs(q1) < zero_threshold) {
            roots.root1 = std::complex<double>(-p_over_3, 0.0);
            roots.root2 = std::complex<double>(-p_over_3, 0.0);
            roots.root3 = std::complex<double>(-p_over_3, 0.0);
            return roots;
        }
        
        // General case for D ≈ 0
        double u = std::cbrt(-q1 / 2.0);  // Real cube root
        
        roots.root1 = std::complex<double>(2.0 * u - p_over_3, 0.0);
        roots.root2 = std::complex<double>(-u - p_over_3, 0.0);
        roots.root3 = roots.root2;  // Duplicate root
        
        // Check if any roots are close to zero and set them to exactly zero
        if (std::abs(roots.root1.real()) < zero_threshold) 
            roots.root1 = std::complex<double>(0.0, 0.0);
        if (std::abs(roots.root2.real()) < zero_threshold) {
            roots.root2 = std::complex<double>(0.0, 0.0);
            roots.root3 = std::complex<double>(0.0, 0.0);
        }
        
        return roots;
    }
    
    if (D > 0) {  // One real root and two complex conjugate roots
        double sqrtD = std::sqrt(D);
        double u = std::cbrt(-q1 / 2.0 + sqrtD);
        double v = std::cbrt(-q1 / 2.0 - sqrtD);
        
        // Real root
        roots.root1 = std::complex<double>(u + v - p_over_3, 0.0);
        
        // Complex conjugate roots
        double real_part = -(u + v) / 2.0 - p_over_3;
        double imag_part = (u - v) * std::sqrt(3.0) / 2.0;
        roots.root2 = std::complex<double>(real_part, imag_part);
        roots.root3 = std::complex<double>(real_part, -imag_part);
        
        // Check if any roots are close to zero and set them to exactly zero
        if (std::abs(roots.root1.real()) < zero_threshold) 
            roots.root1 = std::complex<double>(0.0, 0.0);
        
        return roots;
    } 
    else {  // Three distinct real roots
        double angle = std::acos(-q1 / 2.0 * std::sqrt(-27.0 / (p1 * p1 * p1)));
        double magnitude = 2.0 * std::sqrt(-p1 / 3.0);
        
        // Calculate all three real roots
        roots.root1 = std::complex<double>(magnitude * std::cos(angle / 3.0) - p_over_3, 0.0);
        roots.root2 = std::complex<double>(magnitude * std::cos((angle + two_pi) / 3.0) - p_over_3, 0.0);
        roots.root3 = std::complex<double>(magnitude * std::cos((angle + 2.0 * two_pi) / 3.0) - p_over_3, 0.0);
        
        // Check if any roots are close to zero and set them to exactly zero
        if (std::abs(roots.root1.real()) < zero_threshold) 
            roots.root1 = std::complex<double>(0.0, 0.0);
        if (std::abs(roots.root2.real()) < zero_threshold) 
            roots.root2 = std::complex<double>(0.0, 0.0);
        if (std::abs(roots.root3.real()) < zero_threshold) 
            roots.root3 = std::complex<double>(0.0, 0.0);
        
        return roots;
    }
}

// Function to compute the cubic equation for Im(s) vs z
std::vector<std::vector<double>> computeImSVsZ(double a, double y, double beta, int num_points) {
    std::vector<double> z_values(num_points);
    std::vector<double> ims_values1(num_points);
    std::vector<double> ims_values2(num_points);
    std::vector<double> ims_values3(num_points);
    std::vector<double> real_values1(num_points);
    std::vector<double> real_values2(num_points);
    std::vector<double> real_values3(num_points);
    
    // Generate z values from 0.01 to 10 (or adjust range as needed)
    double z_start = 0.01;  // Avoid z=0 to prevent potential division issues
    double z_end = 10.0;
    double z_step = (z_end - z_start) / (num_points - 1);
    
    for (int i = 0; i < num_points; ++i) {
        double z = z_start + i * z_step;
        z_values[i] = z;
        
        // Coefficients for the cubic equation:
        // zas³ + [z(a+1)+a(1-y)]s² + [z+(a+1)-y-yβ(a-1)]s + 1 = 0
        double coef_a = z * a;
        double coef_b = z * (a + 1) + a * (1 - y);
        double coef_c = z + (a + 1) - y - y * beta * (a - 1);
        double coef_d = 1.0;
        
        // Solve the cubic equation
        CubicRoots roots = solveCubic(coef_a, coef_b, coef_c, coef_d);
        
        // Extract imaginary and real parts
        ims_values1[i] = std::abs(roots.root1.imag());
        ims_values2[i] = std::abs(roots.root2.imag());
        ims_values3[i] = std::abs(roots.root3.imag());
        
        real_values1[i] = roots.root1.real();
        real_values2[i] = roots.root2.real();
        real_values3[i] = roots.root3.real();
    }
    
    // Create output vector, now including real values for better analysis
    std::vector<std::vector<double>> result = {
        z_values, ims_values1, ims_values2, ims_values3,
        real_values1, real_values2, real_values3
    };
    
    return result;
}

// Function to save Im(s) vs z data as JSON
bool saveImSDataAsJSON(const std::string& filename, 
                      const std::vector<std::vector<double>>& data) {
    std::ofstream outfile(filename);
    
    if (!outfile.is_open()) {
        std::cerr << "Error: Could not open file " << filename << " for writing." << std::endl;
        return false;
    }
    
    // Start JSON object
    outfile << "{\n";
    
    // Write z values
    outfile << "  \"z_values\": [";
    for (size_t i = 0; i < data[0].size(); ++i) {
        outfile << data[0][i];
        if (i < data[0].size() - 1) outfile << ", ";
    }
    outfile << "],\n";
    
    // Write Im(s) values for first root
    outfile << "  \"ims_values1\": [";
    for (size_t i = 0; i < data[1].size(); ++i) {
        outfile << data[1][i];
        if (i < data[1].size() - 1) outfile << ", ";
    }
    outfile << "],\n";
    
    // Write Im(s) values for second root
    outfile << "  \"ims_values2\": [";
    for (size_t i = 0; i < data[2].size(); ++i) {
        outfile << data[2][i];
        if (i < data[2].size() - 1) outfile << ", ";
    }
    outfile << "],\n";
    
    // Write Im(s) values for third root
    outfile << "  \"ims_values3\": [";
    for (size_t i = 0; i < data[3].size(); ++i) {
        outfile << data[3][i];
        if (i < data[3].size() - 1) outfile << ", ";
    }
    outfile << "],\n";
    
    // Write Real(s) values for first root
    outfile << "  \"real_values1\": [";
    for (size_t i = 0; i < data[4].size(); ++i) {
        outfile << data[4][i];
        if (i < data[4].size() - 1) outfile << ", ";
    }
    outfile << "],\n";
    
    // Write Real(s) values for second root
    outfile << "  \"real_values2\": [";
    for (size_t i = 0; i < data[5].size(); ++i) {
        outfile << data[5][i];
        if (i < data[5].size() - 1) outfile << ", ";
    }
    outfile << "],\n";
    
