Spaces:
Sleeping
Sleeping
File size: 49,383 Bytes
dd5ca7d 1126f78 3940b3d f84f14b 1126f78 13b3948 06d8fdb aceb3e5 1aa7fa4 aeff02a 80ed07e 7795d08 1126f78 aeff02a 80ed07e 1aa7fa4 aeff02a 1126f78 aeff02a 7795d08 aeff02a 7795d08 aeff02a 7795d08 aeff02a e906ec1 aceb3e5 aeff02a 7795d08 1126f78 a2a65af 1126f78 aceb3e5 cb0df60 aceb3e5 7795d08 06d8fdb aceb3e5 06d8fdb 10e2411 aceb3e5 10e2411 aceb3e5 06d8fdb aceb3e5 10e2411 06d8fdb aceb3e5 7795d08 359367f 7795d08 aeff02a 7795d08 aeff02a 7795d08 aeff02a 7795d08 aeff02a 7795d08 06d8fdb aceb3e5 aeff02a 7795d08 aeff02a 7795d08 aeff02a 7795d08 aeff02a 7795d08 06d8fdb 7795d08 aeff02a 10e2411 7795d08 10e2411 7795d08 10e2411 06d8fdb 7795d08 10e2411 aceb3e5 7795d08 10e2411 aceb3e5 10e2411 aceb3e5 10e2411 aceb3e5 10e2411 aceb3e5 10e2411 aceb3e5 10e2411 7795d08 06d8fdb 7795d08 aceb3e5 7795d08 aceb3e5 7795d08 aceb3e5 7795d08 06d8fdb 7795d08 aeff02a f84f14b aeff02a f84f14b aeff02a f84f14b aeff02a f84f14b aeff02a f84f14b aeff02a f84f14b 7795d08 f84f14b 7795d08 f84f14b aeff02a f84f14b 7795d08 e906ec1 7795d08 06d8fdb aceb3e5 7795d08 e906ec1 7795d08 e906ec1 7795d08 f84f14b 7795d08 aeff02a 06d8fdb 7795d08 10e2411 7795d08 aeff02a 10e2411 7795d08 aeff02a 10e2411 aceb3e5 7795d08 10e2411 aceb3e5 10e2411 aceb3e5 10e2411 7795d08 06d8fdb aceb3e5 7795d08 aceb3e5 7795d08 06d8fdb 7795d08 aeff02a 7795d08 aeff02a 7795d08 aeff02a 7795d08 aeff02a 7795d08 aeff02a 7795d08 aeff02a 7795d08 aeff02a 7795d08 aeff02a 7795d08 aceb3e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 |
import streamlit as st
import subprocess
import os
import json
import numpy as np
import plotly.graph_objects as go
from PIL import Image
import time
import io
import sys
import tempfile
import platform
# Set page config with wider layout
st.set_page_config(
page_title="Matrix Analysis Dashboard",
page_icon="📊",
layout="wide",
initial_sidebar_state="expanded"
)
# Apply custom CSS for a dashboard-like appearance
st.markdown("""
<style>
.main-header {
font-size: 2.5rem;
color: #1E88E5;
text-align: center;
margin-bottom: 1rem;
padding-bottom: 1rem;
border-bottom: 2px solid #f0f0f0;
}
.dashboard-container {
background-color: #f9f9f9;
padding: 1.5rem;
border-radius: 10px;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
margin-bottom: 1.5rem;
}
.panel-header {
font-size: 1.3rem;
font-weight: bold;
margin-bottom: 1rem;
color: #424242;
border-left: 4px solid #1E88E5;
padding-left: 10px;
}
.stTabs [data-baseweb="tab-list"] {
gap: 12px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background-color: #f0f0f0;
border-radius: 6px 6px 0 0;
gap: 1;
padding-top: 10px;
padding-bottom: 10px;
}
.stTabs [aria-selected="true"] {
background-color: #1E88E5 !important;
color: white !important;
}
.math-box {
background-color: #f8f9fa;
border-left: 3px solid #1E88E5;
padding: 10px;
margin: 10px 0;
}
.stWarning {
background-color: #fff3cd;
padding: 10px;
border-left: 3px solid #ffc107;
margin: 10px 0;
}
.stSuccess {
background-color: #d4edda;
padding: 10px;
border-left: 3px solid #28a745;
margin: 10px 0;
}
</style>
""", unsafe_allow_html=True)
# Dashboard Header
st.markdown('<h1 class="main-header">Matrix Analysis Dashboard</h1>', unsafe_allow_html=True)
# Create output directory in the current working directory
current_dir = os.getcwd()
