Spaces:
Running
Running
import streamlit as st | |
import sympy as sp | |
import numpy as np | |
import plotly.graph_objects as go | |
from scipy.optimize import fsolve | |
from scipy.stats import gaussian_kde | |
# Configure Streamlit for Hugging Face Spaces | |
st.set_page_config( | |
page_title="Cubic Root Analysis", | |
layout="wide", | |
initial_sidebar_state="collapsed" | |
) | |
def add_sqrt_support(expr_str): | |
"""Replace 'sqrt(' with 'sp.sqrt(' for sympy compatibility""" | |
return expr_str.replace('sqrt(', 'sp.sqrt(') | |
############################# | |
# 1) Define the discriminant | |
############################# | |
# Symbolic variables for the cubic discriminant | |
z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True, positive=True) | |
# Define coefficients a, b, c, d in terms of z_sym, beta_sym, z_a_sym, y_sym | |
a_sym = z_sym * z_a_sym | |
b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym | |
c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym) | |
d_sym = 1 | |
# Symbolic expression for the cubic discriminant | |
Delta_expr = ( | |
((b_sym*c_sym)/(6*a_sym**2) - (b_sym**3)/(27*a_sym**3) - d_sym/(2*a_sym))**2 | |
+ (c_sym/(3*a_sym) - (b_sym**2)/(9*a_sym**2))**3 | |
) | |
# Fast numeric function for the discriminant | |
discriminant_func = sp.lambdify((z_sym, beta_sym, z_a_sym, y_sym), Delta_expr, "numpy") | |
def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps): | |
""" | |
Scan z in [z_min, z_max] for sign changes in the discriminant, | |
and return approximated roots (where the discriminant is zero). | |
""" | |
z_grid = np.linspace(z_min, z_max, steps) | |
disc_vals = discriminant_func(z_grid, beta, z_a, y) | |
roots_found = [] | |
for i in range(len(z_grid) - 1): | |
f1, f2 = disc_vals[i], disc_vals[i+1] | |
if np.isnan(f1) or np.isnan(f2): | |
continue | |
if f1 == 0.0: | |
roots_found.append(z_grid[i]) | |
elif f2 == 0.0: | |
roots_found.append(z_grid[i+1]) | |
elif f1 * f2 < 0: | |
zl, zr = z_grid[i], z_grid[i+1] | |
for _ in range(50): | |
mid = 0.5 * (zl + zr) | |
fm = discriminant_func(mid, beta, z_a, y) | |
if fm == 0: | |
zl = zr = mid | |
break | |
if np.sign(fm) == np.sign(f1): | |
zl, f1 = mid, fm | |
else: | |
zr, f2 = mid, fm | |
roots_found.append(0.5 * (zl + zr)) | |
return np.array(roots_found) | |
def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps): | |
""" | |
For each beta in [0,1] (with beta_steps points), find the minimum and maximum z | |
for which the discriminant is zero. | |
Returns: betas, lower z*(β) values, and upper z*(β) values. | |
""" | |
betas = np.linspace(0, 1, beta_steps) | |
z_min_values = [] | |
z_max_values = [] | |
for b in betas: | |
roots = find_z_at_discriminant_zero(z_a, y, b, z_min, z_max, z_steps) | |
if len(roots) == 0: | |
z_min_values.append(np.nan) | |
z_max_values.append(np.nan) | |
else: | |
z_min_values.append(np.min(roots)) | |
z_max_values.append(np.max(roots)) | |
return betas, np.array(z_min_values), np.array(z_max_values) | |
def compute_low_y_curve(betas, z_a, y): | |
""" | |
Compute the "Low y Expression" curve. | |
""" | |
betas = np.array(betas) | |
with np.errstate(invalid='ignore', divide='ignore'): | |
sqrt_term = y * betas * (z_a - 1) | |
sqrt_term = np.where(sqrt_term < 0, np.nan, np.sqrt(sqrt_term)) | |
term = (-1 + sqrt_term) / z_a | |
numerator = (y - 2)*term + y * betas * ((z_a - 1)/z_a) - 1/z_a - 1 | |
denominator = term**2 + term | |
