euler314's picture
Update app.py
319d05d verified
raw
history blame
26.1 kB
import streamlit as st
import sympy as sp
import numpy as np
import plotly.graph_objects as go
from scipy.optimize import fsolve
from scipy.stats import gaussian_kde
# Configure Streamlit for Hugging Face Spaces
st.set_page_config(
page_title="Cubic Root Analysis",
layout="wide",
initial_sidebar_state="collapsed"
)
def add_sqrt_support(expr_str):
"""Replace 'sqrt(' with 'sp.sqrt(' for sympy compatibility"""
return expr_str.replace('sqrt(', 'sp.sqrt(')
#############################
# 1) Define the discriminant
#############################
# Symbolic variables for the cubic discriminant
z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True, positive=True)
# Define coefficients a, b, c, d in terms of z_sym, beta_sym, z_a_sym, y_sym
a_sym = z_sym * z_a_sym
b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym
c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym)
d_sym = 1
# Symbolic expression for the cubic discriminant
Delta_expr = (
((b_sym*c_sym)/(6*a_sym**2) - (b_sym**3)/(27*a_sym**3) - d_sym/(2*a_sym))**2
+ (c_sym/(3*a_sym) - (b_sym**2)/(9*a_sym**2))**3
)
# Fast numeric function for the discriminant
discriminant_func = sp.lambdify((z_sym, beta_sym, z_a_sym, y_sym), Delta_expr, "numpy")
@st.cache_data
def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps):
"""
Scan z in [z_min, z_max] for sign changes in the discriminant,
and return approximated roots (where the discriminant is zero).
"""
z_grid = np.linspace(z_min, z_max, steps)
disc_vals = discriminant_func(z_grid, beta, z_a, y)
roots_found = []
for i in range(len(z_grid) - 1):
f1, f2 = disc_vals[i], disc_vals[i+1]
if np.isnan(f1) or np.isnan(f2):
continue
if f1 == 0.0:
roots_found.append(z_grid[i])
elif f2 == 0.0:
roots_found.append(z_grid[i+1])
elif f1 * f2 < 0:
zl, zr = z_grid[i], z_grid[i+1]
for _ in range(50):
mid = 0.5 * (zl + zr)
fm = discriminant_func(mid, beta, z_a, y)
if fm == 0:
zl = zr = mid
break
if np.sign(fm) == np.sign(f1):
zl, f1 = mid, fm
else:
zr, f2 = mid, fm
roots_found.append(0.5 * (zl + zr))
return np.array(roots_found)
@st.cache_data
def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps):
"""
For each beta in [0,1] (with beta_steps points), find the minimum and maximum z
for which the discriminant is zero.
Returns: betas, lower z*(β) values, and upper z*(β) values.
"""
betas = np.linspace(0, 1, beta_steps)
z_min_values = []
z_max_values = []
for b in betas:
roots = find_z_at_discriminant_zero(z_a, y, b, z_min, z_max, z_steps)
if len(roots) == 0:
z_min_values.append(np.nan)
z_max_values.append(np.nan)
else:
z_min_values.append(np.min(roots))
z_max_values.append(np.max(roots))
return betas, np.array(z_min_values), np.array(z_max_values)
@st.cache_data
def compute_low_y_curve(betas, z_a, y):
"""
Compute the "Low y Expression" curve.
"""
betas = np.array(betas)
with np.errstate(invalid='ignore', divide='ignore'):
sqrt_term = y * betas * (z_a - 1)
sqrt_term = np.where(sqrt_term < 0, np.nan, np.sqrt(sqrt_term))
term = (-1 + sqrt_term) / z_a
numerator = (y - 2)*term + y * betas * ((z_a - 1)/z_a) - 1/z_a - 1
denominator = term**2 + term
mask = (denominator != 0) & ~np.isnan(denominator) & ~np.isnan(numerator)
result = np.where(mask, numerator/denominator, np.nan)
return result
@st.cache_data
def compute_high_y_curve(betas, z_a, y):
"""
Compute the "High y Expression" curve.