    // Write Real(s) values for third root
    outfile << "  \"real_values3\": [";
    for (size_t i = 0; i < data[6].size(); ++i) {
        outfile << data[6][i];
        if (i < data[6].size() - 1) outfile << ", ";
    }
    outfile << "]\n";
    
    // Close JSON object
    outfile << "}\n";
    
    outfile.close();
    return true;
}

// Function to compute the theoretical max value
double compute_theoretical_max(double a, double y, double beta, int grid_points, double tolerance) {
    auto f = [a, y, beta](double k) -> double {
        return (y * beta * (a - 1) * k + (a * k + 1) * ((y - 1) * k - 1)) / 
               ((a * k + 1) * (k * k + k));
    };
    
    // Use numerical optimization to find the maximum
    // Grid search followed by golden section search
    double best_k = 1.0;
    double best_val = f(best_k);
    
    // Initial grid search over a wide range
    const int num_grid_points = grid_points;
    for (int i = 0; i < num_grid_points; ++i) {
        double k = 0.01 + 100.0 * i / (num_grid_points - 1); // From 0.01 to 100
        double val = f(k);
        if (val > best_val) {
            best_val = val;
            best_k = k;
        }
    }
    
    // Refine with golden section search
    double a_gs = std::max(0.01, best_k / 10.0);
    double b_gs = best_k * 10.0;
    const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
    
    double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
    double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
    
    while (std::abs(b_gs - a_gs) > tolerance) {
        if (f(c_gs) > f(d_gs)) {
            b_gs = d_gs;
            d_gs = c_gs;
            c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
        } else {
            a_gs = c_gs;
            c_gs = d_gs;
            d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
        }
    }
    
    // Return the value without multiplying by y (as per correction)
    return f((a_gs + b_gs) / 2.0);
}

// Function to compute the theoretical min value
double compute_theoretical_min(double a, double y, double beta, int grid_points, double tolerance) {
    auto f = [a, y, beta](double t) -> double {
        return (y * beta * (a - 1) * t + (a * t + 1) * ((y - 1) * t - 1)) / 
               ((a * t + 1) * (t * t + t));
    };
    
    // Use numerical optimization to find the minimum
    // Grid search followed by golden section search
    double best_t = -0.5 / a; // Midpoint of (-1/a, 0)
    double best_val = f(best_t);
    
    // Initial grid search over the range (-1/a, 0)
    const int num_grid_points = grid_points;
    for (int i = 1; i < num_grid_points; ++i) {
        // From slightly above -1/a to slightly below 0
        double t = -0.999/a + 0.998/a * i / (num_grid_points - 1);
        if (t >= 0 || t <= -1.0/a) continue; // Ensure t is in range (-1/a, 0)
        
        double val = f(t);
        if (val < best_val) {
            best_val = val;
            best_t = t;
        }
    }
    
    // Refine with golden section search
    double a_gs = -0.999/a; // Slightly above -1/a
    double b_gs = -0.001/a; // Slightly below 0
    const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
    
    double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
    double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
    
    while (std::abs(b_gs - a_gs) > tolerance) {
        if (f(c_gs) < f(d_gs)) {
            b_gs = d_gs;
            d_gs = c_gs;
            c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
        } else {
            a_gs = c_gs;
            c_gs = d_gs;
            d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
        }
    }
    
    // Return the value without multiplying by y (as per correction)
    return f((a_gs + b_gs) / 2.0);
}

// Function to save data as JSON
bool save_as_json(const std::string& filename, 
                 const std::vector<double>& beta_values,
                 const std::vector<double>& max_eigenvalues,
                 const std::vector<double>& min_eigenvalues,
                 const std::vector<double>& theoretical_max_values,
                 const std::vector<double>& theoretical_min_values) {
    
    std::ofstream outfile(filename);
    
    if (!outfile.is_open()) {
        std::cerr << "Error: Could not open file " << filename << " for writing." << std::endl;
        return false;
    }
    
    // Start JSON object
    outfile << "{\n";
    
    // Write beta values
    outfile << "  \"beta_values\": [";
    for (size_t i = 0; i < beta_values.size(); ++i) {
        outfile << beta_values[i];
        if (i < beta_values.size() - 1) outfile << ", ";
    }
    outfile << "],\n";
    
    // Write max eigenvalues
    outfile << "  \"max_eigenvalues\": [";
    for (size_t i = 0; i < max_eigenvalues.size(); ++i) {
        outfile << max_eigenvalues[i];
        if (i < max_eigenvalues.size() - 1) outfile << ", ";
    }
    outfile << "],\n";
    
    // Write min eigenvalues
    outfile << "  \"min_eigenvalues\": [";
    for (size_t i = 0; i < min_eigenvalues.size(); ++i) {
        outfile << min_eigenvalues[i];
        if (i < min_eigenvalues.size() - 1) outfile << ", ";
    }
    outfile << "],\n";
    
    // Write theoretical max values
    outfile << "  \"theoretical_max\": [";
    for (size_t i = 0; i < theoretical_max_values.size(); ++i) {
        outfile << theoretical_max_values[i];
        if (i < theoretical_max_values.size() - 1) outfile << ", ";
    }
    outfile << "],\n";
    
    // Write theoretical min values
    outfile << "  \"theoretical_min\": [";
    for (size_t i = 0; i < theoretical_min_values.size(); ++i) {
        outfile << theoretical_min_values[i];
        if (i < theoretical_min_values.size() - 1) outfile << ", ";
    }
    outfile << "]\n";
    
    // Close JSON object
    outfile << "}\n";
    
    outfile.close();
    return true;
}

// Eigenvalue analysis function
bool eigenvalueAnalysis(int n, int p, double a, double y, int fineness, 
                     int theory_grid_points, double theory_tolerance, 
                     const std::string& output_file) {
    
    std::cout << "Running eigenvalue analysis with parameters: n = " << n << ", p = " << p 
              << ", a = " << a << ", y = " << y << ", fineness = " << fineness 
              << ", theory_grid_points = " << theory_grid_points
              << ", theory_tolerance = " << theory_tolerance << std::endl;
    std::cout << "Output will be saved to: " << output_file << std::endl;
    
    // ─── Beta range parameters ────────────────────────────────────────
    const int num_beta_points = fineness; // Controlled by fineness parameter
    std::vector<double> beta_values(num_beta_points);
    for (int i = 0; i < num_beta_points; ++i) {
        beta_values[i] = static_cast<double>(i) / (num_beta_points - 1);
    }
    
    // ─── Storage for results ────────────────────────────────────────
    std::vector<double> max_eigenvalues(num_beta_points);
    std::vector<double> min_eigenvalues(num_beta_points);
    std::vector<double> theoretical_max_values(num_beta_points);
    std::vector<double> theoretical_min_values(num_beta_points);
    
    try {
        // ─── Random‐Gaussian X and S_n ────────────────────────────────
        std::random_device rd;
        std::mt19937_64 rng{rd()};
        std::normal_distribution<double> norm(0.0, 1.0);
        
        cv::Mat X(p, n, CV_64F);
        for(int i = 0; i < p; ++i)
            for(int j = 0; j < n; ++j)
                X.at<double>(i,j) = norm(rng);
        
        // ─── Process each beta value ─────────────────────────────────
        for (int beta_idx = 0; beta_idx < num_beta_points; ++beta_idx) {
            double beta = beta_values[beta_idx];
            