mask = (denominator != 0) & ~np.isnan(denominator) & ~np.isnan(numerator) | |
result = np.where(mask, numerator/denominator, np.nan) | |
return result | |
def compute_high_y_curve(betas, z_a, y): | |
""" | |
Compute the "High y Expression" curve. | |
""" | |
a = z_a | |
betas = np.array(betas) | |
denominator = 1 - 2*a | |
if denominator == 0: | |
return np.full_like(betas, np.nan) | |
numerator = -4*a*(a-1)*y*betas - 2*a*y - 2*a*(2*a-1) | |
return numerator/denominator | |
def compute_alternate_low_expr(betas, z_a, y): | |
""" | |
Compute the alternate low expression: | |
(z_a*y*beta*(z_a-1) - 2*z_a*(1-y) - 2*z_a**2) / (2+2*z_a) | |
""" | |
betas = np.array(betas) | |
return (z_a * y * betas * (z_a - 1) - 2*z_a*(1 - y) - 2*z_a**2) / (2 + 2*z_a) | |
def compute_derivatives(curve, betas): | |
"""Compute first and second derivatives of a curve""" | |
d1 = np.gradient(curve, betas) | |
d2 = np.gradient(d1, betas) | |
return d1, d2 | |
def compute_all_derivatives(betas, z_mins, z_maxs, low_y_curve, high_y_curve, alt_low_expr, custom_curve1=None, custom_curve2=None): | |
"""Compute derivatives for all curves""" | |
derivatives = {} | |
# Upper z*(β) | |
derivatives['upper'] = compute_derivatives(z_maxs, betas) | |
# Lower z*(β) | |
derivatives['lower'] = compute_derivatives(z_mins, betas) | |
# Low y Expression | |
if low_y_curve is not None: | |
derivatives['low_y'] = compute_derivatives(low_y_curve, betas) | |
# High y Expression | |
derivatives['high_y'] = compute_derivatives(high_y_curve, betas) | |
# Alternate Low Expression | |
derivatives['alt_low'] = compute_derivatives(alt_low_expr, betas) | |
# Custom Expression 1 (if provided) | |
if custom_curve1 is not None: | |
derivatives['custom1'] = compute_derivatives(custom_curve1, betas) | |
# Custom Expression 2 (if provided) | |
if custom_curve2 is not None: | |
derivatives['custom2'] = compute_derivatives(custom_curve2, betas) | |
return derivatives | |
def compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, is_s_based=True): | |
""" | |
Compute custom curve. If is_s_based=True, compute using s substitution. | |
Otherwise, compute direct z(β) expression. | |
""" | |
beta_sym, z_a_sym, y_sym = sp.symbols("beta z_a y", positive=True) | |
local_dict = {"beta": beta_sym, "z_a": z_a_sym, "y": y_sym, "sp": sp} | |
try: | |
# Add sqrt support | |
s_num_expr = add_sqrt_support(s_num_expr) | |
s_denom_expr = add_sqrt_support(s_denom_expr) | |
num_expr = sp.sympify(s_num_expr, locals=local_dict) | |
denom_expr = sp.sympify(s_denom_expr, locals=local_dict) | |
if is_s_based: | |
# Compute s and substitute into main expression | |
s_expr = num_expr / denom_expr | |
a = z_a_sym | |
numerator = y_sym*beta_sym*(z_a_sym-1)*s_expr + (a*s_expr+1)*((y_sym-1)*s_expr-1) | |
denominator = (a*s_expr+1)*(s_expr**2 + s_expr) | |
final_expr = numerator/denominator | |
else: | |
# Direct z(β) expression | |
final_expr = num_expr / denom_expr | |
except sp.SympifyError as e: | |
st.error(f"Error parsing expressions: {e}") | |
return np.full_like(betas, np.nan) | |
final_func = sp.lambdify((beta_sym, z_a_sym, y_sym), final_expr, modules=["numpy"]) | |
with np.errstate(divide='ignore', invalid='ignore'): | |
result = final_func(betas, z_a, y) | |
if np.isscalar(result): | |
result = np.full_like(betas, result) | |
return result | |
def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps, | |
s_num_expr=None, s_denom_expr=None, | |
z_num_expr=None, z_denom_expr=None, | |
show_derivatives=False): | |