"""
a = z_a
betas = np.array(betas)
denominator = 1 - 2*a
if denominator == 0:
return np.full_like(betas, np.nan)
numerator = -4*a*(a-1)*y*betas - 2*a*y - 2*a*(2*a-1)
return numerator/denominator
def compute_alternate_low_expr(betas, z_a, y):
"""
Compute the alternate low expression:
(z_a*y*beta*(z_a-1) - 2*z_a*(1-y) - 2*z_a**2) / (2+2*z_a)
"""
betas = np.array(betas)
return (z_a * y * betas * (z_a - 1) - 2*z_a*(1 - y) - 2*z_a**2) / (2 + 2*z_a)
@st.cache_data
def compute_derivatives(curve, betas):
"""Compute first and second derivatives of a curve"""
d1 = np.gradient(curve, betas)
d2 = np.gradient(d1, betas)
return d1, d2
def compute_all_derivatives(betas, z_mins, z_maxs, low_y_curve, high_y_curve, alt_low_expr, custom_curve1=None, custom_curve2=None):
"""Compute derivatives for all curves"""
derivatives = {}
# Upper z*(β)
derivatives['upper'] = compute_derivatives(z_maxs, betas)
# Lower z*(β)
derivatives['lower'] = compute_derivatives(z_mins, betas)
# Low y Expression
if low_y_curve is not None:
derivatives['low_y'] = compute_derivatives(low_y_curve, betas)
# High y Expression
derivatives['high_y'] = compute_derivatives(high_y_curve, betas)
# Alternate Low Expression
derivatives['alt_low'] = compute_derivatives(alt_low_expr, betas)
# Custom Expression 1 (if provided)
if custom_curve1 is not None:
derivatives['custom1'] = compute_derivatives(custom_curve1, betas)
# Custom Expression 2 (if provided)
if custom_curve2 is not None:
derivatives['custom2'] = compute_derivatives(custom_curve2, betas)
return derivatives
def compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, is_s_based=True):
"""
Compute custom curve. If is_s_based=True, compute using s substitution.
Otherwise, compute direct z(β) expression.
"""
beta_sym, z_a_sym, y_sym = sp.symbols("beta z_a y", positive=True)
local_dict = {"beta": beta_sym, "z_a": z_a_sym, "y": y_sym, "sp": sp}
try:
# Add sqrt support
s_num_expr = add_sqrt_support(s_num_expr)
s_denom_expr = add_sqrt_support(s_denom_expr)
num_expr = sp.sympify(s_num_expr, locals=local_dict)
denom_expr = sp.sympify(s_denom_expr, locals=local_dict)
if is_s_based:
# Compute s and substitute into main expression
s_expr = num_expr / denom_expr
a = z_a_sym
numerator = y_sym*beta_sym*(z_a_sym-1)*s_expr + (a*s_expr+1)*((y_sym-1)*s_expr-1)
denominator = (a*s_expr+1)*(s_expr**2 + s_expr)
final_expr = numerator/denominator
else:
# Direct z(β) expression
final_expr = num_expr / denom_expr
except sp.SympifyError as e:
st.error(f"Error parsing expressions: {e}")
return np.full_like(betas, np.nan)
final_func = sp.lambdify((beta_sym, z_a_sym, y_sym), final_expr, modules=["numpy"])
with np.errstate(divide='ignore', invalid='ignore'):
result = final_func(betas, z_a, y)
if np.isscalar(result):
result = np.full_like(betas, result)
return result
def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps,
s_num_expr=None, s_denom_expr=None,
z_num_expr=None, z_denom_expr=None,
show_derivatives=False):
if z_a <= 0 or y <= 0 or z_min >= z_max:
st.error("Invalid input parameters.")
