File size: 49,383 Bytes
dd5ca7d
1126f78
 
3940b3d
 
f84f14b
1126f78
 
13b3948
06d8fdb
aceb3e5
 
1aa7fa4
aeff02a
80ed07e
7795d08
1126f78
aeff02a
 
80ed07e
1aa7fa4
aeff02a
1126f78
aeff02a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7795d08
 
aeff02a
7795d08
 
 
 
 
 
 
 
aeff02a
7795d08
 
 
aeff02a
e906ec1
 
 
 
 
 
aceb3e5
 
 
 
 
 
 
 
 
 
 
 
aeff02a
 
 
 
7795d08
1126f78
a2a65af
 
 
 
1126f78
aceb3e5
cb0df60
 
aceb3e5
 
7795d08
06d8fdb
aceb3e5
06d8fdb
 
 
 
10e2411
 
 
 
 
 
 
aceb3e5
 
10e2411
 
aceb3e5
 
 
 
 
 
 
 
 
 
 
 
 
06d8fdb
aceb3e5
 
 
 
10e2411
 
 
 
06d8fdb
aceb3e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7795d08
 
 
 
 
 
 
359367f
7795d08
 
 
aeff02a
7795d08
 
 
 
 
 
 
 
aeff02a
7795d08
 
 
aeff02a
7795d08
 
 
 
 
 
 
 
 
 
aeff02a
7795d08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06d8fdb
 
 
aceb3e5
 
 
 
 
 
 
 
 
 
aeff02a
7795d08
 
 
 
 
 
 
 
 
 
 
aeff02a
7795d08
 
aeff02a
7795d08
 
 
 
 
 
 
 
aeff02a
7795d08
06d8fdb
7795d08
 
 
 
 
aeff02a
10e2411
7795d08
 
10e2411
 
 
 
 
 
7795d08
 
 
 
 
10e2411
06d8fdb
7795d08
10e2411
aceb3e5
 
 
 
7795d08
10e2411
 
 
 
 
aceb3e5
 
 
10e2411
 
 
 
aceb3e5
 
 
10e2411
aceb3e5
 
 
 
 
 
 
 
10e2411
 
 
 
aceb3e5
 
 
 
 
 
 
 
 
 
 
 
 
10e2411
 
 
 
 
 
 
aceb3e5
 
10e2411
 
7795d08
06d8fdb
 
 
 
 
 
7795d08
aceb3e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7795d08
aceb3e5
 
 
 
 
 
 
 
 
 
 
 
7795d08
aceb3e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7795d08
 
 
06d8fdb
 
7795d08
 
 
 
 
 
aeff02a
 
 
 
 
 
 
 
 
 
f84f14b
 
aeff02a
f84f14b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeff02a
f84f14b
 
 
 
 
 
 
 
 
 
 
 
 
 
aeff02a
f84f14b
 
 
 
 
 
 
 
 
 
 
 
 
 
aeff02a
f84f14b
 
 
 
 
 
 
 
 
 
 
 
 
 
aeff02a
f84f14b
 
 
7795d08
f84f14b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7795d08
f84f14b
aeff02a
f84f14b
 
7795d08
 
 
e906ec1
7795d08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06d8fdb
 
 
aceb3e5
 
 
 
 
 
 
 
 
 
7795d08
e906ec1
7795d08
 
e906ec1
7795d08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f84f14b
7795d08
 
 
aeff02a
06d8fdb
7795d08
 
10e2411
 
 
 
7795d08
 
 
aeff02a
10e2411
7795d08
aeff02a
10e2411
aceb3e5
7795d08
10e2411
aceb3e5
10e2411
aceb3e5
10e2411
 
7795d08
 
06d8fdb
 
 
 
 
aceb3e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7795d08
aceb3e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7795d08
 
 
06d8fdb
 
7795d08
 
 
 
 
 
 
 
aeff02a
7795d08
 
 
 
 
aeff02a
7795d08
 
aeff02a
7795d08
 
 
 
 
 
 
 
 
aeff02a
7795d08
 
 
 
 
 
 
 
aeff02a
7795d08
 
 
 
 
 
 
 
aeff02a
7795d08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeff02a
7795d08
 
 
aeff02a
7795d08
 
 
 
 
 
aceb3e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
import streamlit as st
import subprocess
import os
import json
import numpy as np
import plotly.graph_objects as go
from PIL import Image
import time
import io
import sys
import tempfile
import platform