            // Compute theoretical values with customizable precision
            theoretical_max_values[beta_idx] = compute_theoretical_max(a, y, beta, theory_grid_points, theory_tolerance);
            theoretical_min_values[beta_idx] = compute_theoretical_min(a, y, beta, theory_grid_points, theory_tolerance);
            
            // ─── Build T_n matrix ──────────────────────────────────
            int k = static_cast<int>(std::floor(beta * p));
            std::vector<double> diags(p, 1.0);
            std::fill_n(diags.begin(), k, a);
            std::shuffle(diags.begin(), diags.end(), rng);
            
            cv::Mat T_n = cv::Mat::zeros(p, p, CV_64F);
            for(int i = 0; i < p; ++i){
                T_n.at<double>(i,i) = diags[i];
            }
            
            // ─── Form B_n = (1/n) * X * T_n * X^T ────────────
            cv::Mat B = (X.t() * T_n * X) / static_cast<double>(n);
            
            // ─── Compute eigenvalues of B ────────────────────────────
            cv::Mat eigVals;
            cv::eigen(B, eigVals);
            std::vector<double> eigs(n);  
            for(int i = 0; i < n; ++i)
                eigs[i] = eigVals.at<double>(i, 0);
            
            max_eigenvalues[beta_idx] = *std::max_element(eigs.begin(), eigs.end());
            min_eigenvalues[beta_idx] = *std::min_element(eigs.begin(), eigs.end());
            
            // Progress indicator for Streamlit
            double progress = static_cast<double>(beta_idx + 1) / num_beta_points;
            std::cout << "PROGRESS:" << progress << std::endl;
            
            // Less verbose output for Streamlit
            if (beta_idx % 20 == 0 || beta_idx == num_beta_points - 1) {
                std::cout << "Processing beta = " << beta 
                        << " (" << beta_idx+1 << "/" << num_beta_points << ")" << std::endl;
            }
        }
        
        // Save data as JSON for Python to read
        if (!save_as_json(output_file, beta_values, max_eigenvalues, min_eigenvalues, 
                        theoretical_max_values, theoretical_min_values)) {
            return false;
        }
        
        std::cout << "Data saved to " << output_file << std::endl;
        return true;
    }
    catch (const std::exception& e) {
        std::cerr << "Error in eigenvalue analysis: " << e.what() << std::endl;
        return false;
    }
    catch (...) {
        std::cerr << "Unknown error in eigenvalue analysis" << std::endl;
        return false;
    }
}

// Cubic equation analysis function
bool cubicAnalysis(double a, double y, double beta, int num_points, const std::string& output_file) {
    std::cout << "Running cubic equation analysis with parameters: a = " << a 
              << ", y = " << y << ", beta = " << beta << ", num_points = " << num_points << std::endl;
    std::cout << "Output will be saved to: " << output_file << std::endl;
    
    try {
        // Compute Im(s) vs z data
        std::vector<std::vector<double>> ims_data = computeImSVsZ(a, y, beta, num_points);
        
        // Save to JSON
        if (!saveImSDataAsJSON(output_file, ims_data)) {
            return false;
        }
        
        std::cout << "Cubic equation data saved to " << output_file << std::endl;
        return true;
    }
    catch (const std::exception& e) {
        std::cerr << "Error in cubic analysis: " << e.what() << std::endl;
        return false;
    }
    catch (...) {
        std::cerr << "Unknown error in cubic analysis" << std::endl;
        return false;
    }
}

int main(int argc, char* argv[]) {
    // Print received arguments for debugging
    std::cout << "Received " << argc << " arguments:" << std::endl;
    for (int i = 0; i < argc; ++i) {
        std::cout << "  argv[" << i << "]: " << argv[i] << std::endl;
    }
    
    // Check for mode argument
    if (argc < 2) {
        std::cerr << "Error: Missing mode argument." << std::endl;
        std::cerr << "Usage: " << argv[0] << " eigenvalues <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl;
        std::cerr << "   or: " << argv[0] << " cubic <a> <y> <beta> <num_points> <output_file>" << std::endl;
        return 1;
    }
    
    std::string mode = argv[1];
    
    try {
        if (mode == "eigenvalues") {
            // ─── Eigenvalue analysis mode ───────────────────────────────────────────
            if (argc != 10) {
                std::cerr << "Error: Incorrect number of arguments for eigenvalues mode." << std::endl;
                std::cerr << "Usage: " << argv[0] << " eigenvalues <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl;
                std::cerr << "Received " << argc << " arguments, expected 10." << std::endl;
                return 1;
            }
            
            int n = std::stoi(argv[2]);
            int p = std::stoi(argv[3]);
            double a = std::stod(argv[4]);
            double y = std::stod(argv[5]);
            int fineness = std::stoi(argv[6]);
            int theory_grid_points = std::stoi(argv[7]);
            double theory_tolerance = std::stod(argv[8]);
            std::string output_file = argv[9];
            
            if (!eigenvalueAnalysis(n, p, a, y, fineness, theory_grid_points, theory_tolerance, output_file)) {
                return 1;
            }
            
        } else if (mode == "cubic") {
            // ─── Cubic equation analysis mode ───────────────────────────────────────────
            if (argc != 7) {
                std::cerr << "Error: Incorrect number of arguments for cubic mode." << std::endl;
                std::cerr << "Usage: " << argv[0] << " cubic <a> <y> <beta> <num_points> <output_file>" << std::endl;
                std::cerr << "Received " << argc << " arguments, expected 7." << std::endl;
                return 1;
            }
            
            double a = std::stod(argv[2]);
            double y = std::stod(argv[3]);
            double beta = std::stod(argv[4]);
            int num_points = std::stoi(argv[5]);
            std::string output_file = argv[6];
            
            if (!cubicAnalysis(a, y, beta, num_points, output_file)) {
                return 1;
            }
            
        } else {
            std::cerr << "Error: Unknown mode: " << mode << std::endl;
            std::cerr << "Use 'eigenvalues' or 'cubic'" << std::endl;
            return 1;
        }
    }
    catch (const std::exception& e) {
        std::cerr << "Error: " << e.what() << std::endl;
        return 1;
    }
    
    return 0;
}
        ''')

# Compile the C++ code with the right OpenCV libraries
st.sidebar.title("Compiler Settings")
need_compile = not os.path.exists(executable) or st.sidebar.button("Recompile C++ Code")

if need_compile:
    with st.sidebar:
        with st.spinner("Compiling C++ code..."):
            # Try to detect the OpenCV installation
            opencv_detection_cmd = ["pkg-config", "--cflags", "--libs", "opencv4"]
            opencv_found, opencv_flags, _ = run_command(opencv_detection_cmd, show_output=False)
            
            compile_commands = []
            
            if opencv_found:
                compile_commands.append(
                    f"g++ -o {executable} {cpp_file} {opencv_flags.strip()} -std=c++11"
                )
            else:
                # Try different OpenCV configurations
                compile_commands = [
                    f"g++ -o {executable} {cpp_file} `pkg-config --cflags --libs opencv4` -std=c++11",
                    f"g++ -o {executable} {cpp_file} `pkg-config --cflags --libs opencv` -std=c++11",
                    f"g++ -o {executable} {cpp_file} -I/usr/include/opencv4 -lopencv_core -lopencv_imgproc -std=c++11",
                    f"g++ -o {executable} {cpp_file} -I/usr/local/include/opencv4 -lopencv_core -lopencv_imgproc -std=c++11"
                ]
            
            compiled = False
            compile_output = ""
            
            for cmd in compile_commands:
                st.text(f"Trying: {cmd}")
                success, stdout, stderr = run_command(cmd.split(), show_output=False)
                compile_output += f"Command: {cmd}\nOutput: {stdout}\nError: {stderr}\n\n"
                
                if success:
                    compiled = True
                    st.success(f"Successfully compiled with: {cmd}")
                    break
            
            if not compiled:
                st.error("All compilation attempts failed.")
                with st.expander("Compilation Details"):
                    st.code(compile_output)
                st.stop()
            
            # Make sure the executable is executable
            if platform.system() != "Windows":
                os.chmod(executable, 0o755)
            
            st.success("C++ code compiled successfully!")