return None
betas = np.linspace(0, 1, beta_steps)
betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps)
# Remove low_y_curve computation and display as requested
# low_y_curve = compute_low_y_curve(betas, z_a, y) # Commented out
high_y_curve = compute_high_y_curve(betas, z_a, y)
alt_low_expr = compute_alternate_low_expr(betas, z_a, y)
# Compute both custom curves
custom_curve1 = None
custom_curve2 = None
if s_num_expr and s_denom_expr:
custom_curve1 = compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, True)
if z_num_expr and z_denom_expr:
custom_curve2 = compute_custom_expression(betas, z_a, y, z_num_expr, z_denom_expr, False)
# Compute derivatives if needed
if show_derivatives:
derivatives = compute_all_derivatives(betas, z_mins, z_maxs, None, high_y_curve,
alt_low_expr, custom_curve1, custom_curve2)
fig = go.Figure()
# Original curves
fig.add_trace(go.Scatter(x=betas, y=z_maxs, mode="markers+lines",
name="Upper z*(β)", line=dict(color='blue')))
fig.add_trace(go.Scatter(x=betas, y=z_mins, mode="markers+lines",
name="Lower z*(β)", line=dict(color='lightblue')))
# Remove low_y_curve trace as requested
# fig.add_trace(go.Scatter(x=betas, y=low_y_curve, mode="markers+lines",
# name="Low y Expression", line=dict(color='red')))
fig.add_trace(go.Scatter(x=betas, y=high_y_curve, mode="markers+lines",
name="High y Expression", line=dict(color='green')))
fig.add_trace(go.Scatter(x=betas, y=alt_low_expr, mode="markers+lines",
name="Alternate Low Expression", line=dict(color='orange')))
if custom_curve1 is not None:
fig.add_trace(go.Scatter(x=betas, y=custom_curve1, mode="markers+lines",
name="Custom 1 (s-based)", line=dict(color='purple')))
if custom_curve2 is not None:
fig.add_trace(go.Scatter(x=betas, y=custom_curve2, mode="markers+lines",
name="Custom 2 (direct)", line=dict(color='magenta')))
if show_derivatives:
# First derivatives
curve_info = [
('upper', 'Upper z*(β)', 'blue'),
('lower', 'Lower z*(β)', 'lightblue'),
# ('low_y', 'Low y', 'red'), # Removed as requested
('high_y', 'High y', 'green'),
('alt_low', 'Alt Low', 'orange')
]
if custom_curve1 is not None:
curve_info.append(('custom1', 'Custom 1', 'purple'))
if custom_curve2 is not None:
curve_info.append(('custom2', 'Custom 2', 'magenta'))
for key, name, color in curve_info:
fig.add_trace(go.Scatter(x=betas, y=derivatives[key][0], mode="lines",
name=f"{name} d/dβ", line=dict(color=color, dash='dash')))
fig.add_trace(go.Scatter(x=betas, y=derivatives[key][1], mode="lines",
name=f"{name} d²/dβ²", line=dict(color=color, dash='dot')))
fig.update_layout(
title="Curves vs β: z*(β) Boundaries and Asymptotic Expressions",
xaxis_title="β",
yaxis_title="Value",
hovermode="x unified",
showlegend=True,
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
)
)
return fig
def compute_cubic_roots(z, beta, z_a, y):
"""
Compute the roots of the cubic equation for given parameters.
"""
a = z * z_a
b = z * z_a + z + z_a - z_a*y
c = z + z_a + 1 - y*(beta*z_a + 1 - beta)
d = 1
coeffs = [a, b, c, d]
roots = np.roots(coeffs)
return roots
def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
"""
Generate Im(s) and Re(s) vs. z plots.