# Set page config with wider layout
st.set_page_config(
    page_title="Matrix Analysis Dashboard",
    page_icon="📊",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Apply custom CSS for a dashboard-like appearance
st.markdown("""
<style>
    .main-header {
        font-size: 2.5rem;
        color: #1E88E5;
        text-align: center;
        margin-bottom: 1rem;
        padding-bottom: 1rem;
        border-bottom: 2px solid #f0f0f0;
    }
    .dashboard-container {
        background-color: #f9f9f9;
        padding: 1.5rem;
        border-radius: 10px;
        box-shadow: 0 2px 5px rgba(0,0,0,0.1);
        margin-bottom: 1.5rem;
    }
    .panel-header {
        font-size: 1.3rem;
        font-weight: bold;
        margin-bottom: 1rem;
        color: #424242;
        border-left: 4px solid #1E88E5;
        padding-left: 10px;
    }
    .stTabs [data-baseweb="tab-list"] {
        gap: 12px;
    }
    .stTabs [data-baseweb="tab"] {
        height: 50px;
        white-space: pre-wrap;
        background-color: #f0f0f0;
        border-radius: 6px 6px 0 0;
        gap: 1;
        padding-top: 10px;
        padding-bottom: 10px;
    }
    .stTabs [aria-selected="true"] {
        background-color: #1E88E5 !important;
        color: white !important;
    }
    .math-box {
        background-color: #f8f9fa;
        border-left: 3px solid #1E88E5;
        padding: 10px;
        margin: 10px 0;
    }
    .stWarning {
        background-color: #fff3cd;
        padding: 10px;
        border-left: 3px solid #ffc107;
        margin: 10px 0;
    }
    .stSuccess {
        background-color: #d4edda;
        padding: 10px;
        border-left: 3px solid #28a745;
        margin: 10px 0;
    }
</style>
""", unsafe_allow_html=True)

# Dashboard Header
st.markdown('<h1 class="main-header">Matrix Analysis Dashboard</h1>', unsafe_allow_html=True)

# Create output directory in the current working directory
current_dir = os.getcwd()
output_dir = os.path.join(current_dir, "output")
os.makedirs(output_dir, exist_ok=True)

# Path to the C++ source file and executable
cpp_file = os.path.join(current_dir, "app.cpp")
executable = os.path.join(current_dir, "eigen_analysis")
if platform.system() == "Windows":
    executable += ".exe"

# Helper function for running commands with better debugging
def run_command(cmd, show_output=True, timeout=None):
    cmd_str = " ".join(cmd)
    if show_output:
        st.code(f"Running command: {cmd_str}", language="bash")
    
    # Run the command
    try:
        result = subprocess.run(
            cmd,
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            text=True,
            check=False,
            timeout=timeout
        )
        
        if result.returncode == 0:
            if show_output:
                st.success("Command completed successfully.")
                if result.stdout and show_output:
                    with st.expander("Command Output"):
                        st.code(result.stdout)
            return True, result.stdout, result.stderr
        else:
            if show_output:
                st.error(f"Command failed with return code {result.returncode}")
                st.error(f"Command: {cmd_str}")
                st.error(f"Error output: {result.stderr}")
            return False, result.stdout, result.stderr
    
    except subprocess.TimeoutExpired:
        if show_output:
            st.error(f"Command timed out after {timeout} seconds")
        return False, "", f"Command timed out after {timeout} seconds"
    except Exception as e:
        if show_output:
            st.error(f"Error executing command: {str(e)}")
        return False, "", str(e)

# Check if C++ source file exists
if not os.path.exists(cpp_file):
    with open(cpp_file, "w") as f:
        st.warning(f"C++ source file not found at: {cpp_file}")
        st.info("Creating an empty file. Please paste the C++ code into this file and recompile.")
        f.write("// Paste the C++ code here and recompile\n")

# Compile the C++ code with the right OpenCV libraries
st.sidebar.title("Compiler Settings")
need_compile = not os.path.exists(executable) or st.sidebar.button("Recompile C++ Code")

if need_compile:
    with st.sidebar:
        with st.spinner("Compiling C++ code..."):
            # Try to detect the OpenCV installation
            opencv_detection_cmd = ["pkg-config", "--cflags", "--libs", "opencv4"]
            opencv_found, opencv_flags, _ = run_command(opencv_detection_cmd, show_output=False)
            
            compile_commands = []
            
            if opencv_found:
                compile_commands.append(
                    f"g++ -o {executable} {cpp_file} {opencv_flags.strip()} -std=c++11"
                )
            else:
                # Try different OpenCV configurations
                compile_commands = [
                    f"g++ -o {executable} {cpp_file} `pkg-config --cflags --libs opencv4` -std=c++11",
                    f"g++ -o {executable} {cpp_file} `pkg-config --cflags --libs opencv` -std=c++11",
                    f"g++ -o {executable} {cpp_file} -I/usr/include/opencv4 -lopencv_core -lopencv_imgproc -std=c++11",
                    f"g++ -o {executable} {cpp_file} -I/usr/local/include/opencv4 -lopencv_core -lopencv_imgproc -std=c++11"
                ]
            
            compiled = False
            compile_output = ""
            
            for cmd in compile_commands:
                st.text(f"Trying: {cmd}")
                success, stdout, stderr = run_command(cmd.split(), show_output=False)
                compile_output += f"Command: {cmd}\nOutput: {stdout}\nError: {stderr}\n\n"
                
                if success:
                    compiled = True
                    st.success(f"Successfully compiled with: {cmd}")
                    break
            
            if not compiled:
                st.error("All compilation attempts failed.")
                with st.expander("Compilation Details"):
                    st.code(compile_output)
                st.stop()
            
            # Make sure the executable is executable
            if platform.system() != "Windows":
                os.chmod(executable, 0o755)
            
            st.success("C++ code compiled successfully!")

