Spaces:
Running
Running
File size: 38,168 Bytes
dd5ca7d a76f82e 319d05d dd5ca7d 80ed07e 19ef319 80ed07e c02def7 dd5ca7d 19ef319 dd5ca7d 19ef319 dd5ca7d 913575d dd5ca7d 19ef319 dd5ca7d 19ef319 dd5ca7d 19ef319 dd5ca7d 2690664 19ef319 913575d e14afd8 e0149a8 2d93a46 e14afd8 dec1797 e0149a8 e14afd8 e0149a8 e14afd8 e0149a8 e14afd8 675a582 e14afd8 675a582 e14afd8 dec1797 e14afd8 dec1797 e14afd8 e0149a8 7a1ddff 7bda4fb 19ef319 675a582 913575d 6333e73 675a582 6333e73 dd5ca7d 19ef319 675a582 19ef319 675a582 913575d 73bcec5 675a582 73bcec5 675a582 73bcec5 675a582 73bcec5 675a582 73bcec5 c02def7 0357330 7a1ddff c02def7 dec1797 c02def7 dec1797 c02def7 19ef319 c02def7 19ef319 675a582 df770a8 c02def7 3c11a35 f1f1cff c02def7 df770a8 3c11a35 c02def7 99f6a90 f1f1cff 3c11a35 f1f1cff 675a582 5be6912 f1f1cff 7a1ddff f1f1cff c02def7 e0149a8 dec1797 e0149a8 19ef319 e0149a8 e14afd8 e0149a8 e14afd8 e0149a8 e14afd8 e0149a8 dec1797 19ef319 73bcec5 dec1797 73bcec5 c02def7 df770a8 c02def7 3be6fe9 c02def7 7a1ddff c02def7 dec1797 3be6fe9 19ef319 3be6fe9 e0149a8 dec1797 3be6fe9 dec1797 73bcec5 c02def7 3be6fe9 c02def7 e0149a8 c02def7 dec1797 c02def7 dec1797 73bcec5 dec1797 3be6fe9 e0149a8 3be6fe9 19ef319 7a1ddff dd5ca7d 19ef319 675a582 19ef319 675a582 19ef319 913575d 2690664 19ef319 7a1ddff 0357330 7a1ddff 0357330 319d05d 675a582 0357330 7a1ddff 0357330 675a582 7a1ddff 675a582 0357330 319d05d 0357330 319d05d 0357330 7a1ddff 0357330 7a1ddff 0357330 319d05d 7a1ddff 0357330 319d05d 7a1ddff 0357330 7a1ddff 19ef319 dd5ca7d 0357330 7a1ddff dd5ca7d 19ef319 dd5ca7d 675a582 ba9a480 675a582 ba9a480 675a582 e0149a8 675a582 e0149a8 675a582 dec1797 675a582 dec1797 675a582 dec1797 675a582 3c11a35 c02def7 3c11a35 a12ae05 7e1ea3e df770a8 675a582 c02def7 7e1ea3e c02def7 675a582 c02def7 675a582 e0149a8 675a582 e0149a8 dec1797 e0149a8 dec1797 e0149a8 19ef319 675a582 19ef319 0357330 dd5ca7d 0357330 b7ef8c3 1a4a7a6 675a582 1a4a7a6 0357330 ba9a480 2690664 ef6361a 0357330 675a582 0357330 a76f82e c02def7 913575d 19ef319 675a582 19ef319 c02def7 e0149a8 675a582 e0149a8 e14afd8 c02def7 19ef319 e0149a8 e14afd8 e0149a8 da34afc c02def7 da34afc c02def7 e0149a8 c02def7 e0149a8 c02def7 e0149a8 c02def7 e0149a8 c02def7 675a582 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 |
import streamlit as st
import sympy as sp
import numpy as np
import plotly.graph_objects as go
from scipy.optimize import fsolve
from scipy.stats import gaussian_kde
# Configure Streamlit for Hugging Face Spaces
st.set_page_config(
page_title="Cubic Root Analysis",
layout="wide",
initial_sidebar_state="collapsed"
)
def add_sqrt_support(expr_str):
"""Replace 'sqrt(' with 'sp.sqrt(' for sympy compatibility"""
return expr_str.replace('sqrt(', 'sp.sqrt(')
#############################
# 1) Define the discriminant
#############################
# Symbolic variables for the cubic discriminant
z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True, positive=True)
# Define coefficients a, b, c, d in terms of z_sym, beta_sym, z_a_sym, y_sym
a_sym = z_sym * z_a_sym
b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym
c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym)
d_sym = 1
# Symbolic expression for the cubic discriminant
Delta_expr = (
((b_sym*c_sym)/(6*a_sym**2) - (b_sym**3)/(27*a_sym**3) - d_sym/(2*a_sym))**2
+ (c_sym/(3*a_sym) - (b_sym**2)/(9*a_sym**2))**3
)
# Fast numeric function for the discriminant
discriminant_func = sp.lambdify((z_sym, beta_sym, z_a_sym, y_sym), Delta_expr, "numpy")
@st.cache_data
def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps):
"""
Scan z in [z_min, z_max] for sign changes in the discriminant,
and return approximated roots (where the discriminant is zero).