"""
if z_a <= 0 or y <= 0 or z_min >= z_max:
st.error("Invalid input parameters.")
return None, None
z_points = np.linspace(z_min, z_max, n_points)
ims, res = [], []
for z in z_points:
roots = compute_cubic_roots(z, beta, z_a, y)
roots = sorted(roots, key=lambda x: abs(x.imag))
ims.append([root.imag for root in roots])
res.append([root.real for root in roots])
ims = np.array(ims)
res = np.array(res)
fig_im = go.Figure()
for i in range(3):
fig_im.add_trace(go.Scatter(x=z_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}",
line=dict(width=2)))
fig_im.update_layout(title=f"Im{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
xaxis_title="z", yaxis_title="Im{s}", hovermode="x unified")
fig_re = go.Figure()
for i in range(3):
fig_re.add_trace(go.Scatter(x=z_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}",
line=dict(width=2)))
fig_re.update_layout(title=f"Re{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
xaxis_title="z", yaxis_title="Re{s}", hovermode="x unified")
return fig_im, fig_re
# New function for computing eigenvalue distribution directly
@st.cache_data
def compute_eigenvalue_distribution_direct(z_a, y, beta, n, num_samples=10):
"""
Compute the eigenvalue distribution by directly generating random matrices and computing eigenvalues.
Parameters:
- z_a: The value 'a' in the distribution β·δ_a + (1-β)·δ_1
- y: The asymptotic ratio p/n
- beta: The mixing coefficient in the distribution
- n: Size of the matrix dimension n
- num_samples: Number of random matrices to generate for averaging
Returns:
- all_eigenvalues: Array of all eigenvalues from all samples
"""
p = int(y * n) # Calculate p based on aspect ratio y
all_eigenvalues = []
for _ in range(num_samples):
# Generate random matrix X with elements following β·δ_a + (1-β)·δ_1
# This means each element is 'a' with probability β, and 1 with probability (1-β)
random_values = np.random.choice([z_a, 1.0], size=(p, n), p=[beta, 1-beta])
# Compute B_n = (1/n)XX*
X = random_values
XX_star = X @ X.T
B_n = XX_star / n
# Compute eigenvalues
eigenvalues = np.linalg.eigvalsh(B_n)
all_eigenvalues.extend(eigenvalues)
return np.array(all_eigenvalues)
def generate_esd_plot_direct(z_a, y, beta, n, num_samples=10, bandwidth=0.1):
"""
Generate a plot of the eigenvalue distribution using KDE.
"""
# Compute eigenvalues
eigenvalues = compute_eigenvalue_distribution_direct(z_a, y, beta, n, num_samples)
# Use KDE to estimate the density
kde = gaussian_kde(eigenvalues, bw_method=bandwidth)
# Generate points for plotting
x_min = max(0, np.min(eigenvalues) - 0.5)
x_max = np.max(eigenvalues) + 0.5
x_values = np.linspace(x_min, x_max, 1000)
density_values = kde(x_values)
# Create the plot
fig = go.Figure()
fig.add_trace(go.Scatter(x=x_values, y=density_values, mode="lines",
name="Eigenvalue Density", line=dict(color='blue', width=2)))
# Add individual eigenvalue points as a rug plot
fig.add_trace(go.Scatter(x=eigenvalues, y=np.zeros_like(eigenvalues),
mode="markers", name="Eigenvalues",
marker=dict(color='red', size=3, opacity=0.5)))
fig.update_layout(
title=f"Eigenvalue Distribution (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f}, n={n})",
xaxis_title="Eigenvalue",
yaxis_title="Density",
hovermode="x unified"
)
return fig
# ----------------- Streamlit UI -----------------
st.title("Cubic Root Analysis")
# Define three tabs (removed "Curve Intersections" tab)
tab1, tab2, tab3 = st.tabs(["z*(β) Curves", "Im{s} vs. z", "Differential Analysis"])
# ----- Tab 1: z*(β) Curves -----
with tab1:
st.header("Find z Values where Cubic Roots Transition Between Real and Complex")
col1, col2 = st.columns([1, 2])
with col1:
z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1")
y_1 = st.number_input("y", value=1.0, key="y_1")
z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1")
z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1")
with st.expander("Resolution Settings"):
beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, key="beta_steps")