# Create tabs for different analyses
tab1, tab2 = st.tabs(["Eigenvalue Analysis", "Im(s) vs z Analysis"])

# Tab 1: Eigenvalue Analysis
with tab1:
    # Two-column layout for the dashboard
    left_column, right_column = st.columns([1, 3])
    
    with left_column:
        st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
        st.markdown('<div class="panel-header">Eigenvalue Analysis Controls</div>', unsafe_allow_html=True)
        
        # Parameter inputs with defaults and validation
        st.markdown("### Matrix Parameters")
        n = st.number_input("Sample size (n)", min_value=5, max_value=1000, value=100, step=5, 
                           help="Number of samples", key="eig_n")
        p = st.number_input("Dimension (p)", min_value=5, max_value=1000, value=50, step=5, 
                           help="Dimensionality", key="eig_p")
        a = st.number_input("Value for a", min_value=1.1, max_value=10.0, value=2.0, step=0.1, 
                           help="Parameter a > 1", key="eig_a")
        
        # Automatically calculate y = p/n (as requested)
        y = p/n
        st.info(f"Value for y = p/n: {y:.4f}")
        
        st.markdown("### Calculation Controls")
        fineness = st.slider(
            "Beta points", 
            min_value=20, 
            max_value=500, 
            value=100, 
            step=10,
            help="Number of points to calculate along the β axis (0 to 1)",
            key="eig_fineness"
        )
        
        with st.expander("Advanced Settings"):
            # Add controls for theoretical calculation precision
            theory_grid_points = st.slider(
                "Theoretical grid points", 
                min_value=100, 
                max_value=1000, 
                value=200, 
                step=50,
                help="Number of points in initial grid search for theoretical calculations",
                key="eig_grid_points"
            )
            
            theory_tolerance = st.number_input(
                "Theoretical tolerance", 
                min_value=1e-12, 
                max_value=1e-6, 
                value=1e-10, 
                format="%.1e",
                help="Convergence tolerance for golden section search",
                key="eig_tolerance"
            )
            
            # Debug mode
            debug_mode = st.checkbox("Debug Mode", value=False, key="eig_debug")
            
            # Timeout setting
            timeout_seconds = st.number_input(
                "Computation timeout (seconds)", 
                min_value=30, 
                max_value=3600, 
                value=300,
                help="Maximum time allowed for computation before timeout",
                key="eig_timeout"
            )
        
        # Generate button
        eig_generate_button = st.button("Generate Eigenvalue Analysis", 
                                      type="primary", 
                                      use_container_width=True,
                                      key="eig_generate")
        st.markdown('</div>', unsafe_allow_html=True)
    
    with right_column:
        # Main visualization area
        st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
        st.markdown('<div class="panel-header">Eigenvalue Analysis Results</div>', unsafe_allow_html=True)
        
        # Container for the analysis results
        eig_results_container = st.container()
        
        # Process when generate button is clicked
        if eig_generate_button:
            with eig_results_container:
                # Show progress
                progress_container = st.container()
                with progress_container:
                    progress_bar = st.progress(0)
                    status_text = st.empty()
                
                try:
                    # Create data file path
                    data_file = os.path.join(output_dir, "eigenvalue_data.json")
                    
                    # Delete previous output if exists
                    if os.path.exists(data_file):
                        os.remove(data_file)
                    
                    # Build command for eigenvalue analysis with the proper arguments
                    cmd = [
                        executable,
                        "eigenvalues",  # Mode argument
                        str(n),
                        str(p),
                        str(a),
                        str(y),
                        str(fineness),
                        str(theory_grid_points),
                        str(theory_tolerance),
                        data_file
                    ]
                    
                    # Run the command
                    status_text.text("Running eigenvalue analysis...")
                    
                    if debug_mode:
                        success, stdout, stderr = run_command(cmd, True, timeout=timeout_seconds)
                        # Process stdout for progress updates
                        if success:
                            progress_bar.progress(1.0)
                    else:
                        # Start the process with pipe for stdout to read progress
                        process = subprocess.Popen(
                            cmd,
                            stdout=subprocess.PIPE,
                            stderr=subprocess.PIPE,
                            text=True,
                            bufsize=1,
                            universal_newlines=True
                        )
                        
                        # Track progress from stdout
                        success = True
                        stdout_lines = []
                        
                        start_time = time.time()
                        while True:
                            # Check for timeout
                            if time.time() - start_time > timeout_seconds:
                                process.kill()
                                status_text.error(f"Computation timed out after {timeout_seconds} seconds")
                                success = False
                                break
                                
                            # Try to read a line (non-blocking)
                            line = process.stdout.readline()
                            if not line and process.poll() is not None:
                                break
                                
                            if line:
                                stdout_lines.append(line)
                                if line.startswith("PROGRESS:"):
                                    try:
                                        # Update progress bar
                                        progress_value = float(line.split(":")[1].strip())
                                        progress_bar.progress(progress_value)
                                        status_text.text(f"Calculating... {int(progress_value * 100)}% complete")
                                    except:
                                        pass
                                elif line:
                                    status_text.text(line.strip())
                                    
                        # Get the return code and stderr
                        returncode = process.poll()
                        stderr = process.stderr.read()
                        
                        if returncode != 0:
                            success = False
                            st.error(f"Error executing the analysis: {stderr}")
                            with st.expander("Error Details"):
                                st.code(stderr)
                    
                    if success:
                        progress_bar.progress(1.0)
                        status_text.text("Analysis complete! Generating visualization...")
                        
