File size: 10,612 Bytes
f22203e
51e773e
 
 
 
 
 
 
 
 
 
d422d23
f22203e
51e773e
 
a9353c5
51e773e
 
d422d23
51e773e
 
 
 
 
 
 
 
a9353c5
51e773e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9353c5
 
51e773e
 
 
a9353c5
51e773e
 
a9353c5
51e773e
 
 
 
 
 
 
 
a9353c5
51e773e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9353c5
 
f22203e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e773e
 
 
 
a9353c5
 
51e773e
 
 
 
 
 
 
f22203e
a9353c5
 
 
51e773e
 
 
a9353c5
 
 
d422d23
51e773e
 
f22203e
51e773e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9353c5
 
 
51e773e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f22203e
 
 
 
 
 
51e773e
 
 
 
 
f22203e
 
 
51e773e
f22203e
51e773e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// app.cpp - Modified version for Hugging Face Spaces (calculation only)
#include <opencv2/opencv.hpp>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <numeric>
#include <random>
#include <vector>
#include <limits>
#include <sstream>
#include <string>
#include <fstream>

// Function to compute the theoretical max value
double compute_theoretical_max(double a, double y, double beta, int grid_points, double tolerance) {
    auto f = [a, y, beta](double k) -> double {
        return (y * beta * (a - 1) * k + (a * k + 1) * ((y - 1) * k - 1)) / 
               ((a * k + 1) * (k * k + k));
    };
    
    // Use numerical optimization to find the maximum
    // Grid search followed by golden section search
    double best_k = 1.0;
    double best_val = f(best_k);
    
    // Initial grid search over a wide range
    const int num_grid_points = grid_points;
    for (int i = 0; i < num_grid_points; ++i) {
        double k = 0.01 + 100.0 * i / (num_grid_points - 1); // From 0.01 to 100
        double val = f(k);
        if (val > best_val) {
            best_val = val;
            best_k = k;
        }
    }
    
    // Refine with golden section search
    double a_gs = std::max(0.01, best_k / 10.0);
    double b_gs = best_k * 10.0;
    const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
    
    double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
    double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
    
    while (std::abs(b_gs - a_gs) > tolerance) {
        if (f(c_gs) > f(d_gs)) {
            b_gs = d_gs;
            d_gs = c_gs;
            c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
        } else {
            a_gs = c_gs;
            c_gs = d_gs;
            d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
        }
    }
    
    // Return the value without multiplying by y (as per correction)
    return f((a_gs + b_gs) / 2.0);
}

// Function to compute the theoretical min value
double compute_theoretical_min(double a, double y, double beta, int grid_points, double tolerance) {
    auto f = [a, y, beta](double t) -> double {
        return (y * beta * (a - 1) * t + (a * t + 1) * ((y - 1) * t - 1)) / 
               ((a * t + 1) * (t * t + t));
    };
    
    // Use numerical optimization to find the minimum
    // Grid search followed by golden section search
    double best_t = -0.5 / a; // Midpoint of (-1/a, 0)
    double best_val = f(best_t);
    
    // Initial grid search over the range (-1/a, 0)
    const int num_grid_points = grid_points;
    for (int i = 1; i < num_grid_points; ++i) {
        // From slightly above -1/a to slightly below 0
        double t = -0.999/a + 0.998/a * i / (num_grid_points - 1);
        if (t >= 0 || t <= -1.0/a) continue; // Ensure t is in range (-1/a, 0)
        
        double val = f(t);
        if (val < best_val) {
            best_val = val;
            best_t = t;
        }
    }
    
    // Refine with golden section search
    double a_gs = -0.999/a; // Slightly above -1/a
    double b_gs = -0.001/a; // Slightly below 0
    const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
    
    double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
    double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
    
    while (std::abs(b_gs - a_gs) > tolerance) {
        if (f(c_gs) < f(d_gs)) {
            b_gs = d_gs;
            d_gs = c_gs;
            c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
        } else {
            a_gs = c_gs;
            c_gs = d_gs;
            d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
        }
    }
    
    // Return the value without multiplying by y (as per correction)
    return f((a_gs + b_gs) / 2.0);
}

// Function to save data as JSON
void save_as_json(const std::string& filename, 
                 const std::vector<double>& beta_values,
                 const std::vector<double>& max_eigenvalues,
                 const std::vector<double>& min_eigenvalues,
                 const std::vector<double>& theoretical_max_values,
                 const std::vector<double>& theoretical_min_values) {
    
    std::ofstream outfile(filename);
    
    if (!outfile.is_open()) {
        std::cerr << "Error: Could not open file " << filename << " for writing." << std::endl;
        return;
    }
    
    // Start JSON object
    outfile << "{\n";
    
    // Write beta values
    outfile << "  \"beta_values\": [";
    for (size_t i = 0; i < beta_values.size(); ++i) {
        outfile << beta_values[i];
        if (i < beta_values.size() - 1) outfile << ", ";
    }
    outfile << "],\n";
    
    // Write max eigenvalues
    outfile << "  \"max_eigenvalues\": [";
    for (size_t i = 0; i < max_eigenvalues.size(); ++i) {
        outfile << max_eigenvalues[i];
        if (i < max_eigenvalues.size() - 1) outfile << ", ";
    }
    outfile << "],\n";
    