output_dir = os.path.join(current_dir, "output")
os.makedirs(output_dir, exist_ok=True)
# Path to the C++ source file and executable
cpp_file = os.path.join(current_dir, "app.cpp")
executable = os.path.join(current_dir, "eigen_analysis")
if platform.system() == "Windows":
executable += ".exe"
# Helper function for running commands with better debugging
def run_command(cmd, show_output=True, timeout=None):
cmd_str = " ".join(cmd)
if show_output:
st.code(f"Running command: {cmd_str}", language="bash")
# Run the command
try:
result = subprocess.run(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
check=False,
timeout=timeout
)
if result.returncode == 0:
if show_output:
st.success("Command completed successfully.")
if result.stdout and show_output:
with st.expander("Command Output"):
st.code(result.stdout)
return True, result.stdout, result.stderr
else:
if show_output:
st.error(f"Command failed with return code {result.returncode}")
st.error(f"Command: {cmd_str}")
st.error(f"Error output: {result.stderr}")
return False, result.stdout, result.stderr
except subprocess.TimeoutExpired:
if show_output:
st.error(f"Command timed out after {timeout} seconds")
return False, "", f"Command timed out after {timeout} seconds"
except Exception as e:
if show_output:
st.error(f"Error executing command: {str(e)}")
return False, "", str(e)
# Check if C++ source file exists
if not os.path.exists(cpp_file):
with open(cpp_file, "w") as f:
st.warning(f"C++ source file not found at: {cpp_file}")
st.info("Creating an empty file. Please paste the C++ code into this file and recompile.")
f.write("// Paste the C++ code here and recompile\n")
# Compile the C++ code with the right OpenCV libraries
st.sidebar.title("Compiler Settings")
need_compile = not os.path.exists(executable) or st.sidebar.button("Recompile C++ Code")
if need_compile:
with st.sidebar:
with st.spinner("Compiling C++ code..."):
# Try to detect the OpenCV installation
opencv_detection_cmd = ["pkg-config", "--cflags", "--libs", "opencv4"]
opencv_found, opencv_flags, _ = run_command(opencv_detection_cmd, show_output=False)
compile_commands = []
if opencv_found:
compile_commands.append(
f"g++ -o {executable} {cpp_file} {opencv_flags.strip()} -std=c++11"
)
else:
# Try different OpenCV configurations
compile_commands = [
f"g++ -o {executable} {cpp_file} `pkg-config --cflags --libs opencv4` -std=c++11",
f"g++ -o {executable} {cpp_file} `pkg-config --cflags --libs opencv` -std=c++11",
f"g++ -o {executable} {cpp_file} -I/usr/include/opencv4 -lopencv_core -lopencv_imgproc -std=c++11",
f"g++ -o {executable} {cpp_file} -I/usr/local/include/opencv4 -lopencv_core -lopencv_imgproc -std=c++11"
]
compiled = False
compile_output = ""
for cmd in compile_commands:
st.text(f"Trying: {cmd}")
success, stdout, stderr = run_command(cmd.split(), show_output=False)
compile_output += f"Command: {cmd}\nOutput: {stdout}\nError: {stderr}\n\n"
if success:
compiled = True
st.success(f"Successfully compiled with: {cmd}")
break
if not compiled:
st.error("All compilation attempts failed.")
with st.expander("Compilation Details"):
st.code(compile_output)
st.stop()
# Make sure the executable is executable
if platform.system() != "Windows":
os.chmod(executable, 0o755)
st.success("C++ code compiled successfully!")