                        # Check if the output file was created
                        if not os.path.exists(data_file):
                            st.error(f"Output file not created: {data_file}")
                            st.stop()
                        
                        try:
                            # Load the results from the JSON file
                            with open(data_file, 'r') as f:
                                data = json.load(f)
                            
                            # Extract data
                            beta_values = np.array(data['beta_values'])
                            max_eigenvalues = np.array(data['max_eigenvalues'])
                            min_eigenvalues = np.array(data['min_eigenvalues'])
                            theoretical_max = np.array(data['theoretical_max'])
                            theoretical_min = np.array(data['theoretical_min'])
                            
                            # Create an interactive plot using Plotly
                            fig = go.Figure()
                            
                            # Add traces for each line
                            fig.add_trace(go.Scatter(
                                x=beta_values, 
                                y=max_eigenvalues,
                                mode='lines+markers',
                                name='Empirical Max Eigenvalue',
                                line=dict(color='rgb(220, 60, 60)', width=3),
                                marker=dict(
                                    symbol='circle',
                                    size=8,
                                    color='rgb(220, 60, 60)',
                                    line=dict(color='white', width=1)
                                ),
                                hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Max</extra>'
                            ))
                            
                            fig.add_trace(go.Scatter(
                                x=beta_values, 
                                y=min_eigenvalues,
                                mode='lines+markers',
                                name='Empirical Min Eigenvalue',
                                line=dict(color='rgb(60, 60, 220)', width=3),
                                marker=dict(
                                    symbol='circle',
                                    size=8,
                                    color='rgb(60, 60, 220)',
                                    line=dict(color='white', width=1)
                                ),
                                hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Min</extra>'
                            ))
                            
                            fig.add_trace(go.Scatter(
                                x=beta_values, 
                                y=theoretical_max,
                                mode='lines+markers',
                                name='Theoretical Max Function',
                                line=dict(color='rgb(30, 180, 30)', width=3),
                                marker=dict(
                                    symbol='diamond',
                                    size=8,
                                    color='rgb(30, 180, 30)',
                                    line=dict(color='white', width=1)
                                ),
                                hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Max</extra>'
                            ))
                            
                            fig.add_trace(go.Scatter(
                                x=beta_values, 
                                y=theoretical_min,
                                mode='lines+markers',
                                name='Theoretical Min Function',
                                line=dict(color='rgb(180, 30, 180)', width=3),
                                marker=dict(
                                    symbol='diamond',
                                    size=8,
                                    color='rgb(180, 30, 180)',
                                    line=dict(color='white', width=1)
                                ),
                                hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Min</extra>'
                            ))
                            
                            # Configure layout for better appearance
                            fig.update_layout(
                                title={
                                    'text': f'Eigenvalue Analysis: n={n}, p={p}, a={a}, y={y:.4f}',
                                    'font': {'size': 24, 'color': '#1E88E5'},
                                    'y': 0.95,
                                    'x': 0.5,
                                    'xanchor': 'center',
                                    'yanchor': 'top'
                                },
                                xaxis={
                                    'title': 'β Parameter',
                                    'titlefont': {'size': 18, 'color': '#424242'},
                                    'tickfont': {'size': 14},
                                    'gridcolor': 'rgba(220, 220, 220, 0.5)',
                                    'showgrid': True
                                },
                                yaxis={
                                    'title': 'Eigenvalues',
                                    'titlefont': {'size': 18, 'color': '#424242'},
                                    'tickfont': {'size': 14},
                                    'gridcolor': 'rgba(220, 220, 220, 0.5)',
                                    'showgrid': True
                                },
                                plot_bgcolor='rgba(240, 240, 240, 0.8)',
                                paper_bgcolor='rgba(249, 249, 249, 0.8)',
                                hovermode='closest',
                                legend={
                                    'font': {'size': 14},
                                    'bgcolor': 'rgba(255, 255, 255, 0.9)',
                                    'bordercolor': 'rgba(200, 200, 200, 0.5)',
                                    'borderwidth': 1
                                },
                                margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
                                height=600,
                                annotations=[
                                    {
                                        'text': f"Max Function: max{{k ∈ (0,∞)}} [yβ(a-1)k + (ak+1)((y-1)k-1)]/[(ak+1)(k²+k)]",
                                        'xref': 'paper', 'yref': 'paper',
                                        'x': 0.02, 'y': 0.02,
                                        'showarrow': False,
                                        'font': {'size': 12, 'color': 'rgb(30, 180, 30)'},
                                        'bgcolor': 'rgba(255, 255, 255, 0.9)',
                                        'bordercolor': 'rgb(30, 180, 30)',
                                        'borderwidth': 1,
                                        'borderpad': 4
                                    },
                                    {
                                        'text': f"Min Function: min{{t ∈ (-1/a,0)}} [yβ(a-1)t + (at+1)((y-1)t-1)]/[(at+1)(t²+t)]",
                                        'xref': 'paper', 'yref': 'paper',
                                        'x': 0.55, 'y': 0.02,
                                        'showarrow': False,
                                        'font': {'size': 12, 'color': 'rgb(180, 30, 180)'},
                                        'bgcolor': 'rgba(255, 255, 255, 0.9)',
                                        'bordercolor': 'rgb(180, 30, 180)',
                                        'borderwidth': 1,
                                        'borderpad': 4
                                    }
                                ]
                            )
                            