# Create tabs for different analyses
tab1, tab2 = st.tabs(["Eigenvalue Analysis", "Im(s) vs z Analysis"])

# Tab 1: Eigenvalue Analysis
with tab1:
    # Two-column layout for the dashboard
    left_column, right_column = st.columns([1, 3])
    
    with left_column:
        st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
        st.markdown('<div class="panel-header">Eigenvalue Analysis Controls</div>', unsafe_allow_html=True)
        
        # Parameter inputs with defaults and validation
        st.markdown('<div class="parameter-container">', unsafe_allow_html=True)
        st.markdown("### Matrix Parameters")
        n = st.number_input("Sample size (n)", min_value=5, max_value=1000, value=100, step=5, 
                           help="Number of samples", key="eig_n")
        p = st.number_input("Dimension (p)", min_value=5, max_value=1000, value=50, step=5, 
                           help="Dimensionality", key="eig_p")
        a = st.number_input("Value for a", min_value=1.1, max_value=10.0, value=2.0, step=0.1, 
                           help="Parameter a > 1", key="eig_a")
        
        # Automatically calculate y = p/n (as requested)
        y = p/n
        st.info(f"Value for y = p/n: {y:.4f}")
        st.markdown('</div>', unsafe_allow_html=True)
        
        st.markdown('<div class="parameter-container">', unsafe_allow_html=True)
        st.markdown("### Calculation Controls")
        fineness = st.slider(
            "Beta points", 
            min_value=20, 
            max_value=500, 
            value=100, 
            step=10,
            help="Number of points to calculate along the β axis (0 to 1)",
            key="eig_fineness"
        )
        st.markdown('</div>', unsafe_allow_html=True)
        
        with st.expander("Advanced Settings"):
            # Add controls for theoretical calculation precision
            theory_grid_points = st.slider(
                "Theoretical grid points", 
                min_value=100, 
                max_value=1000, 
                value=200, 
                step=50,
                help="Number of points in initial grid search for theoretical calculations",
                key="eig_grid_points"
            )
            
            theory_tolerance = st.number_input(
                "Theoretical tolerance", 
                min_value=1e-12, 
                max_value=1e-6, 
                value=1e-10, 
                format="%.1e",
                help="Convergence tolerance for golden section search",
                key="eig_tolerance"
            )
            
            # Debug mode
            debug_mode = st.checkbox("Debug Mode", value=False, key="eig_debug")
            
            # Timeout setting
            timeout_seconds = st.number_input(
                "Computation timeout (seconds)", 
                min_value=30, 
                max_value=3600, 
                value=300,
                help="Maximum time allowed for computation before timeout",
                key="eig_timeout"
            )
        
        # Generate button
        eig_generate_button = st.button("Generate Eigenvalue Analysis", 
                                      type="primary", 
                                      use_container_width=True,
                                      key="eig_generate")
        st.markdown('</div>', unsafe_allow_html=True)
    
    with right_column:
        # Main visualization area
        st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
        st.markdown('<div class="panel-header">Eigenvalue Analysis Results</div>', unsafe_allow_html=True)
        
        # Container for the analysis results
        eig_results_container = st.container()
        
        # Process when generate button is clicked
        if eig_generate_button:
            with eig_results_container:
                # Show progress
                progress_container = st.container()
                with progress_container:
                    progress_bar = st.progress(0)
                    status_text = st.empty()
                
                try:
                    # Create data file path
                    data_file = os.path.join(output_dir, "eigenvalue_data.json")
                    
                    # Delete previous output if exists
                    if os.path.exists(data_file):
                        os.remove(data_file)
                    
                    # Build command for eigenvalue analysis with the proper arguments
                    cmd = [
                        executable,
                        "eigenvalues",  # Mode argument
                        str(n),
                        str(p),
                        str(a),
                        str(y),
                        str(fineness),
                        str(theory_grid_points),
                        str(theory_tolerance),
                        data_file
                    ]
                    
                    # Run the command
                    status_text.text("Running eigenvalue analysis...")
                    
                    if debug_mode:
                        success, stdout, stderr = run_command(cmd, True, timeout=timeout_seconds)
                        # Process stdout for progress updates
                        if success:
                            progress_bar.progress(1.0)
                    else:
                        # Start the process with pipe for stdout to read progress
                        process = subprocess.Popen(
                            cmd,
                            stdout=subprocess.PIPE,
                            stderr=subprocess.PIPE,
                            text=True,
                            bufsize=1,
                            universal_newlines=True
                        )
                        
                        # Track progress from stdout
                        success = True
                        stdout_lines = []
                        
                        start_time = time.time()
                        while True:
                            # Check for timeout
                            if time.time() - start_time > timeout_seconds:
                                process.kill()
                                status_text.error(f"Computation timed out after {timeout_seconds} seconds")
                                success = False
                                break
                                
                            # Try to read a line (non-blocking)
                            line = process.stdout.readline()
                            if not line and process.poll() is not None:
                                break
                                
                            if line:
                                stdout_lines.append(line)
                                if line.startswith("PROGRESS:"):
                                    try:
                                        # Update progress bar
                                        progress_value = float(line.split(":")[1].strip())
                                        progress_bar.progress(progress_value)
                                        status_text.text(f"Calculating... {int(progress_value * 100)}% complete")
                                    except:
                                        pass
                                elif line:
                                    status_text.text(line.strip())
                                    
                        # Get the return code and stderr
                        returncode = process.poll()
                        stderr = process.stderr.read()
                        
                        if returncode != 0:
                            success = False
                            st.error(f"Error executing the analysis: {stderr}")
                            with st.expander("Error Details"):
                                st.code(stderr)
                    
                    if success:
                        progress_bar.progress(1.0)
                        status_text.text("Analysis complete! Generating visualization...")
                        