"""
z_grid = np.linspace(z_min, z_max, steps)
disc_vals = discriminant_func(z_grid, beta, z_a, y)
roots_found = []
for i in range(len(z_grid) - 1):
f1, f2 = disc_vals[i], disc_vals[i+1]
if np.isnan(f1) or np.isnan(f2):
continue
if f1 == 0.0:
roots_found.append(z_grid[i])
elif f2 == 0.0:
roots_found.append(z_grid[i+1])
elif f1 * f2 < 0:
zl, zr = z_grid[i], z_grid[i+1]
for _ in range(50):
mid = 0.5 * (zl + zr)
fm = discriminant_func(mid, beta, z_a, y)
if fm == 0:
zl = zr = mid
break
if np.sign(fm) == np.sign(f1):
zl, f1 = mid, fm
else:
zr, f2 = mid, fm
roots_found.append(0.5 * (zl + zr))
return np.array(roots_found)
@st.cache_data
def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps):
"""
For each beta in [0,1] (with beta_steps points), find the minimum and maximum z
for which the discriminant is zero.
Returns: betas, lower z*(β) values, and upper z*(β) values.
"""
betas = np.linspace(0, 1, beta_steps)
z_min_values = []
z_max_values = []
for b in betas:
roots = find_z_at_discriminant_zero(z_a, y, b, z_min, z_max, z_steps)
if len(roots) == 0:
z_min_values.append(np.nan)
z_max_values.append(np.nan)
else:
z_min_values.append(np.min(roots))
z_max_values.append(np.max(roots))
return betas, np.array(z_min_values), np.array(z_max_values)
@st.cache_data
def compute_eigenvalue_support_boundaries(z_a, y, beta_values, n_samples=100, seeds=5):
"""
Compute the support boundaries of the eigenvalue distribution by directly
finding the minimum and maximum eigenvalues of B_n = S_n T_n for different beta values.
"""
# Apply the condition for y
y_effective = y if y > 1 else 1/y
min_eigenvalues = np.zeros_like(beta_values)
max_eigenvalues = np.zeros_like(beta_values)
# Use a progress bar for Streamlit
progress_bar = st.progress(0)
status_text = st.empty()
for i, beta in enumerate(beta_values):
# Update progress
progress_bar.progress((i + 1) / len(beta_values))
status_text.text(f"Processing β = {beta:.2f} ({i+1}/{len(beta_values)})")
min_vals = []
max_vals = []
# Run multiple trials with different seeds for more stable results
for seed in range(seeds):
# Set random seed
np.random.seed(seed * 100 + i)
# Compute dimension p based on aspect ratio y
n = n_samples
p = int(y_effective * n)
# Constructing T_n (Population / Shape Matrix)
k = int(np.floor(beta * p))
diag_entries = np.concatenate([
np.full(k, z_a),
np.full(p - k, 1.0)
])
np.random.shuffle(diag_entries)
T_n = np.diag(diag_entries)
# Generate the data matrix X with i.i.d. standard normal entries
X = np.random.randn(p, n)
# Compute the sample covariance matrix S_n = (1/n) * XX^T
S_n = (1 / n) * (X @ X.T)
# Compute B_n = S_n T_n
B_n = S_n @ T_n
# Compute eigenvalues of B_n
eigenvalues = np.linalg.eigvalsh(B_n)
# Find minimum and maximum eigenvalues
min_vals.append(np.min(eigenvalues))
max_vals.append(np.max(eigenvalues))
# Average over seeds for stability
min_eigenvalues[i] = np.mean(min_vals)
max_eigenvalues[i] = np.mean(max_vals)
# Clear progress indicators
progress_bar.empty()
status_text.empty()
return min_eigenvalues, max_eigenvalues
@st.cache_data
def compute_high_y_curve(betas, z_a, y):
"""
Compute the "High y Expression" curve.