                            # Add custom modebar buttons
                            fig.update_layout(
                                modebar_add=[
                                    'drawline', 'drawopenpath', 'drawclosedpath',
                                    'drawcircle', 'drawrect', 'eraseshape'
                                ],
                                modebar_remove=['lasso2d', 'select2d'],
                                dragmode='zoom'
                            )
                            
                            # Clear progress container
                            progress_container.empty()
                            
                            # Display the interactive plot in Streamlit
                            st.plotly_chart(fig, use_container_width=True)
                            
                            # Display statistics
                            with st.expander("Statistics"):
                                col1, col2 = st.columns(2)
                                with col1:
                                    st.write("### Eigenvalue Statistics")
                                    st.write(f"Max empirical value: {max_eigenvalues.max():.6f}")
                                    st.write(f"Min empirical value: {min_eigenvalues.min():.6f}")
                                with col2:
                                    st.write("### Theoretical Values")
                                    st.write(f"Max theoretical value: {theoretical_max.max():.6f}")
                                    st.write(f"Min theoretical value: {theoretical_min.min():.6f}")
                                
                        except json.JSONDecodeError as e:
                            st.error(f"Error parsing JSON results: {str(e)}")
                            if os.path.exists(data_file):
                                with open(data_file, 'r') as f:
                                    content = f.read()
                                st.code(content[:1000] + "..." if len(content) > 1000 else content)
                
                except Exception as e:
                    st.error(f"An error occurred: {str(e)}")
                    if debug_mode:
                        st.exception(e)
        
        else:
            # Try to load existing data if available
            data_file = os.path.join(output_dir, "eigenvalue_data.json")
            if os.path.exists(data_file):
                try:
                    with open(data_file, 'r') as f:
                        data = json.load(f)
                    
                    # Extract data
                    beta_values = np.array(data['beta_values'])
                    max_eigenvalues = np.array(data['max_eigenvalues'])
                    min_eigenvalues = np.array(data['min_eigenvalues'])
                    theoretical_max = np.array(data['theoretical_max'])
                    theoretical_min = np.array(data['theoretical_min'])
                    
                    # Create an interactive plot using Plotly
                    fig = go.Figure()
                    
                    # Add traces for each line
                    fig.add_trace(go.Scatter(
                        x=beta_values, 
                        y=max_eigenvalues,
                        mode='lines+markers',
                        name='Empirical Max Eigenvalue',
                        line=dict(color='rgb(220, 60, 60)', width=3),
                        marker=dict(
                            symbol='circle',
                            size=8,
                            color='rgb(220, 60, 60)',
                            line=dict(color='white', width=1)
                        ),
                        hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Max</extra>'
                    ))
                    
                    fig.add_trace(go.Scatter(
                        x=beta_values, 
                        y=min_eigenvalues,
                        mode='lines+markers',
                        name='Empirical Min Eigenvalue',
                        line=dict(color='rgb(60, 60, 220)', width=3),
                        marker=dict(
                            symbol='circle',
                            size=8,
                            color='rgb(60, 60, 220)',
                            line=dict(color='white', width=1)
                        ),
                        hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Min</extra>'
                    ))
                    
                    fig.add_trace(go.Scatter(
                        x=beta_values, 
                        y=theoretical_max,
                        mode='lines+markers',
                        name='Theoretical Max Function',
                        line=dict(color='rgb(30, 180, 30)', width=3),
                        marker=dict(
                            symbol='diamond',
                            size=8,
                            color='rgb(30, 180, 30)',
                            line=dict(color='white', width=1)
                        ),
                        hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Max</extra>'
                    ))
                    
                    fig.add_trace(go.Scatter(
                        x=beta_values, 
                        y=theoretical_min,
                        mode='lines+markers',
                        name='Theoretical Min Function',
                        line=dict(color='rgb(180, 30, 180)', width=3),
                        marker=dict(
                            symbol='diamond',
                            size=8,
                            color='rgb(180, 30, 180)',
                            line=dict(color='white', width=1)
                        ),
                        hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Min</extra>'
                    ))
                    