    // Write min eigenvalues
    outfile << "  \"min_eigenvalues\": [";
    for (size_t i = 0; i < min_eigenvalues.size(); ++i) {
        outfile << min_eigenvalues[i];
        if (i < min_eigenvalues.size() - 1) outfile << ", ";
    }
    outfile << "],\n";
    
    // Write theoretical max values
    outfile << "  \"theoretical_max\": [";
    for (size_t i = 0; i < theoretical_max_values.size(); ++i) {
        outfile << theoretical_max_values[i];
        if (i < theoretical_max_values.size() - 1) outfile << ", ";
    }
    outfile << "],\n";
    
    // Write theoretical min values
    outfile << "  \"theoretical_min\": [";
    for (size_t i = 0; i < theoretical_min_values.size(); ++i) {
        outfile << theoretical_min_values[i];
        if (i < theoretical_min_values.size() - 1) outfile << ", ";
    }
    outfile << "]\n";
    
    // Close JSON object
    outfile << "}\n";
    
    outfile.close();
}

int main(int argc, char* argv[]) {
    // ─── Inputs from command line ───────────────────────────────────────────
    if (argc != 9) {
        std::cerr << "Usage: " << argv[0] << " <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl;
        return 1;
    }
    
    int n = std::stoi(argv[1]);
    int p = std::stoi(argv[2]);
    double a = std::stod(argv[3]);
    double y = std::stod(argv[4]);
    int fineness = std::stoi(argv[5]);
    int theory_grid_points = std::stoi(argv[6]);
    double theory_tolerance = std::stod(argv[7]);
    std::string output_file = argv[8];
    const double b = 1.0;
    
    std::cout << "Running with parameters: n = " << n << ", p = " << p 
              << ", a = " << a << ", y = " << y << ", fineness = " << fineness 
              << ", theory_grid_points = " << theory_grid_points
              << ", theory_tolerance = " << theory_tolerance << std::endl;
    std::cout << "Output will be saved to: " << output_file << std::endl;
    
    // ─── Beta range parameters ────────────────────────────────────────
    const int num_beta_points = fineness; // Controlled by fineness parameter
    std::vector<double> beta_values(num_beta_points);
    for (int i = 0; i < num_beta_points; ++i) {
        beta_values[i] = static_cast<double>(i) / (num_beta_points - 1);
    }
    
    // ─── Storage for results ────────────────────────────────────────
    std::vector<double> max_eigenvalues(num_beta_points);
    std::vector<double> min_eigenvalues(num_beta_points);
    std::vector<double> theoretical_max_values(num_beta_points);
    std::vector<double> theoretical_min_values(num_beta_points);
    
    // ─── Random‐Gaussian X and S_n ────────────────────────────────
    std::mt19937_64 rng{std::random_device{}()};
    std::normal_distribution<double> norm(0.0, 1.0);
    
    cv::Mat X(p, n, CV_64F);
    for(int i = 0; i < p; ++i)
        for(int j = 0; j < n; ++j)
            X.at<double>(i,j) = norm(rng);
    
    // ─── Process each beta value ─────────────────────────────────
    for (int beta_idx = 0; beta_idx < num_beta_points; ++beta_idx) {
        double beta = beta_values[beta_idx];
        
        // Compute theoretical values with customizable precision
        theoretical_max_values[beta_idx] = compute_theoretical_max(a, y, beta, theory_grid_points, theory_tolerance);
        theoretical_min_values[beta_idx] = compute_theoretical_min(a, y, beta, theory_grid_points, theory_tolerance);
        
        // ─── Build T_n matrix ──────────────────────────────────
        int k = static_cast<int>(std::floor(beta * p));
        std::vector<double> diags(p);
        std::fill_n(diags.begin(), k, a);
        std::fill_n(diags.begin()+k, p-k, b);
        std::shuffle(diags.begin(), diags.end(), rng);
        
        cv::Mat T_n = cv::Mat::zeros(p, p, CV_64F);
        for(int i = 0; i < p; ++i){
            T_n.at<double>(i,i) = diags[i];
        }
        
        // ─── Form B_n = (1/n) * X * T_n * X^T ────────────
        cv::Mat B = (X.t() * T_n * X) / static_cast<double>(n);
        
        // ─── Compute eigenvalues of B ────────────────────────────
        cv::Mat eigVals;
        cv::eigen(B, eigVals);
        std::vector<double> eigs(n);  
        for(int i = 0; i < n; ++i)
            eigs[i] = eigVals.at<double>(i, 0);
        
        max_eigenvalues[beta_idx] = *std::max_element(eigs.begin(), eigs.end());
        min_eigenvalues[beta_idx] = *std::min_element(eigs.begin(), eigs.end());
        
        // Progress indicator for Streamlit
        double progress = static_cast<double>(beta_idx + 1) / num_beta_points;
        std::cout << "PROGRESS:" << progress << std::endl;
        
        // Less verbose output for Streamlit
        if (beta_idx % 20 == 0 || beta_idx == num_beta_points - 1) {
            std::cout << "Processing beta = " << beta 
                      << " (" << beta_idx+1 << "/" << num_beta_points << ")" << std::endl;
        }
    }
    
    // Save data as JSON for Python to read
    save_as_json(output_file, beta_values, max_eigenvalues, min_eigenvalues, 
                theoretical_max_values, theoretical_min_values);
    
    std::cout << "Data saved to " << output_file << std::endl;
    
    return 0;
}