# Create tabs for different analyses
tab1, tab2 = st.tabs(["Eigenvalue Analysis", "Im(s) vs z Analysis"])
# Tab 1: Eigenvalue Analysis
with tab1:
# Two-column layout for the dashboard
left_column, right_column = st.columns([1, 3])
with left_column:
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
st.markdown('<div class="panel-header">Eigenvalue Analysis Controls</div>', unsafe_allow_html=True)
# Parameter inputs with defaults and validation
st.markdown("### Matrix Parameters")
n = st.number_input("Sample size (n)", min_value=5, max_value=1000, value=100, step=5,
help="Number of samples", key="eig_n")
p = st.number_input("Dimension (p)", min_value=5, max_value=1000, value=50, step=5,
help="Dimensionality", key="eig_p")
a = st.number_input("Value for a", min_value=1.1, max_value=10.0, value=2.0, step=0.1,
help="Parameter a > 1", key="eig_a")
# Automatically calculate y = p/n (as requested)
y = p/n
st.info(f"Value for y = p/n: {y:.4f}")
st.markdown("### Calculation Controls")
fineness = st.slider(
"Beta points",
min_value=20,
max_value=500,
value=100,
step=10,
help="Number of points to calculate along the β axis (0 to 1)",
key="eig_fineness"
)
with st.expander("Advanced Settings"):
# Add controls for theoretical calculation precision
theory_grid_points = st.slider(
"Theoretical grid points",
min_value=100,
max_value=1000,
value=200,
step=50,
help="Number of points in initial grid search for theoretical calculations",
key="eig_grid_points"
)
theory_tolerance = st.number_input(
"Theoretical tolerance",
min_value=1e-12,
max_value=1e-6,
value=1e-10,
format="%.1e",
help="Convergence tolerance for golden section search",
key="eig_tolerance"
)
# Debug mode
debug_mode = st.checkbox("Debug Mode", value=False, key="eig_debug")
# Timeout setting
timeout_seconds = st.number_input(
"Computation timeout (seconds)",
min_value=30,
max_value=3600,
value=300,
help="Maximum time allowed for computation before timeout",
key="eig_timeout"
)
# Generate button
eig_generate_button = st.button("Generate Eigenvalue Analysis",
type="primary",
use_container_width=True,
key="eig_generate")
st.markdown('</div>', unsafe_allow_html=True)
with right_column:
# Main visualization area
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
st.markdown('<div class="panel-header">Eigenvalue Analysis Results</div>', unsafe_allow_html=True)
# Container for the analysis results
eig_results_container = st.container()
# Process when generate button is clicked
if eig_generate_button:
with eig_results_container:
# Show progress
progress_container = st.container()
with progress_container:
progress_bar = st.progress(0)
status_text = st.empty()
try:
# Create data file path
data_file = os.path.join(output_dir, "eigenvalue_data.json")
# Delete previous output if exists
if os.path.exists(data_file):
os.remove(data_file)
# Build command for eigenvalue analysis with the proper arguments
cmd = [
executable,
"eigenvalues", # Mode argument
str(n),
str(p),
str(a),
str(y),
str(fineness),
str(theory_grid_points),
str(theory_tolerance),
data_file
]
# Run the command
status_text.text("Running eigenvalue analysis...")
if debug_mode:
success, stdout, stderr = run_command(cmd, True, timeout=timeout_seconds)
# Process stdout for progress updates
if success:
progress_bar.progress(1.0)
else:
# Start the process with pipe for stdout to read progress
process = subprocess.Popen(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
bufsize=1,
universal_newlines=True
)
# Track progress from stdout
success = True
stdout_lines = []
start_time = time.time()
while True:
# Check for timeout
if time.time() - start_time > timeout_seconds:
process.kill()
status_text.error(f"Computation timed out after {timeout_seconds} seconds")
success = False
break
# Try to read a line (non-blocking)
line = process.stdout.readline()
if not line and process.poll() is not None:
break
if line:
stdout_lines.append(line)
if line.startswith("PROGRESS:"):
try:
# Update progress bar
progress_value = float(line.split(":")[1].strip())
progress_bar.progress(progress_value)
status_text.text(f"Calculating... {int(progress_value * 100)}% complete")
except:
pass
elif line:
status_text.text(line.strip())
# Get the return code and stderr
returncode = process.poll()
stderr = process.stderr.read()
if returncode != 0:
success = False
st.error(f"Error executing the analysis: {stderr}")
with st.expander("Error Details"):
st.code(stderr)
if success:
progress_bar.progress(1.0)
status_text.text("Analysis complete! Generating visualization...")