if z_a <= 0 or y <= 0 or z_min >= z_max: | |
st.error("Invalid input parameters.") | |
return None | |
betas = np.linspace(0, 1, beta_steps) | |
betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps) | |
# Remove low_y_curve computation and display as requested | |
# low_y_curve = compute_low_y_curve(betas, z_a, y) # Commented out | |
high_y_curve = compute_high_y_curve(betas, z_a, y) | |
alt_low_expr = compute_alternate_low_expr(betas, z_a, y) | |
# Compute both custom curves | |
custom_curve1 = None | |
custom_curve2 = None | |
if s_num_expr and s_denom_expr: | |
custom_curve1 = compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, True) | |
if z_num_expr and z_denom_expr: | |
custom_curve2 = compute_custom_expression(betas, z_a, y, z_num_expr, z_denom_expr, False) | |
# Compute derivatives if needed | |
if show_derivatives: | |
derivatives = compute_all_derivatives(betas, z_mins, z_maxs, None, high_y_curve, | |
alt_low_expr, custom_curve1, custom_curve2) | |
fig = go.Figure() | |
# Original curves | |
fig.add_trace(go.Scatter(x=betas, y=z_maxs, mode="markers+lines", | |
name="Upper z*(β)", line=dict(color='blue'))) | |
fig.add_trace(go.Scatter(x=betas, y=z_mins, mode="markers+lines", | |
name="Lower z*(β)", line=dict(color='lightblue'))) | |
# Remove low_y_curve trace as requested | |
# fig.add_trace(go.Scatter(x=betas, y=low_y_curve, mode="markers+lines", | |
# name="Low y Expression", line=dict(color='red'))) | |
fig.add_trace(go.Scatter(x=betas, y=high_y_curve, mode="markers+lines", | |
name="High y Expression", line=dict(color='green'))) | |
fig.add_trace(go.Scatter(x=betas, y=alt_low_expr, mode="markers+lines", | |
name="Alternate Low Expression", line=dict(color='orange'))) | |
if custom_curve1 is not None: | |
fig.add_trace(go.Scatter(x=betas, y=custom_curve1, mode="markers+lines", | |
name="Custom 1 (s-based)", line=dict(color='purple'))) | |
if custom_curve2 is not None: | |
fig.add_trace(go.Scatter(x=betas, y=custom_curve2, mode="markers+lines", | |
name="Custom 2 (direct)", line=dict(color='magenta'))) | |
if show_derivatives: | |
# First derivatives | |
curve_info = [ | |
('upper', 'Upper z*(β)', 'blue'), | |
('lower', 'Lower z*(β)', 'lightblue'), | |
# ('low_y', 'Low y', 'red'), # Removed as requested | |
('high_y', 'High y', 'green'), | |
('alt_low', 'Alt Low', 'orange') | |
] | |
if custom_curve1 is not None: | |
curve_info.append(('custom1', 'Custom 1', 'purple')) | |
if custom_curve2 is not None: | |
curve_info.append(('custom2', 'Custom 2', 'magenta')) | |
for key, name, color in curve_info: | |
fig.add_trace(go.Scatter(x=betas, y=derivatives[key][0], mode="lines", | |
name=f"{name} d/dβ", line=dict(color=color, dash='dash'))) | |
fig.add_trace(go.Scatter(x=betas, y=derivatives[key][1], mode="lines", | |
name=f"{name} d²/dβ²", line=dict(color=color, dash='dot'))) | |
fig.update_layout( | |
title="Curves vs β: z*(β) Boundaries and Asymptotic Expressions", | |
xaxis_title="β", | |
yaxis_title="Value", | |
hovermode="x unified", | |
showlegend=True, | |
legend=dict( | |
yanchor="top", | |
y=0.99, | |
xanchor="left", | |
x=0.01 | |
) | |
) | |
return fig | |
def compute_cubic_roots(z, beta, z_a, y): | |
""" | |
Compute the roots of the cubic equation for given parameters. | |
""" | |
a = z * z_a | |
b = z * z_a + z + z_a - z_a*y | |
c = z + z_a + 1 - y*(beta*z_a + 1 - beta) | |
d = 1 | |
coeffs = [a, b, c, d] | |
roots = np.roots(coeffs) | |
return roots | |