"""
# Apply the condition for y
y_effective = y if y > 1 else 1/y
a = z_a
betas = np.array(betas)
denominator = 1 - 2*a
if denominator == 0:
return np.full_like(betas, np.nan)
numerator = -4*a*(a-1)*y_effective*betas - 2*a*y_effective - 2*a*(2*a-1)
return numerator/denominator
def compute_alternate_low_expr(betas, z_a, y):
"""
Compute the alternate low expression:
(z_a*y*beta*(z_a-1) - 2*z_a*(1-y) - 2*z_a**2) / (2+2*z_a)
"""
# Apply the condition for y
y_effective = y if y > 1 else 1/y
betas = np.array(betas)
return (z_a * y_effective * betas * (z_a - 1) - 2*z_a*(1 - y_effective) - 2*z_a**2) / (2 + 2*z_a)
@st.cache_data
def compute_max_k_expression(betas, z_a, y, k_samples=1000):
"""
Compute max_{k ∈ (0,∞)} (y*beta*(a-1)*k + (a*k+1)*((y-1)*k-1)) / ((a*k+1)*(k^2+k))
"""
# Apply the condition for y
y_effective = y if y > 1 else 1/y
a = z_a
# Sample k values on a logarithmic scale
k_values = np.logspace(-3, 3, k_samples)
max_vals = np.zeros_like(betas)
for i, beta in enumerate(betas):
values = np.zeros_like(k_values)
for j, k in enumerate(k_values):
numerator = y_effective*beta*(a-1)*k + (a*k+1)*((y_effective-1)*k-1)
denominator = (a*k+1)*(k**2+k)
if abs(denominator) < 1e-10:
values[j] = np.nan
else:
values[j] = numerator/denominator
valid_indices = ~np.isnan(values)
if np.any(valid_indices):
max_vals[i] = np.max(values[valid_indices])
else:
max_vals[i] = np.nan
return max_vals
@st.cache_data
def compute_min_t_expression(betas, z_a, y, t_samples=1000):
"""
Compute min_{t ∈ (-1/a, 0)} (y*beta*(a-1)*t + (a*t+1)*((y-1)*t-1)) / ((a*t+1)*(t^2+t))
"""
# Apply the condition for y
y_effective = y if y > 1 else 1/y
a = z_a
if a <= 0:
return np.full_like(betas, np.nan)
lower_bound = -1/a + 1e-10 # Avoid division by zero
t_values = np.linspace(lower_bound, -1e-10, t_samples)
min_vals = np.zeros_like(betas)
for i, beta in enumerate(betas):
values = np.zeros_like(t_values)
for j, t in enumerate(t_values):
numerator = y_effective*beta*(a-1)*t + (a*t+1)*((y_effective-1)*t-1)
denominator = (a*t+1)*(t**2+t)
if abs(denominator) < 1e-10:
values[j] = np.nan
else:
values[j] = numerator/denominator
valid_indices = ~np.isnan(values)
if np.any(valid_indices):
min_vals[i] = np.min(values[valid_indices])
else:
min_vals[i] = np.nan
return min_vals
@st.cache_data
def compute_derivatives(curve, betas):
"""Compute first and second derivatives of a curve"""
d1 = np.gradient(curve, betas)
d2 = np.gradient(d1, betas)
return d1, d2
def compute_all_derivatives(betas, z_mins, z_maxs, low_y_curve, high_y_curve, alt_low_expr, custom_curve1=None, custom_curve2=None):
"""Compute derivatives for all curves"""
derivatives = {}
# Upper z*(β)
derivatives['upper'] = compute_derivatives(z_maxs, betas)
# Lower z*(β)
derivatives['lower'] = compute_derivatives(z_mins, betas)
# Low y Expression (only if provided)
if low_y_curve is not None:
derivatives['low_y'] = compute_derivatives(low_y_curve, betas)
# High y Expression
if high_y_curve is not None:
derivatives['high_y'] = compute_derivatives(high_y_curve, betas)
# Alternate Low Expression
if alt_low_expr is not None:
derivatives['alt_low'] = compute_derivatives(alt_low_expr, betas)
# Custom Expression 1 (if provided)
if custom_curve1 is not None:
derivatives['custom1'] = compute_derivatives(custom_curve1, betas)
# Custom Expression 2 (if provided)
if custom_curve2 is not None:
derivatives['custom2'] = compute_derivatives(custom_curve2, betas)
return derivatives
def compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, is_s_based=True):
"""
Compute custom curve. If is_s_based=True, compute using s substitution.
Otherwise, compute direct z(β) expression.