# Check if the output file was created
if not os.path.exists(data_file):
st.error(f"Output file not created: {data_file}")
st.stop()
try:
# Load the results from the JSON file
with open(data_file, 'r') as f:
data = json.load(f)
# Extract data
beta_values = np.array(data['beta_values'])
max_eigenvalues = np.array(data['max_eigenvalues'])
min_eigenvalues = np.array(data['min_eigenvalues'])
theoretical_max = np.array(data['theoretical_max'])
theoretical_min = np.array(data['theoretical_min'])
# Create an interactive plot using Plotly
fig = go.Figure()
# Add traces for each line
fig.add_trace(go.Scatter(
x=beta_values,
y=max_eigenvalues,
mode='lines+markers',
name='Empirical Max Eigenvalue',
line=dict(color='rgb(220, 60, 60)', width=3),
marker=dict(
symbol='circle',
size=8,
color='rgb(220, 60, 60)',
line=dict(color='white', width=1)
),
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Max</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=min_eigenvalues,
mode='lines+markers',
name='Empirical Min Eigenvalue',
line=dict(color='rgb(60, 60, 220)', width=3),
marker=dict(
symbol='circle',
size=8,
color='rgb(60, 60, 220)',
line=dict(color='white', width=1)
),
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Min</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=theoretical_max,
mode='lines+markers',
name='Theoretical Max Function',
line=dict(color='rgb(30, 180, 30)', width=3),
marker=dict(
symbol='diamond',
size=8,
color='rgb(30, 180, 30)',
line=dict(color='white', width=1)
),
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Max</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=theoretical_min,
mode='lines+markers',
name='Theoretical Min Function',
line=dict(color='rgb(180, 30, 180)', width=3),
marker=dict(
symbol='diamond',
size=8,
color='rgb(180, 30, 180)',
line=dict(color='white', width=1)
),
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Min</extra>'
))
# Configure layout for better appearance
fig.update_layout(
title={
'text': f'Eigenvalue Analysis: n={n}, p={p}, a={a}, y={y:.4f}',
'font': {'size': 24, 'color': '#1E88E5'},
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis={
'title': 'β Parameter',
'titlefont': {'size': 18, 'color': '#424242'},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True
},
yaxis={
'title': 'Eigenvalues',
'titlefont': {'size': 18, 'color': '#424242'},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True
},
plot_bgcolor='rgba(240, 240, 240, 0.8)',
paper_bgcolor='rgba(249, 249, 249, 0.8)',
hovermode='closest',
legend={
'font': {'size': 14},
'bgcolor': 'rgba(255, 255, 255, 0.9)',
'bordercolor': 'rgba(200, 200, 200, 0.5)',
'borderwidth': 1
},
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
height=600,
annotations=[
{
'text': f"Max Function: max{{k ∈ (0,∞)}} [yβ(a-1)k + (ak+1)((y-1)k-1)]/[(ak+1)(k²+k)]",
'xref': 'paper', 'yref': 'paper',
'x': 0.02, 'y': 0.02,
'showarrow': False,
'font': {'size': 12, 'color': 'rgb(30, 180, 30)'},
'bgcolor': 'rgba(255, 255, 255, 0.9)',
'bordercolor': 'rgb(30, 180, 30)',
'borderwidth': 1,
'borderpad': 4
},
{
'text': f"Min Function: min{{t ∈ (-1/a,0)}} [yβ(a-1)t + (at+1)((y-1)t-1)]/[(at+1)(t²+t)]",
'xref': 'paper', 'yref': 'paper',
'x': 0.55, 'y': 0.02,
'showarrow': False,
'font': {'size': 12, 'color': 'rgb(180, 30, 180)'},
'bgcolor': 'rgba(255, 255, 255, 0.9)',
'bordercolor': 'rgb(180, 30, 180)',
'borderwidth': 1,
'borderpad': 4
}
]
)
# Add custom modebar buttons
fig.update_layout(
modebar_add=[
'drawline', 'drawopenpath', 'drawclosedpath',
'drawcircle', 'drawrect', 'eraseshape'
],
modebar_remove=['lasso2d', 'select2d'],
dragmode='zoom'
)
# Clear progress container
progress_container.empty()