                        # Check if the output file was created
                        if not os.path.exists(data_file):
                            st.error(f"Output file not created: {data_file}")
                            st.stop()
                        
                        try:
                            # Load the results from the JSON file
                            with open(data_file, 'r') as f:
                                data = json.load(f)
                            
                            # Extract data
                            beta_values = np.array(data['beta_values'])
                            max_eigenvalues = np.array(data['max_eigenvalues'])
                            min_eigenvalues = np.array(data['min_eigenvalues'])
                            theoretical_max = np.array(data['theoretical_max'])
                            theoretical_min = np.array(data['theoretical_min'])
                            
                            # Create an interactive plot using Plotly
                            fig = go.Figure()
                            
                            # Add traces for each line
                            fig.add_trace(go.Scatter(
                                x=beta_values, 
                                y=max_eigenvalues,
                                mode='lines+markers',
                                name='Empirical Max Eigenvalue',
                                line=dict(color='rgb(220, 60, 60)', width=3),
                                marker=dict(
                                    symbol='circle',
                                    size=8,
                                    color='rgb(220, 60, 60)',
                                    line=dict(color='white', width=1)
                                ),
                                hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Max</extra>'
                            ))
                            
                            fig.add_trace(go.Scatter(
                                x=beta_values, 
                                y=min_eigenvalues,
                                mode='lines+markers',
                                name='Empirical Min Eigenvalue',
                                line=dict(color='rgb(60, 60, 220)', width=3),
                                marker=dict(
                                    symbol='circle',
                                    size=8,
                                    color='rgb(60, 60, 220)',
                                    line=dict(color='white', width=1)
                                ),
                                hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Min</extra>'
                            ))
                            
                            fig.add_trace(go.Scatter(
                                x=beta_values, 
                                y=theoretical_max,
                                mode='lines+markers',
                                name='Theoretical Max Function',
                                line=dict(color='rgb(30, 180, 30)', width=3),
                                marker=dict(
                                    symbol='diamond',
                                    size=8,
                                    color='rgb(30, 180, 30)',
                                    line=dict(color='white', width=1)
                                ),
                                hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Max</extra>'
                            ))
                            
                            fig.add_trace(go.Scatter(
                                x=beta_values, 
                                y=theoretical_min,
                                mode='lines+markers',
                                name='Theoretical Min Function',
                                line=dict(color='rgb(180, 30, 180)', width=3),
                                marker=dict(
                                    symbol='diamond',
                                    size=8,
                                    color='rgb(180, 30, 180)',
                                    line=dict(color='white', width=1)
                                ),
                                hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Min</extra>'
                            ))
                            
                            # Configure layout for better appearance
                            fig.update_layout(
                                title={
                                    'text': f'Eigenvalue Analysis: n={n}, p={p}, a={a}, y={y:.4f}',
                                    'font': {'size': 24, 'color': '#1E88E5'},
                                    'y': 0.95,
                                    'x': 0.5,
                                    'xanchor': 'center',
                                    'yanchor': 'top'
                                },
                                xaxis={
                                    'title': {'text': 'β Parameter', 'font': {'size': 18, 'color': '#424242'}},
                                    'tickfont': {'size': 14},
                                    'gridcolor': 'rgba(220, 220, 220, 0.5)',
                                    'showgrid': True
                                },
                                yaxis={
                                    'title': {'text': 'Eigenvalues', 'font': {'size': 18, 'color': '#424242'}},
                                    'tickfont': {'size': 14},
                                    'gridcolor': 'rgba(220, 220, 220, 0.5)',
                                    'showgrid': True
                                },
                                plot_bgcolor='rgba(240, 240, 240, 0.8)',
                                paper_bgcolor='rgba(249, 249, 249, 0.8)',
                                hovermode='closest',
                                legend={
                                    'font': {'size': 14},
                                    'bgcolor': 'rgba(255, 255, 255, 0.9)',
                                    'bordercolor': 'rgba(200, 200, 200, 0.5)',
                                    'borderwidth': 1
                                },
                                margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
                                height=600,
                                annotations=[
                                    {
                                        'text': f"Max Function: max{{k ∈ (0,∞)}} [yβ(a-1)k + (ak+1)((y-1)k-1)]/[(ak+1)(k²+k)]",
                                        'xref': 'paper', 'yref': 'paper',
                                        'x': 0.02, 'y': 0.02,
                                        'showarrow': False,
                                        'font': {'size': 12, 'color': 'rgb(30, 180, 30)'},
                                        'bgcolor': 'rgba(255, 255, 255, 0.9)',
                                        'bordercolor': 'rgb(30, 180, 30)',
                                        'borderwidth': 1,
                                        'borderpad': 4
                                    },
                                    {
                                        'text': f"Min Function: min{{t ∈ (-1/a,0)}} [yβ(a-1)t + (at+1)((y-1)t-1)]/[(at+1)(t²+t)]",
                                        'xref': 'paper', 'yref': 'paper',
                                        'x': 0.55, 'y': 0.02,
                                        'showarrow': False,
                                        'font': {'size': 12, 'color': 'rgb(180, 30, 180)'},
                                        'bgcolor': 'rgba(255, 255, 255, 0.9)',
                                        'bordercolor': 'rgb(180, 30, 180)',
                                        'borderwidth': 1,
                                        'borderpad': 4
                                    }
                                ]
                            )
                            
                            # Add custom modebar buttons
                            fig.update_layout(
                                modebar_add=[
                                    'drawline', 'drawopenpath', 'drawclosedpath',
                                    'drawcircle', 'drawrect', 'eraseshape'
                                ],
                                modebar_remove=['lasso2d', 'select2d'],
                                dragmode='zoom'
                            )
                            
                            # Clear progress container
                            progress_container.empty()
                            
                            # Display the interactive plot in Streamlit
                            st.plotly_chart(fig, use_container_width=True)
                            
                            # Display statistics
                            with st.expander("Statistics"):
                                col1, col2 = st.columns(2)
                                with col1:
                                    st.write("### Eigenvalue Statistics")
                                    st.write(f"Max empirical value: {max_eigenvalues.max():.6f}")
                                    st.write(f"Min empirical value: {min_eigenvalues.min():.6f}")
                                with col2:
                                    st.write("### Theoretical Values")
                                    st.write(f"Max theoretical value: {theoretical_max.max():.6f}")
                                    st.write(f"Min theoretical value: {theoretical_min.min():.6f}")
                                
                        except json.JSONDecodeError as e:
                            st.error(f"Error parsing JSON results: {str(e)}")
                            if os.path.exists(data_file):
                                with open(data_file, 'r') as f:
                                    content = f.read()
                                st.code(content[:1000] + "..." if len(content) > 1000 else content)
                
                except Exception as e:
                    st.error(f"An error occurred: {str(e)}")
                    if debug_mode:
                        st.exception(e)
        
        else:
            # Try to load existing data if available
            data_file = os.path.join(output_dir, "eigenvalue_data.json")
            if os.path.exists(data_file):
                try:
                    with open(data_file, 'r') as f:
                        data = json.load(f)
                    
                    # Extract data
                    beta_values = np.array(data['beta_values'])
                    max_eigenvalues = np.array(data['max_eigenvalues'])
                    min_eigenvalues = np.array(data['min_eigenvalues'])
                    theoretical_max = np.array(data['theoretical_max'])
                    theoretical_min = np.array(data['theoretical_min'])
                    