                    # Configure layout for better appearance
                    fig.update_layout(
                        title={
                            'text': f'Eigenvalue Analysis (Previous Result)',
                            'font': {'size': 24, 'color': '#1E88E5'},
                            'y': 0.95,
                            'x': 0.5,
                            'xanchor': 'center',
                            'yanchor': 'top'
                        },
                        xaxis={
                            'title': 'β Parameter',
                            'titlefont': {'size': 18, 'color': '#424242'},
                            'tickfont': {'size': 14},
                            'gridcolor': 'rgba(220, 220, 220, 0.5)',
                            'showgrid': True
                        },
                        yaxis={
                            'title': 'Eigenvalues',
                            'titlefont': {'size': 18, 'color': '#424242'},
                            'tickfont': {'size': 14},
                            'gridcolor': 'rgba(220, 220, 220, 0.5)',
                            'showgrid': True
                        },
                        plot_bgcolor='rgba(240, 240, 240, 0.8)',
                        paper_bgcolor='rgba(249, 249, 249, 0.8)',
                        hovermode='closest',
                        legend={
                            'font': {'size': 14},
                            'bgcolor': 'rgba(255, 255, 255, 0.9)',
                            'bordercolor': 'rgba(200, 200, 200, 0.5)',
                            'borderwidth': 1
                        },
                        margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
                        height=600
                    )
                    
                    # Display the interactive plot in Streamlit
                    st.plotly_chart(fig, use_container_width=True)
                    st.info("This is the previous analysis result. Adjust parameters and click 'Generate Analysis' to create a new visualization.")
                    
                except Exception as e:
                    st.info("👈 Set parameters and click 'Generate Eigenvalue Analysis' to create a visualization.")
            else:
                # Show placeholder
                st.info("👈 Set parameters and click 'Generate Eigenvalue Analysis' to create a visualization.")
        
        st.markdown('</div>', unsafe_allow_html=True)

# Tab 2: Im(s) vs z Analysis
with tab2:
    # Two-column layout for the dashboard
    left_column, right_column = st.columns([1, 3])
    
    with left_column:
        st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
        st.markdown('<div class="panel-header">Im(s) vs z Analysis Controls</div>', unsafe_allow_html=True)
        
        # Parameter inputs with defaults and validation
        st.markdown("### Cubic Equation Parameters")
        cubic_a = st.number_input("Value for a", min_value=1.1, max_value=10.0, value=2.0, step=0.1, 
                                help="Parameter a > 1", key="cubic_a")
        cubic_y = st.number_input("Value for y", min_value=0.1, max_value=10.0, value=1.0, step=0.1,
                                 help="Parameter y > 0", key="cubic_y")
        cubic_beta = st.number_input("Value for β", min_value=0.0, max_value=1.0, value=0.5, step=0.05,
                                   help="Value between 0 and 1", key="cubic_beta")
        
        st.markdown("### Calculation Controls")
        cubic_points = st.slider(
            "Number of z points", 
            min_value=50, 
            max_value=1000, 
            value=300, 
            step=50,
            help="Number of points to calculate along the z axis",
            key="cubic_points"
        )
        
        # Debug mode
        cubic_debug_mode = st.checkbox("Debug Mode", value=False, key="cubic_debug")
        
        # Timeout setting
        cubic_timeout = st.number_input(
            "Computation timeout (seconds)", 
            min_value=10, 
            max_value=600, 
            value=60,
            help="Maximum time allowed for computation before timeout",
            key="cubic_timeout"
        )
        
        # Show cubic equation
        st.markdown('<div class="math-box">', unsafe_allow_html=True)
        st.markdown("### Cubic Equation")
        st.latex(r"zas^3 + [z(a+1)+a(1-y)]\,s^2 + [z+(a+1)-y-y\beta (a-1)]\,s + 1 = 0")
        st.markdown('</div>', unsafe_allow_html=True)
        
        # Generate button
        cubic_generate_button = st.button("Generate Im(s) vs z Analysis", 
                                        type="primary", 
                                        use_container_width=True,
                                        key="cubic_generate")
        st.markdown('</div>', unsafe_allow_html=True)
    
    with right_column:
        # Main visualization area
        st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
        st.markdown('<div class="panel-header">Im(s) vs z Analysis Results</div>', unsafe_allow_html=True)
        
        # Container for the analysis results
        cubic_results_container = st.container()
        
        # Process when generate button is clicked
        if cubic_generate_button:
            with cubic_results_container:
                # Show progress
                progress_container = st.container()
                with progress_container:
                    status_text = st.empty()
                    status_text.text("Starting cubic equation calculations...")
                
                try:
                    # Run the C++ executable with the parameters in JSON output mode
                    data_file = os.path.join(output_dir, "cubic_data.json")
                    
                    # Delete previous output if exists
                    if os.path.exists(data_file):
                        os.remove(data_file)
                    
                    # Build command for cubic equation analysis
                    cmd = [
                        executable,
                        "cubic",  # Mode argument
                        str(cubic_a),
                        str(cubic_y),
                        str(cubic_beta),
                        str(cubic_points),
                        data_file
                    ]
                    
                    # Run the command
                    status_text.text("Calculating Im(s) vs z values...")
                    
                    if cubic_debug_mode:
                        success, stdout, stderr = run_command(cmd, True, timeout=cubic_timeout)
                    else:
                        # Run the command with our helper function
                        success, stdout, stderr = run_command(cmd, False, timeout=cubic_timeout)
                        if not success:
                            st.error(f"Error executing cubic analysis: {stderr}")
                    
                    if success:
                        status_text.text("Calculations complete! Generating visualization...")
                        