"""
# Apply the condition for y
y_effective = y if y > 1 else 1/y
beta_sym, z_a_sym, y_sym = sp.symbols("beta z_a y", positive=True)
local_dict = {"beta": beta_sym, "z_a": z_a_sym, "y": y_sym, "sp": sp}
try:
# Add sqrt support
s_num_expr = add_sqrt_support(s_num_expr)
s_denom_expr = add_sqrt_support(s_denom_expr)
num_expr = sp.sympify(s_num_expr, locals=local_dict)
denom_expr = sp.sympify(s_denom_expr, locals=local_dict)
if is_s_based:
# Compute s and substitute into main expression
s_expr = num_expr / denom_expr
a = z_a_sym
numerator = y_sym*beta_sym*(z_a_sym-1)*s_expr + (a*s_expr+1)*((y_sym-1)*s_expr-1)
denominator = (a*s_expr+1)*(s_expr**2 + s_expr)
final_expr = numerator/denominator
else:
# Direct z(β) expression
final_expr = num_expr / denom_expr
except sp.SympifyError as e:
st.error(f"Error parsing expressions: {e}")
return np.full_like(betas, np.nan)
final_func = sp.lambdify((beta_sym, z_a_sym, y_sym), final_expr, modules=["numpy"])
with np.errstate(divide='ignore', invalid='ignore'):
result = final_func(betas, z_a, y_effective)
if np.isscalar(result):
result = np.full_like(betas, result)
return result
def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps,
s_num_expr=None, s_denom_expr=None,
z_num_expr=None, z_denom_expr=None,
show_derivatives=False,
show_high_y=False,
show_low_y=False,
show_max_k=True,
show_min_t=True,
use_eigenvalue_method=True,
n_samples=1000,
seeds=5):
if z_a <= 0 or y <= 0 or z_min >= z_max:
st.error("Invalid input parameters.")
return None
betas = np.linspace(0, 1, beta_steps)
if use_eigenvalue_method:
# Use the eigenvalue method to compute boundaries
st.info("Computing eigenvalue support boundaries. This may take a moment...")
min_eigs, max_eigs = compute_eigenvalue_support_boundaries(z_a, y, betas, n_samples, seeds)
z_mins, z_maxs = min_eigs, max_eigs
else:
# Use the original discriminant method
betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps)
high_y_curve = compute_high_y_curve(betas, z_a, y) if show_high_y else None
alt_low_expr = compute_alternate_low_expr(betas, z_a, y) if show_low_y else None
# Compute the max/min expressions
max_k_curve = compute_max_k_expression(betas, z_a, y) if show_max_k else None
min_t_curve = compute_min_t_expression(betas, z_a, y) if show_min_t else None
# Compute both custom curves
custom_curve1 = None
custom_curve2 = None
if s_num_expr and s_denom_expr:
custom_curve1 = compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, True)
if z_num_expr and z_denom_expr:
custom_curve2 = compute_custom_expression(betas, z_a, y, z_num_expr, z_denom_expr, False)
# Compute derivatives if needed
if show_derivatives:
derivatives = compute_all_derivatives(betas, z_mins, z_maxs, None, high_y_curve,
alt_low_expr, custom_curve1, custom_curve2)
# Calculate derivatives for max_k and min_t curves if they exist
if show_max_k:
max_k_derivatives = compute_derivatives(max_k_curve, betas)
if show_min_t:
min_t_derivatives = compute_derivatives(min_t_curve, betas)
fig = go.Figure()
# Original curves
if use_eigenvalue_method:
fig.add_trace(go.Scatter(x=betas, y=z_maxs, mode="markers+lines",
name="Upper Bound (Max Eigenvalue)", line=dict(color='blue')))
fig.add_trace(go.Scatter(x=betas, y=z_mins, mode="markers+lines",
name="Lower Bound (Min Eigenvalue)", line=dict(color='blue')))
# Add shaded region between curves
fig.add_trace(go.Scatter(
x=np.concatenate([betas, betas[::-1]]),
y=np.concatenate([z_maxs, z_mins[::-1]]),
fill='toself',
fillcolor='rgba(0,0,255,0.2)',
line=dict(color='rgba(255,255,255,0)'),
showlegend=False,
hoverinfo='skip'
))
else:
fig.add_trace(go.Scatter(x=betas, y=z_maxs, mode="markers+lines",
name="Upper z*(β)", line=dict(color='blue')))