                    # Create an interactive plot using Plotly
                    fig = go.Figure()
                    
                    # Add traces for each line
                    fig.add_trace(go.Scatter(
                        x=beta_values, 
                        y=max_eigenvalues,
                        mode='lines+markers',
                        name='Empirical Max Eigenvalue',
                        line=dict(color='rgb(220, 60, 60)', width=3),
                        marker=dict(
                            symbol='circle',
                            size=8,
                            color='rgb(220, 60, 60)',
                            line=dict(color='white', width=1)
                        ),
                        hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Max</extra>'
                    ))
                    
                    fig.add_trace(go.Scatter(
                        x=beta_values, 
                        y=min_eigenvalues,
                        mode='lines+markers',
                        name='Empirical Min Eigenvalue',
                        line=dict(color='rgb(60, 60, 220)', width=3),
                        marker=dict(
                            symbol='circle',
                            size=8,
                            color='rgb(60, 60, 220)',
                            line=dict(color='white', width=1)
                        ),
                        hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Min</extra>'
                    ))
                    
                    fig.add_trace(go.Scatter(
                        x=beta_values, 
                        y=theoretical_max,
                        mode='lines+markers',
                        name='Theoretical Max Function',
                        line=dict(color='rgb(30, 180, 30)', width=3),
                        marker=dict(
                            symbol='diamond',
                            size=8,
                            color='rgb(30, 180, 30)',
                            line=dict(color='white', width=1)
                        ),
                        hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Max</extra>'
                    ))
                    
                    fig.add_trace(go.Scatter(
                        x=beta_values, 
                        y=theoretical_min,
                        mode='lines+markers',
                        name='Theoretical Min Function',
                        line=dict(color='rgb(180, 30, 180)', width=3),
                        marker=dict(
                            symbol='diamond',
                            size=8,
                            color='rgb(180, 30, 180)',
                            line=dict(color='white', width=1)
                        ),
                        hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Min</extra>'
                    ))
                    
                    # Configure layout for better appearance
                    fig.update_layout(
                        title={
                            'text': f'Eigenvalue Analysis (Previous Result)',
                            'font': {'size': 24, 'color': '#1E88E5'},
                            'y': 0.95,
                            'x': 0.5,
                            'xanchor': 'center',
                            'yanchor': 'top'
                        },
                        xaxis={
                            'title': {'text': 'β Parameter', 'font': {'size': 18, 'color': '#424242'}},
                            'tickfont': {'size': 14},
                            'gridcolor': 'rgba(220, 220, 220, 0.5)',
                            'showgrid': True
                        },
                        yaxis={
                            'title': {'text': 'Eigenvalues', 'font': {'size': 18, 'color': '#424242'}},
                            'tickfont': {'size': 14},
                            'gridcolor': 'rgba(220, 220, 220, 0.5)',
                            'showgrid': True
                        },
                        plot_bgcolor='rgba(240, 240, 240, 0.8)',
                        paper_bgcolor='rgba(249, 249, 249, 0.8)',
                        hovermode='closest',
                        legend={
                            'font': {'size': 14},
                            'bgcolor': 'rgba(255, 255, 255, 0.9)',
                            'bordercolor': 'rgba(200, 200, 200, 0.5)',
                            'borderwidth': 1
                        },
                        margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
                        height=600
                    )
                    
                    # Display the interactive plot in Streamlit
                    st.plotly_chart(fig, use_container_width=True)
                    st.info("This is the previous analysis result. Adjust parameters and click 'Generate Analysis' to create a new visualization.")
                    
                except Exception as e:
                    st.info("👈 Set parameters and click 'Generate Eigenvalue Analysis' to create a visualization.")
            else:
                # Show placeholder
                st.info("👈 Set parameters and click 'Generate Eigenvalue Analysis' to create a visualization.")
        
        st.markdown('</div>', unsafe_allow_html=True)

# Tab 2: Im(s) vs z Analysis
with tab2:
    # Two-column layout for the dashboard
    left_column, right_column = st.columns([1, 3])
    
    with left_column:
        st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
        st.markdown('<div class="panel-header">Im(s) vs z Analysis Controls</div>', unsafe_allow_html=True)
        
        # Parameter inputs with defaults and validation
        st.markdown('<div class="parameter-container">', unsafe_allow_html=True)
        st.markdown("### Cubic Equation Parameters")
        cubic_a = st.number_input("Value for a", min_value=1.1, max_value=10.0, value=2.0, step=0.1, 
                                help="Parameter a > 1", key="cubic_a")
        cubic_y = st.number_input("Value for y", min_value=0.1, max_value=10.0, value=1.0, step=0.1,
                                 help="Parameter y > 0", key="cubic_y")
        cubic_beta = st.number_input("Value for β", min_value=0.0, max_value=1.0, value=0.5, step=0.05,
                                   help="Value between 0 and 1", key="cubic_beta")
        st.markdown('</div>', unsafe_allow_html=True)
        
        st.markdown('<div class="parameter-container">', unsafe_allow_html=True)
        st.markdown("### Calculation Controls")
        cubic_points = st.slider(
            "Number of z points", 
            min_value=50, 
            max_value=1000, 
            value=300, 
            step=50,
            help="Number of points to calculate along the z axis",
            key="cubic_points"
        )
        
        # Debug mode
        cubic_debug_mode = st.checkbox("Debug Mode", value=False, key="cubic_debug")
        
        # Timeout setting
        cubic_timeout = st.number_input(
            "Computation timeout (seconds)", 
            min_value=10, 
            max_value=600, 
            value=60,
            help="Maximum time allowed for computation before timeout",
            key="cubic_timeout"
        )
        st.markdown('</div>', unsafe_allow_html=True)
        
        # Show cubic equation
        st.markdown('<div class="math-box">', unsafe_allow_html=True)
        st.markdown("### Cubic Equation")
        st.latex(r"zas^3 + [z(a+1)+a(1-y)]\,s^2 + [z+(a+1)-y-y\beta (a-1)]\,s + 1 = 0")
        st.markdown('</div>', unsafe_allow_html=True)
        
        # Generate button
        cubic_generate_button = st.button("Generate Im(s) vs z Analysis", 
                                        type="primary", 
                                        use_container_width=True,
                                        key="cubic_generate")
        st.markdown('</div>', unsafe_allow_html=True)
    
    with right_column:
        # Main visualization area
        st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
        st.markdown('<div class="panel-header">Im(s) vs z Analysis Results</div>', unsafe_allow_html=True)
        
        # Container for the analysis results
        cubic_results_container = st.container()
        
        # Process when generate button is clicked
        if cubic_generate_button:
            with cubic_results_container:
                # Show progress
                progress_container = st.container()
                with progress_container:
                    status_text = st.empty()
                    status_text.text("Starting cubic equation calculations...")
                
                try:
                    # Run the C++ executable with the parameters in JSON output mode
                    data_file = os.path.join(output_dir, "cubic_data.json")
                    
                    # Delete previous output if exists
                    if os.path.exists(data_file):
                        os.remove(data_file)
                    
                    # Build command for cubic equation analysis
                    cmd = [
                        executable,
                        "cubic",  # Mode argument
                        str(cubic_a),
                        str(cubic_y),
                        str(cubic_beta),
                        str(cubic_points),
                        data_file
                    ]
                    
                    # Run the command
                    status_text.text("Calculating Im(s) vs z values...")
                    
                    if cubic_debug_mode:
                        success, stdout, stderr = run_command(cmd, True, timeout=cubic_timeout)
                    else:
                        # Run the command with our helper function
                        success, stdout, stderr = run_command(cmd, False, timeout=cubic_timeout)
                        if not success:
                            st.error(f"Error executing cubic analysis: {stderr}")
                    
                    if success:
                        status_text.text("Calculations complete! Generating visualization...")
                        