                        # Check if the output file was created
                        if not os.path.exists(data_file):
                            st.error(f"Output file not created: {data_file}")
                            st.stop()
                        
                        try:
                            # Load the results from the JSON file
                            with open(data_file, 'r') as f:
                                data = json.load(f)
                            
                            # Extract data
                            z_values = np.array(data['z_values'])
                            ims_values1 = np.array(data['ims_values1'])
                            ims_values2 = np.array(data['ims_values2'])
                            ims_values3 = np.array(data['ims_values3'])
                            
                            # Create an interactive plot using Plotly
                            fig = go.Figure()
                            
                            # Add traces for each root's imaginary part
                            fig.add_trace(go.Scatter(
                                x=z_values, 
                                y=ims_values1,
                                mode='lines',
                                name='Im(s₁)',
                                line=dict(color='rgb(220, 60, 60)', width=3),
                                hovertemplate='z: %{x:.3f}<br>Im(s₁): %{y:.6f}<extra>Root 1</extra>'
                            ))
                            
                            fig.add_trace(go.Scatter(
                                x=z_values, 
                                y=ims_values2,
                                mode='lines',
                                name='Im(s₂)',
                                line=dict(color='rgb(60, 60, 220)', width=3),
                                hovertemplate='z: %{x:.3f}<br>Im(s₂): %{y:.6f}<extra>Root 2</extra>'
                            ))
                            
                            fig.add_trace(go.Scatter(
                                x=z_values, 
                                y=ims_values3,
                                mode='lines',
                                name='Im(s₃)',
                                line=dict(color='rgb(30, 180, 30)', width=3),
                                hovertemplate='z: %{x:.3f}<br>Im(s₃): %{y:.6f}<extra>Root 3</extra>'
                            ))
                            
                            # Configure layout for better appearance
                            fig.update_layout(
                                title={
                                    'text': f'Im(s) vs z Analysis: a={cubic_a}, y={cubic_y}, β={cubic_beta}',
                                    'font': {'size': 24, 'color': '#1E88E5'},
                                    'y': 0.95,
                                    'x': 0.5,
                                    'xanchor': 'center',
                                    'yanchor': 'top'
                                },
                                xaxis={
                                    'title': 'z (logarithmic scale)',
                                    'titlefont': {'size': 18, 'color': '#424242'},
                                    'tickfont': {'size': 14},
                                    'gridcolor': 'rgba(220, 220, 220, 0.5)',
                                    'showgrid': True,
                                    'type': 'log'  # Use logarithmic scale for better visualization
                                },
                                yaxis={
                                    'title': 'Im(s)',
                                    'titlefont': {'size': 18, 'color': '#424242'},
                                    'tickfont': {'size': 14},
                                    'gridcolor': 'rgba(220, 220, 220, 0.5)',
                                    'showgrid': True
                                },
                                plot_bgcolor='rgba(240, 240, 240, 0.8)',
                                paper_bgcolor='rgba(249, 249, 249, 0.8)',
                                hovermode='closest',
                                legend={
                                    'font': {'size': 14},
                                    'bgcolor': 'rgba(255, 255, 255, 0.9)',
                                    'bordercolor': 'rgba(200, 200, 200, 0.5)',
                                    'borderwidth': 1
                                },
                                margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
                                height=600,
                                annotations=[
                                    {
                                        'text': f"Cubic Equation: {cubic_a}zs³ + [{cubic_a+1}z+{cubic_a}(1-{cubic_y})]s² + [z+{cubic_a+1}-{cubic_y}-{cubic_y*cubic_beta}({cubic_a-1})]s + 1 = 0",
                                        'xref': 'paper', 'yref': 'paper',
                                        'x': 0.5, 'y': 0.02,
                                        'showarrow': False,
                                        'font': {'size': 12, 'color': 'black'},
                                        'bgcolor': 'rgba(255, 255, 255, 0.9)',
                                        'bordercolor': 'rgba(0, 0, 0, 0.5)',
                                        'borderwidth': 1,
                                        'borderpad': 4,
                                        'align': 'center'
                                    }
                                ]
                            )
                            
                            # Add custom modebar buttons
                            fig.update_layout(
                                modebar_add=[
                                    'drawline', 'drawopenpath', 'drawclosedpath',
                                    'drawcircle', 'drawrect', 'eraseshape'
                                ],
                                modebar_remove=['lasso2d', 'select2d'],
                                dragmode='zoom'
                            )
                            
                            # Clear progress container
                            progress_container.empty()
                            
                            # Display the interactive plot in Streamlit
                            st.plotly_chart(fig, use_container_width=True)
                            
                            # Add explanation text
                            st.markdown("""
                            ### Explanation of the Analysis
                            
                            This plot shows the imaginary parts of the three roots (s₁, s₂, s₃) of the cubic equation as a function of z. 
                            The cubic equation being solved is:
                            
                            ```
                            zas³ + [z(a+1)+a(1-y)]s² + [z+(a+1)-y-yβ(a-1)]s + 1 = 0
                            ```
                            
                            Where a, y, and β are parameters you can adjust in the control panel. The imaginary parts of the roots represent 
                            oscillatory behavior in the system.
                            