z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, step=1000, key="z_steps")
st.subheader("Custom Expression 1 (s-based)")
st.markdown("""Enter expressions for s = numerator/denominator
(using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
st.latex(r"\text{This s will be inserted into:}")
st.latex(r"\frac{y\beta(z_a-1)\underline{s}+(a\underline{s}+1)((y-1)\underline{s}-1)}{(a\underline{s}+1)(\underline{s}^2 + \underline{s})}")
s_num = st.text_input("s numerator", value="y*beta*(z_a-1)", key="s_num")
s_denom = st.text_input("s denominator", value="z_a", key="s_denom")
st.subheader("Custom Expression 2 (direct z(β))")
st.markdown("""Enter direct expression for z(β) = numerator/denominator
(using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
z_num = st.text_input("z(β) numerator", value="y*beta*(z_a-1)", key="z_num")
z_denom = st.text_input("z(β) denominator", value="1", key="z_denom")
show_derivatives = st.checkbox("Show derivatives", value=False)
if st.button("Compute z vs. β Curves", key="tab1_button"):
with col2:
fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, z_steps,
s_num, s_denom, z_num, z_denom, show_derivatives)
if fig is not None:
st.plotly_chart(fig, use_container_width=True)
st.markdown("### Curve Explanations")
st.markdown("""
- **Upper z*(β)** (Blue): Maximum z value where discriminant is zero
- **Lower z*(β)** (Light Blue): Minimum z value where discriminant is zero
- **High y Expression** (Green): Asymptotic approximation for high y values
- **Alternate Low Expression** (Orange): Alternative asymptotic expression
- **Custom Expression 1** (Purple): Result from user-defined s substituted into the main formula
- **Custom Expression 2** (Magenta): Direct z(β) expression
""")
if show_derivatives:
st.markdown("""
Derivatives are shown as:
- Dashed lines: First derivatives (d/dβ)
- Dotted lines: Second derivatives (d²/dβ²)
""")
# ----- Tab 2: Im{s} vs. z and Eigenvalue Distribution -----
with tab2:
st.header("Plot Complex Roots vs. z and Eigenvalue Distribution")
col1, col2 = st.columns([1, 2])
with col1:
beta = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_tab2")
y_2 = st.number_input("y", value=1.0, key="y_tab2")
z_a_2 = st.number_input("z_a", value=1.0, key="z_a_tab2")
z_min_2 = st.number_input("z_min", value=-10.0, key="z_min_tab2")
z_max_2 = st.number_input("z_max", value=10.0, key="z_max_tab2")
with st.expander("Resolution Settings"):
z_points = st.slider("z grid points", min_value=1000, max_value=10000, value=5000, step=500, key="z_points")
# Add new settings for eigenvalue distribution
st.subheader("Eigenvalue Distribution Settings")
matrix_size = st.slider("Matrix size (n)", min_value=50, max_value=1000, value=200, step=50, key="matrix_size")
num_samples = st.slider("Number of matrix samples", min_value=1, max_value=50, value=10, step=1, key="num_samples")
bandwidth = st.slider("KDE bandwidth", min_value=0.01, max_value=0.5, value=0.1, step=0.01, key="kde_bandwidth")
if st.button("Compute", key="tab2_button"):
with col2:
fig_im, fig_re = generate_root_plots(beta, y_2, z_a_2, z_min_2, z_max_2, z_points)
if fig_im is not None and fig_re is not None:
st.plotly_chart(fig_im, use_container_width=True)
st.plotly_chart(fig_re, use_container_width=True)
# Add eigenvalue distribution plot with direct computation and KDE
with st.spinner("Computing eigenvalue distribution..."):
fig_esd = generate_esd_plot_direct(z_a_2, y_2, beta, matrix_size, num_samples, bandwidth)
st.plotly_chart(fig_esd, use_container_width=True)
st.markdown("""
### Eigenvalue Distribution Explanation
This plot shows the eigenvalue distribution of B_n = (1/n)XX* where:
- X is a p×n matrix with p/n = y
- Elements of X are i.i.d. following distribution β·δ_a + (1-β)·δ_1
- a = z_a, y = y, β = β
The distribution is computed by:
1. Directly generating random matrices with the specified distribution
2. Computing the eigenvalues of B_n
3. Using Kernel Density Estimation (KDE) to visualize the distribution
Red markers at the bottom indicate individual eigenvalues.