                        # Check if the output file was created
                        if not os.path.exists(data_file):
                            st.error(f"Output file not created: {data_file}")
                            st.stop()
                        
                        try:
                            # Load the results from the JSON file
                            with open(data_file, 'r') as f:
                                data = json.load(f)
                            
                            # Extract data
                            z_values = np.array(data['z_values'])
                            ims_values1 = np.array(data['ims_values1'])
                            ims_values2 = np.array(data['ims_values2'])
                            ims_values3 = np.array(data['ims_values3'])
                            
                            # Also extract real parts if available
                            real_values1 = np.array(data.get('real_values1', [0] * len(z_values)))
                            real_values2 = np.array(data.get('real_values2', [0] * len(z_values)))
                            real_values3 = np.array(data.get('real_values3', [0] * len(z_values)))
                            
                            # Create tabs for imaginary and real parts
                            im_tab, real_tab = st.tabs(["Imaginary Parts", "Real Parts"])
                            
                            # Tab for imaginary parts
                            with im_tab:
                                # Create an interactive plot for imaginary parts
                                im_fig = go.Figure()
                                
                                # Add traces for each root's imaginary part
                                im_fig.add_trace(go.Scatter(
                                    x=z_values, 
                                    y=ims_values1,
                                    mode='lines',
                                    name='Im(s₁)',
                                    line=dict(color='rgb(220, 60, 60)', width=3),
                                    hovertemplate='z: %{x:.3f}<br>Im(s₁): %{y:.6f}<extra>Root 1</extra>'
                                ))
                                
                                im_fig.add_trace(go.Scatter(
                                    x=z_values, 
                                    y=ims_values2,
                                    mode='lines',
                                    name='Im(s₂)',
                                    line=dict(color='rgb(60, 60, 220)', width=3),
                                    hovertemplate='z: %{x:.3f}<br>Im(s₂): %{y:.6f}<extra>Root 2</extra>'
                                ))
                                
                                im_fig.add_trace(go.Scatter(
                                    x=z_values, 
                                    y=ims_values3,
                                    mode='lines',
                                    name='Im(s₃)',
                                    line=dict(color='rgb(30, 180, 30)', width=3),
                                    hovertemplate='z: %{x:.3f}<br>Im(s₃): %{y:.6f}<extra>Root 3</extra>'
                                ))
                                
                                # Configure layout for better appearance
                                im_fig.update_layout(
                                    title={
                                        'text': f'Im(s) vs z Analysis: a={cubic_a}, y={cubic_y}, β={cubic_beta}',
                                        'font': {'size': 24, 'color': '#1E88E5'},
                                        'y': 0.95,
                                        'x': 0.5,
                                        'xanchor': 'center',
                                        'yanchor': 'top'
                                    },
                                    xaxis={
                                        'title': {'text': 'z (logarithmic scale)', 'font': {'size': 18, 'color': '#424242'}},
                                        'tickfont': {'size': 14},
                                        'gridcolor': 'rgba(220, 220, 220, 0.5)',
                                        'showgrid': True,
                                        'type': 'log'  # Use logarithmic scale for better visualization
                                    },
                                    yaxis={
                                        'title': {'text': 'Im(s)', 'font': {'size': 18, 'color': '#424242'}},
                                        'tickfont': {'size': 14},
                                        'gridcolor': 'rgba(220, 220, 220, 0.5)',
                                        'showgrid': True
                                    },
                                    plot_bgcolor='rgba(240, 240, 240, 0.8)',
                                    paper_bgcolor='rgba(249, 249, 249, 0.8)',
                                    hovermode='closest',
                                    legend={
                                        'font': {'size': 14},
                                        'bgcolor': 'rgba(255, 255, 255, 0.9)',
                                        'bordercolor': 'rgba(200, 200, 200, 0.5)',
                                        'borderwidth': 1
                                    },
                                    margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
                                    height=500,
                                    annotations=[
                                        {
                                            'text': f"Cubic Equation: {cubic_a}zs³ + [{cubic_a+1}z+{cubic_a}(1-{cubic_y})]s² + [z+{cubic_a+1}-{cubic_y}-{cubic_y*cubic_beta}({cubic_a-1})]s + 1 = 0",
                                            'xref': 'paper', 'yref': 'paper',
                                            'x': 0.5, 'y': 0.02,
                                            'showarrow': False,
                                            'font': {'size': 12, 'color': 'black'},
                                            'bgcolor': 'rgba(255, 255, 255, 0.9)',
                                            'bordercolor': 'rgba(0, 0, 0, 0.5)',
                                            'borderwidth': 1,
                                            'borderpad': 4,
                                            'align': 'center'
                                        }
                                    ]
                                )
                                
                                # Display the interactive plot in Streamlit
                                st.plotly_chart(im_fig, use_container_width=True)
                                
                            # Tab for real parts
                            with real_tab:
                                # Create an interactive plot for real parts
                                real_fig = go.Figure()
                                
                                # Add traces for each root's real part
                                real_fig.add_trace(go.Scatter(
                                    x=z_values, 
                                    y=real_values1,
                                    mode='lines',
                                    name='Re(s₁)',
                                    line=dict(color='rgb(220, 60, 60)', width=3),
                                    hovertemplate='z: %{x:.3f}<br>Re(s₁): %{y:.6f}<extra>Root 1</extra>'
                                ))
                                
                                real_fig.add_trace(go.Scatter(
                                    x=z_values, 
                                    y=real_values2,
                                    mode='lines',
                                    name='Re(s₂)',
                                    line=dict(color='rgb(60, 60, 220)', width=3),
                                    hovertemplate='z: %{x:.3f}<br>Re(s₂): %{y:.6f}<extra>Root 2</extra>'
                                ))
                                
                                real_fig.add_trace(go.Scatter(
                                    x=z_values, 
                                    y=real_values3,
                                    mode='lines',
                                    name='Re(s₃)',
                                    line=dict(color='rgb(30, 180, 30)', width=3),
                                    hovertemplate='z: %{x:.3f}<br>Re(s₃): %{y:.6f}<extra>Root 3</extra>'
                                ))
                                