fig.add_trace(go.Scatter(x=betas, y=z_mins, mode="markers+lines",
name="Lower z*(β)", line=dict(color='blue')))
# Add High y Expression only if selected
if show_high_y and high_y_curve is not None:
fig.add_trace(go.Scatter(x=betas, y=high_y_curve, mode="markers+lines",
name="High y Expression", line=dict(color='green')))
# Add Low Expression only if selected
if show_low_y and alt_low_expr is not None:
fig.add_trace(go.Scatter(x=betas, y=alt_low_expr, mode="markers+lines",
name="Low Expression", line=dict(color='green')))
# Add the max/min curves if selected
if show_max_k and max_k_curve is not None:
fig.add_trace(go.Scatter(x=betas, y=max_k_curve, mode="lines",
name="Max k Expression", line=dict(color='red', width=2)))
if show_min_t and min_t_curve is not None:
fig.add_trace(go.Scatter(x=betas, y=min_t_curve, mode="lines",
name="Min t Expression", line=dict(color='orange', width=2)))
if custom_curve1 is not None:
fig.add_trace(go.Scatter(x=betas, y=custom_curve1, mode="markers+lines",
name="Custom 1 (s-based)", line=dict(color='purple')))
if custom_curve2 is not None:
fig.add_trace(go.Scatter(x=betas, y=custom_curve2, mode="markers+lines",
name="Custom 2 (direct)", line=dict(color='magenta')))
if show_derivatives:
# First derivatives
curve_info = [
('upper', 'Upper Bound' if use_eigenvalue_method else 'Upper z*(β)', 'blue'),
('lower', 'Lower Bound' if use_eigenvalue_method else 'Lower z*(β)', 'lightblue'),
]
if show_high_y and high_y_curve is not None:
curve_info.append(('high_y', 'High y', 'green'))
if show_low_y and alt_low_expr is not None:
curve_info.append(('alt_low', 'Alt Low', 'orange'))
if custom_curve1 is not None:
curve_info.append(('custom1', 'Custom 1', 'purple'))
if custom_curve2 is not None:
curve_info.append(('custom2', 'Custom 2', 'magenta'))
for key, name, color in curve_info:
if key in derivatives:
fig.add_trace(go.Scatter(x=betas, y=derivatives[key][0], mode="lines",
name=f"{name} d/dβ", line=dict(color=color, dash='dash')))
fig.add_trace(go.Scatter(x=betas, y=derivatives[key][1], mode="lines",
name=f"{name} d²/dβ²", line=dict(color=color, dash='dot')))
# Add derivatives for max_k and min_t curves if they exist
if show_max_k and max_k_curve is not None:
fig.add_trace(go.Scatter(x=betas, y=max_k_derivatives[0], mode="lines",
name="Max k d/dβ", line=dict(color='red', dash='dash')))
fig.add_trace(go.Scatter(x=betas, y=max_k_derivatives[1], mode="lines",
name="Max k d²/dβ²", line=dict(color='red', dash='dot')))
if show_min_t and min_t_curve is not None:
fig.add_trace(go.Scatter(x=betas, y=min_t_derivatives[0], mode="lines",
name="Min t d/dβ", line=dict(color='orange', dash='dash')))
fig.add_trace(go.Scatter(x=betas, y=min_t_derivatives[1], mode="lines",
name="Min t d²/dβ²", line=dict(color='orange', dash='dot')))
fig.update_layout(
title="Curves vs β: Eigenvalue Support Boundaries and Asymptotic Expressions" if use_eigenvalue_method
else "Curves vs β: z*(β) Boundaries and Asymptotic Expressions",
xaxis_title="β",
yaxis_title="Value",
hovermode="x unified",
showlegend=True,
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
)
)
return fig
def compute_cubic_roots(z, beta, z_a, y):
"""
Compute the roots of the cubic equation for given parameters.
"""
# Apply the condition for y
y_effective = y if y > 1 else 1/y
a = z * z_a
b = z * z_a + z + z_a - z_a*y_effective
c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta)
d = 1
coeffs = [a, b, c, d]
roots = np.roots(coeffs)
return roots
def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
"""
Generate Im(s) and Re(s) vs. z plots.
"""
if z_a <= 0 or y <= 0 or z_min >= z_max:
st.error("Invalid input parameters.")