                            - When Im(s) = 0, the root is purely real
                            - When Im(s) ≠ 0, the root has an oscillatory component
                            """)
                            
                        except json.JSONDecodeError as e:
                            st.error(f"Error parsing JSON results: {str(e)}")
                            if os.path.exists(data_file):
                                with open(data_file, 'r') as f:
                                    content = f.read()
                                st.code(content[:1000] + "..." if len(content) > 1000 else content)
                
                except Exception as e:
                    st.error(f"An error occurred: {str(e)}")
                    if cubic_debug_mode:
                        st.exception(e)
        
        else:
            # Try to load existing data if available
            data_file = os.path.join(output_dir, "cubic_data.json")
            if os.path.exists(data_file):
                try:
                    with open(data_file, 'r') as f:
                        data = json.load(f)
                    
                    # Extract data
                    z_values = np.array(data['z_values'])
                    ims_values1 = np.array(data['ims_values1'])
                    ims_values2 = np.array(data['ims_values2'])
                    ims_values3 = np.array(data['ims_values3'])
                    
                    # Create an interactive plot using Plotly
                    fig = go.Figure()
                    
                    # Add traces for each root's imaginary part
                    fig.add_trace(go.Scatter(
                        x=z_values, 
                        y=ims_values1,
                        mode='lines',
                        name='Im(s₁)',
                        line=dict(color='rgb(220, 60, 60)', width=3),
                        hovertemplate='z: %{x:.3f}<br>Im(s₁): %{y:.6f}<extra>Root 1</extra>'
                    ))
                    
                    fig.add_trace(go.Scatter(
                        x=z_values, 
                        y=ims_values2,
                        mode='lines',
                        name='Im(s₂)',
                        line=dict(color='rgb(60, 60, 220)', width=3),
                        hovertemplate='z: %{x:.3f}<br>Im(s₂): %{y:.6f}<extra>Root 2</extra>'
                    ))
                    
                    fig.add_trace(go.Scatter(
                        x=z_values, 
                        y=ims_values3,
                        mode='lines',
                        name='Im(s₃)',
                        line=dict(color='rgb(30, 180, 30)', width=3),
                        hovertemplate='z: %{x:.3f}<br>Im(s₃): %{y:.6f}<extra>Root 3</extra>'
                    ))
                    
                    # Configure layout for better appearance
                    fig.update_layout(
                        title={
                            'text': f'Im(s) vs z Analysis (Previous Result)',
                            'font': {'size': 24, 'color': '#1E88E5'},
                            'y': 0.95,
                            'x': 0.5,
                            'xanchor': 'center',
                            'yanchor': 'top'
                        },
                        xaxis={
                            'title': 'z (logarithmic scale)',
                            'titlefont': {'size': 18, 'color': '#424242'},
                            'tickfont': {'size': 14},
                            'gridcolor': 'rgba(220, 220, 220, 0.5)',
                            'showgrid': True,
                            'type': 'log'  # Use logarithmic scale for better visualization
                        },
                        yaxis={
                            'title': 'Im(s)',
                            'titlefont': {'size': 18, 'color': '#424242'},
                            'tickfont': {'size': 14},
                            'gridcolor': 'rgba(220, 220, 220, 0.5)',
                            'showgrid': True
                        },
                        plot_bgcolor='rgba(240, 240, 240, 0.8)',
                        paper_bgcolor='rgba(249, 249, 249, 0.8)',
                        hovermode='closest',
                        legend={
                            'font': {'size': 14},
                            'bgcolor': 'rgba(255, 255, 255, 0.9)',
                            'bordercolor': 'rgba(200, 200, 200, 0.5)',
                            'borderwidth': 1
                        },
                        margin={'l': 60, 'r': 30, 't': 100, 'b': 60},
                        height=600
                    )
                    
                    # Display the interactive plot in Streamlit
                    st.plotly_chart(fig, use_container_width=True)
                    st.info("This is the previous analysis result. Adjust parameters and click 'Generate Analysis' to create a new visualization.")
                    
                except Exception as e:
                    st.info("👈 Set parameters and click 'Generate Im(s) vs z Analysis' to create a visualization.")
            else:
                # Show placeholder
                st.info("👈 Set parameters and click 'Generate Im(s) vs z Analysis' to create a visualization.")
        
        st.markdown('</div>', unsafe_allow_html=True)

# Add footer with instructions
st.markdown("""
---
### Instructions for Using the Dashboard

1. **Select a tab** at the top to choose between Eigenvalue Analysis and Im(s) vs z Analysis
2. **Adjust parameters** in the left panel to configure your analysis
3. **Click the Generate button** to run the analysis with the selected parameters
4. **Explore the results** in the interactive plot
5. For advanced users, you can enable **Debug Mode** to see detailed output

If you encounter any issues with compilation, try clicking the "Recompile C++ Code" button in the sidebar.
""")