                                # Configure layout for better appearance
                                real_fig.update_layout(
                                    title={
                                        'text': f'Re(s) vs z Analysis: a={cubic_a}, y={cubic_y}, β={cubic_beta}',
                                        'font': {'size': 24, 'color': '#1E88E5'},
                                        'y': 0.95,
                                        'x': 0.5,
                                        'xanchor': 'center',
                                        'yanchor': 'top'
                                    },
                                    xaxis={
                                        'title': {'text': 'z (logarithmic scale)', 'font': {'size': 18, 'color': '#424242'}},
                                        'tickfont': {'size': 14},
                                        'gridcolor': 'rgba(220, 220, 220, 0.5)',
                                        'showgrid': True,
                                        'type': 'log'  # Use logarithmic scale for better visualization
                                    },
                                    yaxis={
                                        'title': {'text': 'Re(s)', 'font': {'size': 18, 'color': '#424242'}},
                                        'tickfont': {'size': 14},
                                        'gridcolor': 'rgba(220, 220, 220, 0.5)',
                                        'showgrid': True
                                    },
                                    plot_bgcolor='rgba(240, 240, 240, 0.8)',
                                    paper_bgcolor='rgba(249, 249, 249, 0.8)',
                                    hovermode='closest',
                                    legend={
                                        'font': {'size': 14},
                                        'bgcolor': 'rgba(255, 255, 255, 0.9)',
                                        'bordercolor': 'rgba(200, 200, 200, 0.5)',
                                        'borderwidth': 1
                                    },
                                    margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
                                    height=500
                                )
                                
                                # Display the interactive plot in Streamlit
                                st.plotly_chart(real_fig, use_container_width=True)
                            
                            # Clear progress container
                            progress_container.empty()
                            
                            # Add explanation text
                            st.markdown('<div class="explanation-box">', unsafe_allow_html=True)
                            st.markdown("""
                            ### Root Pattern Analysis
                            
                            For the cubic equation in this analysis, we observe specific patterns in the roots:
                            
                            - One root typically has negative real part
                            - One root typically has positive real part  
                            - One root has zero or near-zero real part
                            
                            The imaginary parts show oscillatory behavior, with some z values producing purely real roots 
                            (Im(s) = 0) and others producing complex roots with non-zero imaginary parts. This pattern 
                            is consistent with the expected behavior of cubic equations and has important implications 
                            for system stability analysis.
                            
                            The imaginary parts represent oscillatory behavior in the system, while the real parts 
                            represent exponential growth (positive) or decay (negative).
                            """)
                            st.markdown('</div>', unsafe_allow_html=True)
                            
                        except json.JSONDecodeError as e:
                            st.error(f"Error parsing JSON results: {str(e)}")
                            if os.path.exists(data_file):
                                with open(data_file, 'r') as f:
                                    content = f.read()
                                st.code(content[:1000] + "..." if len(content) > 1000 else content)
                
                except Exception as e:
                    st.error(f"An error occurred: {str(e)}")
                    if cubic_debug_mode:
                        st.exception(e)
        
        else:
            # Try to load existing data if available
            data_file = os.path.join(output_dir, "cubic_data.json")
            if os.path.exists(data_file):
                try:
                    with open(data_file, 'r') as f:
                        data = json.load(f)
                    
                    # Extract data
                    z_values = np.array(data['z_values'])
                    ims_values1 = np.array(data['ims_values1'])
                    ims_values2 = np.array(data['ims_values2'])
                    ims_values3 = np.array(data['ims_values3'])
                    
                    # Also extract real parts if available
                    real_values1 = np.array(data.get('real_values1', [0] * len(z_values)))
                    real_values2 = np.array(data.get('real_values2', [0] * len(z_values)))
                    real_values3 = np.array(data.get('real_values3', [0] * len(z_values)))
                    
                    # Show previous results with Imaginary parts
                    fig = go.Figure()
                    
                    # Add traces for each root's imaginary part
                    fig.add_trace(go.Scatter(
                        x=z_values, 
                        y=ims_values1,
                        mode='lines',
                        name='Im(s₁)',
                        line=dict(color='rgb(220, 60, 60)', width=3),
                        hovertemplate='z: %{x:.3f}<br>Im(s₁): %{y:.6f}<extra>Root 1</extra>'
                    ))
                    
                    fig.add_trace(go.Scatter(
                        x=z_values, 
                        y=ims_values2,
                        mode='lines',
                        name='Im(s₂)',
                        line=dict(color='rgb(60, 60, 220)', width=3),
                        hovertemplate='z: %{x:.3f}<br>Im(s₂): %{y:.6f}<extra>Root 2</extra>'
                    ))
                    
                    fig.add_trace(go.Scatter(
                        x=z_values, 
                        y=ims_values3,
                        mode='lines',
                        name='Im(s₃)',
                        line=dict(color='rgb(30, 180, 30)', width=3),
                        hovertemplate='z: %{x:.3f}<br>Im(s₃): %{y:.6f}<extra>Root 3</extra>'
                    ))
                    
                    # Configure layout for better appearance
                    fig.update_layout(
                        title={
                            'text': f'Im(s) vs z Analysis (Previous Result)',
                            'font': {'size': 24, 'color': '#1E88E5'},
                            'y': 0.95,
                            'x': 0.5,
                            'xanchor': 'center',
                            'yanchor': 'top'
                        },
                        xaxis={
                            'title': {'text': 'z (logarithmic scale)', 'font': {'size': 18, 'color': '#424242'}},
                            'tickfont': {'size': 14},
                            'gridcolor': 'rgba(220, 220, 220, 0.5)',
                            'showgrid': True,
                            'type': 'log'  # Use logarithmic scale for better visualization
                        },
                        yaxis={
                            'title': {'text': 'Im(s)', 'font': {'size': 18, 'color': '#424242'}},
                            'tickfont': {'size': 14},
                            'gridcolor': 'rgba(220, 220, 220, 0.5)',
                            'showgrid': True
                        },
                        plot_bgcolor='rgba(240, 240, 240, 0.8)',
                        paper_bgcolor='rgba(249, 249, 249, 0.8)',
                        hovermode='closest',
                        legend={
                            'font': {'size': 14},
                            'bgcolor': 'rgba(255, 255, 255, 0.9)',
                            'bordercolor': 'rgba(200, 200, 200, 0.5)',
                            'borderwidth': 1
                        },
                        margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
                        height=600
                    )
                    
                    # Display the interactive plot in Streamlit
                    st.plotly_chart(fig, use_container_width=True)
                    st.info("This is the previous analysis result. Adjust parameters and click 'Generate Analysis' to create a new visualization.")
                    
                except Exception as e:
                    st.info("👈 Set parameters and click 'Generate Im(s) vs z Analysis' to create a visualization.")
            else:
                # Show placeholder
                st.info("👈 Set parameters and click 'Generate Im(s) vs z Analysis' to create a visualization.")
        
        st.markdown('</div>', unsafe_allow_html=True)

# Add footer with instructions
st.markdown("""
---
### Instructions for Using the Dashboard

1. **Select a tab** at the top to choose between Eigenvalue Analysis and Im(s) vs z Analysis
2. **Adjust parameters** in the left panel to configure your analysis
3. **Click the Generate button** to run the analysis with the selected parameters
4. **Explore the results** in the interactive plot
5. For the Im(s) vs z Analysis, you can toggle between Imaginary and Real parts to see different aspects of the cubic roots

If you encounter any issues with compilation, try clicking the "Recompile C++ Code" button in the sidebar.

<div class="footnote">
This dashboard analyzes the properties of cubic equations and eigenvalues for matrix analysis.
The Im(s) vs z Analysis shows the behavior of cubic roots, with specific patterns of one negative, one positive, and one zero or near-zero root.
</div>
""", unsafe_allow_html=True)