return None, None
z_points = np.linspace(z_min, z_max, n_points)
ims, res = [], []
for z in z_points:
roots = compute_cubic_roots(z, beta, z_a, y)
roots = sorted(roots, key=lambda x: abs(x.imag))
ims.append([root.imag for root in roots])
res.append([root.real for root in roots])
ims = np.array(ims)
res = np.array(res)
fig_im = go.Figure()
for i in range(3):
fig_im.add_trace(go.Scatter(x=z_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}",
line=dict(width=2)))
fig_im.update_layout(title=f"Im{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
xaxis_title="z", yaxis_title="Im{s}", hovermode="x unified")
fig_re = go.Figure()
for i in range(3):
fig_re.add_trace(go.Scatter(x=z_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}",
line=dict(width=2)))
fig_re.update_layout(title=f"Re{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
xaxis_title="z", yaxis_title="Re{s}", hovermode="x unified")
return fig_im, fig_re
@st.cache_data
def generate_eigenvalue_distribution(beta, y, z_a, n=1000, seed=42):
"""
Generate the eigenvalue distribution of B_n = S_n T_n as n→∞
"""
# Apply the condition for y
y_effective = y if y > 1 else 1/y
# Set random seed
np.random.seed(seed)
# Compute dimension p based on aspect ratio y
p = int(y_effective * n)
# Constructing T_n (Population / Shape Matrix) - using the approach from the second script
k = int(np.floor(beta * p))
diag_entries = np.concatenate([
np.full(k, z_a),
np.full(p - k, 1.0)
])
np.random.shuffle(diag_entries)
T_n = np.diag(diag_entries)
# Generate the data matrix X with i.i.d. standard normal entries
X = np.random.randn(p, n)
# Compute the sample covariance matrix S_n = (1/n) * XX^T
S_n = (1 / n) * (X @ X.T)
# Compute B_n = S_n T_n
B_n = S_n @ T_n
# Compute eigenvalues of B_n
eigenvalues = np.linalg.eigvalsh(B_n)
# Use KDE to compute a smooth density estimate
kde = gaussian_kde(eigenvalues)
x_vals = np.linspace(min(eigenvalues), max(eigenvalues), 500)
kde_vals = kde(x_vals)
# Create figure
fig = go.Figure()
# Add histogram trace
fig.add_trace(go.Histogram(x=eigenvalues, histnorm='probability density',
name="Histogram", marker=dict(color='blue', opacity=0.6)))
# Add KDE trace
fig.add_trace(go.Scatter(x=x_vals, y=kde_vals, mode="lines",
name="KDE", line=dict(color='red', width=2)))
fig.update_layout(
title=f"Eigenvalue Distribution for B_n = S_n T_n (y={y:.1f}, β={beta:.2f}, a={z_a:.1f})",
xaxis_title="Eigenvalue",
yaxis_title="Density",
hovermode="closest",
showlegend=True
)
return fig
# ----------------- Streamlit UI -----------------
st.title("Cubic Root Analysis")
# Define three tabs (removed "Curve Intersections")
tab1, tab2, tab3 = st.tabs(["z*(β) Curves", "Im{s} vs. z", "Differential Analysis"])
# ----- Tab 1: z*(β) Curves -----
with tab1:
st.header("Eigenvalue Support Boundaries")
# Cleaner layout with better column organization
col1, col2, col3 = st.columns([1, 1, 2])
with col1:
z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1")
y_1 = st.number_input("y", value=1.0, key="y_1")
with col2:
z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1")
z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1")
with col1:
method_type = st.radio(
"Calculation Method",
["Eigenvalue Method", "Discriminant Method"],
index=0 # Default to eigenvalue method
)
# Advanced settings in collapsed expanders
with st.expander("Method Settings", expanded=False):
if method_type == "Eigenvalue Method":
beta_steps = st.slider("β steps", min_value=21, max_value=101, value=51, step=10,
key="beta_steps_eigen")
n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000,
step=100)
seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1)
else:
beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50,
key="beta_steps")
z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000,
step=1000, key="z_steps")
# Curve visibility options
with st.expander("Curve Visibility", expanded=False):
col_vis1, col_vis2 = st.columns(2)
with col_vis1:
show_high_y = st.checkbox("Show High y Expression", value=False, key="show_high_y")
show_max_k = st.checkbox("Show Max k Expression", value=True, key="show_max_k")
with col_vis2:
show_low_y = st.checkbox("Show Low y Expression", value=False, key="show_low_y")
show_min_t = st.checkbox("Show Min t Expression", value=True, key="show_min_t")
# Custom expressions collapsed by default
with st.expander("Custom Expression 1 (s-based)", expanded=False):
st.markdown("""Enter expressions for s = numerator/denominator
(using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
st.latex(r"\text{This s will be inserted into:}")
st.latex(r"\frac{y\beta(z_a-1)\underline{s}+(a\underline{s}+1)((y-1)\underline{s}-1)}{(a\underline{s}+1)(\underline{s}^2 + \underline{s})}")
s_num = st.text_input("s numerator", value="", key="s_num")
s_denom = st.text_input("s denominator", value="", key="s_denom")