# Display the interactive plot in Streamlit
st.plotly_chart(fig, use_container_width=True)
# Display statistics
with st.expander("Statistics"):
col1, col2 = st.columns(2)
with col1:
st.write("### Eigenvalue Statistics")
st.write(f"Max empirical value: {max_eigenvalues.max():.6f}")
st.write(f"Min empirical value: {min_eigenvalues.min():.6f}")
with col2:
st.write("### Theoretical Values")
st.write(f"Max theoretical value: {theoretical_max.max():.6f}")
st.write(f"Min theoretical value: {theoretical_min.min():.6f}")
except json.JSONDecodeError as e:
st.error(f"Error parsing JSON results: {str(e)}")
if os.path.exists(data_file):
with open(data_file, 'r') as f:
content = f.read()
st.code(content[:1000] + "..." if len(content) > 1000 else content)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
if debug_mode:
st.exception(e)
else:
# Try to load existing data if available
data_file = os.path.join(output_dir, "eigenvalue_data.json")
if os.path.exists(data_file):
try:
with open(data_file, 'r') as f:
data = json.load(f)
# Extract data
beta_values = np.array(data['beta_values'])
max_eigenvalues = np.array(data['max_eigenvalues'])
min_eigenvalues = np.array(data['min_eigenvalues'])
theoretical_max = np.array(data['theoretical_max'])
theoretical_min = np.array(data['theoretical_min'])
# Create an interactive plot using Plotly
fig = go.Figure()
# Add traces for each line
fig.add_trace(go.Scatter(
x=beta_values,
y=max_eigenvalues,
mode='lines+markers',
name='Empirical Max Eigenvalue',
line=dict(color='rgb(220, 60, 60)', width=3),
marker=dict(
symbol='circle',
size=8,
color='rgb(220, 60, 60)',
line=dict(color='white', width=1)
),
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Max</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=min_eigenvalues,
mode='lines+markers',
name='Empirical Min Eigenvalue',
line=dict(color='rgb(60, 60, 220)', width=3),
marker=dict(
symbol='circle',
size=8,
color='rgb(60, 60, 220)',
line=dict(color='white', width=1)
),
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Min</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=theoretical_max,
mode='lines+markers',
name='Theoretical Max Function',
line=dict(color='rgb(30, 180, 30)', width=3),
marker=dict(
symbol='diamond',
size=8,
color='rgb(30, 180, 30)',
line=dict(color='white', width=1)
),
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Max</extra>'
))
fig.add_trace(go.Scatter(
x=beta_values,
y=theoretical_min,
mode='lines+markers',
name='Theoretical Min Function',
line=dict(color='rgb(180, 30, 180)', width=3),
marker=dict(
symbol='diamond',
size=8,
color='rgb(180, 30, 180)',
line=dict(color='white', width=1)
),
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Min</extra>'
))
# Configure layout for better appearance
fig.update_layout(
title={
'text': f'Eigenvalue Analysis (Previous Result)',
'font': {'size': 24, 'color': '#1E88E5'},
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis={
'title': 'β Parameter',
'titlefont': {'size': 18, 'color': '#424242'},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True
},
yaxis={
'title': 'Eigenvalues',
'titlefont': {'size': 18, 'color': '#424242'},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True
},
plot_bgcolor='rgba(240, 240, 240, 0.8)',
paper_bgcolor='rgba(249, 249, 249, 0.8)',
hovermode='closest',
legend={
'font': {'size': 14},
'bgcolor': 'rgba(255, 255, 255, 0.9)',
'bordercolor': 'rgba(200, 200, 200, 0.5)',
'borderwidth': 1
},
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
height=600
)
# Display the interactive plot in Streamlit
st.plotly_chart(fig, use_container_width=True)
st.info("This is the previous analysis result. Adjust parameters and click 'Generate Analysis' to create a new visualization.")