""")
# ----- Tab 3: Differential Analysis -----
with tab3:
st.header("Differential Analysis vs. β")
st.markdown("This page shows the difference between the Upper (blue) and Lower (lightblue) z*(β) curves, along with their first and second derivatives with respect to β.")
col1, col2 = st.columns([1, 2])
with col1:
z_a_diff = st.number_input("z_a", value=1.0, key="z_a_diff")
y_diff = st.number_input("y", value=1.0, key="y_diff")
z_min_diff = st.number_input("z_min", value=-10.0, key="z_min_diff")
z_max_diff = st.number_input("z_max", value=10.0, key="z_max_diff")
with st.expander("Resolution Settings"):
beta_steps_diff = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, key="beta_steps_diff")
z_steps_diff = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, step=1000, key="z_steps_diff")
# Add options for curve selection
st.subheader("Curves to Analyze")
analyze_upper_lower = st.checkbox("Upper-Lower Difference", value=True)
analyze_high_y = st.checkbox("High y Expression", value=False)
analyze_alt_low = st.checkbox("Alternate Low Expression", value=False)
if st.button("Compute Differentials", key="tab3_button"):
with col2:
betas_diff, lower_vals, upper_vals = sweep_beta_and_find_z_bounds(z_a_diff, y_diff, z_min_diff, z_max_diff, beta_steps_diff, z_steps_diff)
# Create figure
fig_diff = go.Figure()
if analyze_upper_lower:
diff_curve = upper_vals - lower_vals
d1 = np.gradient(diff_curve, betas_diff)
d2 = np.gradient(d1, betas_diff)
fig_diff.add_trace(go.Scatter(x=betas_diff, y=diff_curve, mode="lines",
name="Upper-Lower Difference", line=dict(color="magenta", width=2)))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
name="Upper-Lower d/dβ", line=dict(color="magenta", dash='dash')))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
name="Upper-Lower d²/dβ²", line=dict(color="magenta", dash='dot')))
if analyze_high_y:
high_y_curve = compute_high_y_curve(betas_diff, z_a_diff, y_diff)
d1 = np.gradient(high_y_curve, betas_diff)
d2 = np.gradient(d1, betas_diff)
fig_diff.add_trace(go.Scatter(x=betas_diff, y=high_y_curve, mode="lines",
name="High y", line=dict(color="green", width=2)))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
name="High y d/dβ", line=dict(color="green", dash='dash')))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
name="High y d²/dβ²", line=dict(color="green", dash='dot')))
if analyze_alt_low:
alt_low_curve = compute_alternate_low_expr(betas_diff, z_a_diff, y_diff)
d1 = np.gradient(alt_low_curve, betas_diff)
d2 = np.gradient(d1, betas_diff)
fig_diff.add_trace(go.Scatter(x=betas_diff, y=alt_low_curve, mode="lines",
name="Alt Low", line=dict(color="orange", width=2)))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
name="Alt Low d/dβ", line=dict(color="orange", dash='dash')))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
name="Alt Low d²/dβ²", line=dict(color="orange", dash='dot')))
fig_diff.update_layout(
title="Differential Analysis vs. β",
xaxis_title="β",
yaxis_title="Value",
hovermode="x unified",
showlegend=True,
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
)
)
st.plotly_chart(fig_diff, use_container_width=True)
st.markdown("""
### Curve Types
- Solid lines: Original curves
- Dashed lines: First derivatives (d/dβ)
- Dotted lines: Second derivatives (d²/dβ²)
""")