with st.expander("Custom Expression 2 (direct z(β))", expanded=False):
st.markdown("""Enter direct expression for z(β) = numerator/denominator
(using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
z_num = st.text_input("z(β) numerator", value="", key="z_num")
z_denom = st.text_input("z(β) denominator", value="", key="z_denom")
# Move show_derivatives to main UI level for better visibility
with col2:
show_derivatives = st.checkbox("Show derivatives", value=False)
# Compute button
if st.button("Compute Curves", key="tab1_button"):
with col3:
use_eigenvalue_method = (method_type == "Eigenvalue Method")
if use_eigenvalue_method:
fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, None,
s_num, s_denom, z_num, z_denom, show_derivatives,
show_high_y, show_low_y, show_max_k, show_min_t,
use_eigenvalue_method=True, n_samples=n_samples,
seeds=seeds)
else:
fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, z_steps,
s_num, s_denom, z_num, z_denom, show_derivatives,
show_high_y, show_low_y, show_max_k, show_min_t,
use_eigenvalue_method=False)
if fig is not None:
st.plotly_chart(fig, use_container_width=True)
# Curve explanations in collapsed expander
with st.expander("Curve Explanations", expanded=False):
if use_eigenvalue_method:
st.markdown("""
- **Upper/Lower Bounds** (Blue): Maximum/minimum eigenvalues of B_n = S_n T_n
- **Shaded Region**: Eigenvalue support region
- **High y Expression** (Green): Asymptotic approximation for high y values
- **Low Expression** (Orange): Alternative asymptotic expression
- **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
- **Min t Expression** (Orange): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$
- **Custom Expression 1** (Purple): Result from user-defined s substituted into the main formula
- **Custom Expression 2** (Magenta): Direct z(β) expression
""")
else:
st.markdown("""
- **Upper z*(β)** (Blue): Maximum z value where discriminant is zero
- **Lower z*(β)** (Light Blue): Minimum z value where discriminant is zero
- **High y Expression** (Green): Asymptotic approximation for high y values
- **Low Expression** (Orange): Alternative asymptotic expression
- **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
- **Min t Expression** (Orange): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$
- **Custom Expression 1** (Purple): Result from user-defined s substituted into the main formula
- **Custom Expression 2** (Magenta): Direct z(β) expression
""")
if show_derivatives:
st.markdown("""
Derivatives are shown as:
- Dashed lines: First derivatives (d/dβ)
- Dotted lines: Second derivatives (d²/dβ²)
""")
# ----- Tab 2: Im{s} vs. z -----
with tab2:
st.header("Plot Complex Roots vs. z")
col1, col2 = st.columns([1, 2])
with col1:
beta = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_tab2")
y_2 = st.number_input("y", value=1.0, key="y_tab2")
z_a_2 = st.number_input("z_a", value=1.0, key="z_a_tab2")
z_min_2 = st.number_input("z_min", value=-10.0, key="z_min_tab2")
z_max_2 = st.number_input("z_max", value=10.0, key="z_max_tab2")
with st.expander("Resolution Settings", expanded=False):
z_points = st.slider("z grid points", min_value=1000, max_value=10000, value=5000, step=500, key="z_points")
if st.button("Compute Complex Roots vs. z", key="tab2_button"):
with col2:
fig_im, fig_re = generate_root_plots(beta, y_2, z_a_2, z_min_2, z_max_2, z_points)
if fig_im is not None and fig_re is not None:
st.plotly_chart(fig_im, use_container_width=True)
st.plotly_chart(fig_re, use_container_width=True)
# Add a separator
st.markdown("---")
# Add eigenvalue distribution section
st.header("Eigenvalue Distribution for B_n = S_n T_n")
with st.expander("Simulation Information", expanded=False):
st.markdown("""
This simulation generates the eigenvalue distribution of B_n as n→∞, where:
- B_n = (1/n)XX* with X being a p×n matrix
- p/n → y as n→∞
- All elements of X are i.i.d with distribution β·δ(z_a) + (1-β)·δ(1)
""")
col_eigen1, col_eigen2 = st.columns([1, 2])
with col_eigen1:
n_samples = st.slider("Number of samples (n)", min_value=100, max_value=2000, value=1000, step=100)
sim_seed = st.number_input("Random seed", min_value=1, max_value=1000, value=42, step=1)
if st.button("Generate Eigenvalue Distribution", key="tab2_eigen_button"):
with col_eigen2:
fig_eigen = generate_eigenvalue_distribution(beta, y_2, z_a_2, n=n_samples, seed=sim_seed)
if fig_eigen is not None:
st.plotly_chart(fig_eigen, use_container_width=True)
# ----- Tab 3: Differential Analysis -----
with tab3:
st.header("Differential Analysis vs. β")
with st.expander("Description", expanded=False):
st.markdown("This page shows the difference between the Upper (blue) and Lower (lightblue) z*(β) curves, along with their first and second derivatives with respect to β.")