except Exception as e:
st.info("👈 Set parameters and click 'Generate Eigenvalue Analysis' to create a visualization.")
else:
# Show placeholder
st.info("👈 Set parameters and click 'Generate Eigenvalue Analysis' to create a visualization.")
st.markdown('</div>', unsafe_allow_html=True)
# Tab 2: Im(s) vs z Analysis
with tab2:
# Two-column layout for the dashboard
left_column, right_column = st.columns([1, 3])
with left_column:
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
st.markdown('<div class="panel-header">Im(s) vs z Analysis Controls</div>', unsafe_allow_html=True)
# Parameter inputs with defaults and validation
st.markdown("### Cubic Equation Parameters")
cubic_a = st.number_input("Value for a", min_value=1.1, max_value=10.0, value=2.0, step=0.1,
help="Parameter a > 1", key="cubic_a")
cubic_y = st.number_input("Value for y", min_value=0.1, max_value=10.0, value=1.0, step=0.1,
help="Parameter y > 0", key="cubic_y")
cubic_beta = st.number_input("Value for β", min_value=0.0, max_value=1.0, value=0.5, step=0.05,
help="Value between 0 and 1", key="cubic_beta")
st.markdown("### Calculation Controls")
cubic_points = st.slider(
"Number of z points",
min_value=50,
max_value=1000,
value=300,
step=50,
help="Number of points to calculate along the z axis",
key="cubic_points"
)
# Debug mode
cubic_debug_mode = st.checkbox("Debug Mode", value=False, key="cubic_debug")
# Timeout setting
cubic_timeout = st.number_input(
"Computation timeout (seconds)",
min_value=10,
max_value=600,
value=60,
help="Maximum time allowed for computation before timeout",
key="cubic_timeout"
)
# Show cubic equation
st.markdown('<div class="math-box">', unsafe_allow_html=True)
st.markdown("### Cubic Equation")
st.latex(r"zas^3 + [z(a+1)+a(1-y)]\,s^2 + [z+(a+1)-y-y\beta (a-1)]\,s + 1 = 0")
st.markdown('</div>', unsafe_allow_html=True)
# Generate button
cubic_generate_button = st.button("Generate Im(s) vs z Analysis",
type="primary",
use_container_width=True,
key="cubic_generate")
st.markdown('</div>', unsafe_allow_html=True)
with right_column:
# Main visualization area
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
st.markdown('<div class="panel-header">Im(s) vs z Analysis Results</div>', unsafe_allow_html=True)
# Container for the analysis results
cubic_results_container = st.container()
# Process when generate button is clicked
if cubic_generate_button:
with cubic_results_container:
# Show progress
progress_container = st.container()
with progress_container:
status_text = st.empty()
status_text.text("Starting cubic equation calculations...")
try:
# Run the C++ executable with the parameters in JSON output mode
data_file = os.path.join(output_dir, "cubic_data.json")
# Delete previous output if exists
if os.path.exists(data_file):
os.remove(data_file)
# Build command for cubic equation analysis
cmd = [
executable,
"cubic", # Mode argument
str(cubic_a),
str(cubic_y),
str(cubic_beta),
str(cubic_points),
data_file
]
# Run the command
status_text.text("Calculating Im(s) vs z values...")
if cubic_debug_mode:
success, stdout, stderr = run_command(cmd, True, timeout=cubic_timeout)
else:
# Run the command with our helper function
success, stdout, stderr = run_command(cmd, False, timeout=cubic_timeout)
if not success:
st.error(f"Error executing cubic analysis: {stderr}")
if success:
status_text.text("Calculations complete! Generating visualization...")
# Check if the output file was created
if not os.path.exists(data_file):
st.error(f"Output file not created: {data_file}")
st.stop()
try:
# Load the results from the JSON file
with open(data_file, 'r') as f:
data = json.load(f)
# Extract data
z_values = np.array(data['z_values'])
ims_values1 = np.array(data['ims_values1'])
ims_values2 = np.array(data['ims_values2'])
ims_values3 = np.array(data['ims_values3'])
# Create an interactive plot using Plotly
fig = go.Figure()
# Add traces for each root's imaginary part
fig.add_trace(go.Scatter(
x=z_values,
y=ims_values1,
mode='lines',
name='Im(s₁)',
line=dict(color='rgb(220, 60, 60)', width=3),
hovertemplate='z: %{x:.3f}<br>Im(s₁): %{y:.6f}<extra>Root 1</extra>'
))
fig.add_trace(go.Scatter(
x=z_values,
y=ims_values2,
mode='lines',
name='Im(s₂)',
line=dict(color='rgb(60, 60, 220)', width=3),
hovertemplate='z: %{x:.3f}<br>Im(s₂): %{y:.6f}<extra>Root 2</extra>'
))
fig.add_trace(go.Scatter(
x=z_values,
y=ims_values3,
mode='lines',
name='Im(s₃)',
line=dict(color='rgb(30, 180, 30)', width=3),
hovertemplate='z: %{x:.3f}<br>Im(s₃): %{y:.6f}<extra>Root 3</extra>'
))
# Configure layout for better appearance
fig.update_layout(
title={
'text': f'Im(s) vs z Analysis: a={cubic_a}, y={cubic_y}, β={cubic_beta}',
'font': {'size': 24, 'color': '#1E88E5'},
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis={
'title': 'z (logarithmic scale)',
'titlefont': {'size': 18, 'color': '#424242'},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True,
'type': 'log' # Use logarithmic scale for better visualization
},
yaxis={
'title': 'Im(s)',
'titlefont': {'size': 18, 'color': '#424242'},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True
},
plot_bgcolor='rgba(240, 240, 240, 0.8)',
paper_bgcolor='rgba(249, 249, 249, 0.8)',
hovermode='closest',
legend={
'font': {'size': 14},
'bgcolor': 'rgba(255, 255, 255, 0.9)',
'bordercolor': 'rgba(200, 200, 200, 0.5)',
'borderwidth': 1
},
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
height=600,
annotations=[
{
'text': f"Cubic Equation: {cubic_a}zs³ + [{cubic_a+1}z+{cubic_a}(1-{cubic_y})]s² + [z+{cubic_a+1}-{cubic_y}-{cubic_y*cubic_beta}({cubic_a-1})]s + 1 = 0",
'xref': 'paper', 'yref': 'paper',
'x': 0.5, 'y': 0.02,
'showarrow': False,
'font': {'size': 12, 'color': 'black'},
'bgcolor': 'rgba(255, 255, 255, 0.9)',
'bordercolor': 'rgba(0, 0, 0, 0.5)',
'borderwidth': 1,
'borderpad': 4,
'align': 'center'
}
]
)
# Add custom modebar buttons
fig.update_layout(
modebar_add=[
'drawline', 'drawopenpath', 'drawclosedpath',
'drawcircle', 'drawrect', 'eraseshape'
],
modebar_remove=['lasso2d', 'select2d'],
dragmode='zoom'
)
# Clear progress container
progress_container.empty()
# Display the interactive plot in Streamlit
st.plotly_chart(fig, use_container_width=True)
# Add explanation text
st.markdown("""
### Explanation of the Analysis
This plot shows the imaginary parts of the three roots (s₁, s₂, s₃) of the cubic equation as a function of z.
The cubic equation being solved is:
```
zas³ + [z(a+1)+a(1-y)]s² + [z+(a+1)-y-yβ(a-1)]s + 1 = 0
```
Where a, y, and β are parameters you can adjust in the control panel. The imaginary parts of the roots represent
oscillatory behavior in the system.