col1, col2 = st.columns([1, 2])
with col1:
z_a_diff = st.number_input("z_a", value=1.0, key="z_a_diff")
y_diff = st.number_input("y", value=1.0, key="y_diff")
z_min_diff = st.number_input("z_min", value=-10.0, key="z_min_diff")
z_max_diff = st.number_input("z_max", value=10.0, key="z_max_diff")
diff_method_type = st.radio(
"Boundary Calculation Method",
["Eigenvalue Method", "Discriminant Method"],
index=0,
key="diff_method_type"
)
with st.expander("Resolution Settings", expanded=False):
if diff_method_type == "Eigenvalue Method":
beta_steps_diff = st.slider("β steps", min_value=21, max_value=101, value=51, step=10,
key="beta_steps_diff_eigen")
diff_n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000,
step=100, key="diff_n_samples")
diff_seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1,
key="diff_seeds")
else:
beta_steps_diff = st.slider("β steps", min_value=51, max_value=501, value=201, step=50,
key="beta_steps_diff")
z_steps_diff = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000,
step=1000, key="z_steps_diff")
# Add options for curve selection
st.subheader("Curves to Analyze")
analyze_upper_lower = st.checkbox("Upper-Lower Difference", value=True)
analyze_high_y = st.checkbox("High y Expression", value=False)
analyze_alt_low = st.checkbox("Alternate Low Expression", value=False)
if st.button("Compute Differentials", key="tab3_button"):
with col2:
use_eigenvalue_method_diff = (diff_method_type == "Eigenvalue Method")
if use_eigenvalue_method_diff:
betas_diff = np.linspace(0, 1, beta_steps_diff)
st.info("Computing eigenvalue support boundaries. This may take a moment...")
lower_vals, upper_vals = compute_eigenvalue_support_boundaries(
z_a_diff, y_diff, betas_diff, diff_n_samples, diff_seeds)
else:
betas_diff, lower_vals, upper_vals = sweep_beta_and_find_z_bounds(
z_a_diff, y_diff, z_min_diff, z_max_diff, beta_steps_diff, z_steps_diff)
# Create figure
fig_diff = go.Figure()
if analyze_upper_lower:
diff_curve = upper_vals - lower_vals
d1 = np.gradient(diff_curve, betas_diff)
d2 = np.gradient(d1, betas_diff)
fig_diff.add_trace(go.Scatter(x=betas_diff, y=diff_curve, mode="lines",
name="Upper-Lower Difference", line=dict(color="magenta", width=2)))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
name="Upper-Lower d/dβ", line=dict(color="magenta", dash='dash')))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
name="Upper-Lower d²/dβ²", line=dict(color="magenta", dash='dot')))
if analyze_high_y:
high_y_curve = compute_high_y_curve(betas_diff, z_a_diff, y_diff)
d1 = np.gradient(high_y_curve, betas_diff)
d2 = np.gradient(d1, betas_diff)
fig_diff.add_trace(go.Scatter(x=betas_diff, y=high_y_curve, mode="lines",
name="High y", line=dict(color="green", width=2)))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
name="High y d/dβ", line=dict(color="green", dash='dash')))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
name="High y d²/dβ²", line=dict(color="green", dash='dot')))
if analyze_alt_low:
alt_low_curve = compute_alternate_low_expr(betas_diff, z_a_diff, y_diff)
d1 = np.gradient(alt_low_curve, betas_diff)
d2 = np.gradient(d1, betas_diff)
fig_diff.add_trace(go.Scatter(x=betas_diff, y=alt_low_curve, mode="lines",
name="Alt Low", line=dict(color="orange", width=2)))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
name="Alt Low d/dβ", line=dict(color="orange", dash='dash')))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
name="Alt Low d²/dβ²", line=dict(color="orange", dash='dot')))
fig_diff.update_layout(
title="Differential Analysis vs. β" +
(" (Eigenvalue Method)" if use_eigenvalue_method_diff else " (Discriminant Method)"),
xaxis_title="β",
yaxis_title="Value",
hovermode="x unified",
showlegend=True,
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
)
)
st.plotly_chart(fig_diff, use_container_width=True)
with st.expander("Curve Types", expanded=False):
st.markdown("""
- Solid lines: Original curves
- Dashed lines: First derivatives (d/dβ)
- Dotted lines: Second derivatives (d²/dβ²)
""") |