- When Im(s) = 0, the root is purely real
- When Im(s) ≠ 0, the root has an oscillatory component
""")
except json.JSONDecodeError as e:
st.error(f"Error parsing JSON results: {str(e)}")
if os.path.exists(data_file):
with open(data_file, 'r') as f:
content = f.read()
st.code(content[:1000] + "..." if len(content) > 1000 else content)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
if cubic_debug_mode:
st.exception(e)
else:
# Try to load existing data if available
data_file = os.path.join(output_dir, "cubic_data.json")
if os.path.exists(data_file):
try:
with open(data_file, 'r') as f:
data = json.load(f)
# Extract data
z_values = np.array(data['z_values'])
ims_values1 = np.array(data['ims_values1'])
ims_values2 = np.array(data['ims_values2'])
ims_values3 = np.array(data['ims_values3'])
# Create an interactive plot using Plotly
fig = go.Figure()
# Add traces for each root's imaginary part
fig.add_trace(go.Scatter(
x=z_values,
y=ims_values1,
mode='lines',
name='Im(s₁)',
line=dict(color='rgb(220, 60, 60)', width=3),
hovertemplate='z: %{x:.3f}<br>Im(s₁): %{y:.6f}<extra>Root 1</extra>'
))
fig.add_trace(go.Scatter(
x=z_values,
y=ims_values2,
mode='lines',
name='Im(s₂)',
line=dict(color='rgb(60, 60, 220)', width=3),
hovertemplate='z: %{x:.3f}<br>Im(s₂): %{y:.6f}<extra>Root 2</extra>'
))
fig.add_trace(go.Scatter(
x=z_values,
y=ims_values3,
mode='lines',
name='Im(s₃)',
line=dict(color='rgb(30, 180, 30)', width=3),
hovertemplate='z: %{x:.3f}<br>Im(s₃): %{y:.6f}<extra>Root 3</extra>'
))
# Configure layout for better appearance
fig.update_layout(
title={
'text': f'Im(s) vs z Analysis (Previous Result)',
'font': {'size': 24, 'color': '#1E88E5'},
'y': 0.95,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis={
'title': 'z (logarithmic scale)',
'titlefont': {'size': 18, 'color': '#424242'},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True,
'type': 'log' # Use logarithmic scale for better visualization
},
yaxis={
'title': 'Im(s)',
'titlefont': {'size': 18, 'color': '#424242'},
'tickfont': {'size': 14},
'gridcolor': 'rgba(220, 220, 220, 0.5)',
'showgrid': True
},
plot_bgcolor='rgba(240, 240, 240, 0.8)',
paper_bgcolor='rgba(249, 249, 249, 0.8)',
hovermode='closest',
legend={
'font': {'size': 14},
'bgcolor': 'rgba(255, 255, 255, 0.9)',
'bordercolor': 'rgba(200, 200, 200, 0.5)',
'borderwidth': 1
},
margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
height=600
)
# Display the interactive plot in Streamlit
st.plotly_chart(fig, use_container_width=True)
st.info("This is the previous analysis result. Adjust parameters and click 'Generate Analysis' to create a new visualization.")
except Exception as e:
st.info("👈 Set parameters and click 'Generate Im(s) vs z Analysis' to create a visualization.")
else:
# Show placeholder
st.info("👈 Set parameters and click 'Generate Im(s) vs z Analysis' to create a visualization.")
st.markdown('</div>', unsafe_allow_html=True)
# Add footer with instructions
st.markdown("""
---
### Instructions for Using the Dashboard
1. **Select a tab** at the top to choose between Eigenvalue Analysis and Im(s) vs z Analysis
2. **Adjust parameters** in the left panel to configure your analysis
3. **Click the Generate button** to run the analysis with the selected parameters
4. **Explore the results** in the interactive plot
5. For advanced users, you can enable **Debug Mode** to see detailed output
If you encounter any issues with compilation, try clicking the "Recompile C++ Code" button in the sidebar.
""") |