def generate_root_plots(beta, y, z_a, z_min, z_max, n_points): | |
""" | |
Generate Im(s) and Re(s) vs. z plots. | |
""" | |
if z_a <= 0 or y <= 0 or z_min >= z_max: | |
st.error("Invalid input parameters.") | |
return None, None | |
z_points = np.linspace(z_min, z_max, n_points) | |
ims, res = [], [] | |
for z in z_points: | |
roots = compute_cubic_roots(z, beta, z_a, y) | |
roots = sorted(roots, key=lambda x: abs(x.imag)) | |
ims.append([root.imag for root in roots]) | |
res.append([root.real for root in roots]) | |
ims = np.array(ims) | |
res = np.array(res) | |
fig_im = go.Figure() | |
for i in range(3): | |
fig_im.add_trace(go.Scatter(x=z_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}", | |
line=dict(width=2))) | |
fig_im.update_layout(title=f"Im{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})", | |
xaxis_title="z", yaxis_title="Im{s}", hovermode="x unified") | |
fig_re = go.Figure() | |
for i in range(3): | |
fig_re.add_trace(go.Scatter(x=z_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}", | |
line=dict(width=2))) | |
fig_re.update_layout(title=f"Re{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})", | |
xaxis_title="z", yaxis_title="Re{s}", hovermode="x unified") | |
return fig_im, fig_re | |
# New function for computing eigenvalue distribution directly | |
def compute_eigenvalue_distribution_direct(z_a, y, beta, n, num_samples=10): | |
""" | |
Compute the eigenvalue distribution by directly generating random matrices and computing eigenvalues. | |
Parameters: | |
- z_a: The value 'a' in the distribution β·δ_a + (1-β)·δ_1 | |
- y: The asymptotic ratio p/n | |
- beta: The mixing coefficient in the distribution | |
- n: Size of the matrix dimension n | |
- num_samples: Number of random matrices to generate for averaging | |
Returns: | |
- all_eigenvalues: Array of all eigenvalues from all samples | |
""" | |
p = int(y * n) # Calculate p based on aspect ratio y | |
all_eigenvalues = [] | |
for _ in range(num_samples): | |
# Generate random matrix X with elements following β·δ_a + (1-β)·δ_1 | |
# This means each element is 'a' with probability β, and 1 with probability (1-β) | |
random_values = np.random.choice([z_a, 1.0], size=(p, n), p=[beta, 1-beta]) | |
# Compute B_n = (1/n)XX* | |
X = random_values | |
XX_star = X @ X.T | |
B_n = XX_star / n | |
# Compute eigenvalues | |
eigenvalues = np.linalg.eigvalsh(B_n) | |
all_eigenvalues.extend(eigenvalues) | |
return np.array(all_eigenvalues) | |
def generate_esd_plot_direct(z_a, y, beta, n, num_samples=10, bandwidth=0.1): | |
""" | |
Generate a plot of the eigenvalue distribution using KDE. | |
""" | |
# Compute eigenvalues | |
eigenvalues = compute_eigenvalue_distribution_direct(z_a, y, beta, n, num_samples) | |
# Use KDE to estimate the density | |
kde = gaussian_kde(eigenvalues, bw_method=bandwidth) | |
# Generate points for plotting | |
x_min = max(0, np.min(eigenvalues) - 0.5) | |
x_max = np.max(eigenvalues) + 0.5 | |
x_values = np.linspace(x_min, x_max, 1000) | |
density_values = kde(x_values) | |
# Create the plot | |
fig = go.Figure() | |
fig.add_trace(go.Scatter(x=x_values, y=density_values, mode="lines", | |
name="Eigenvalue Density", line=dict(color='blue', width=2))) | |
# Add individual eigenvalue points as a rug plot | |
fig.add_trace(go.Scatter(x=eigenvalues, y=np.zeros_like(eigenvalues), | |
mode="markers", name="Eigenvalues", | |
marker=dict(color='red', size=3, opacity=0.5))) | |
fig.update_layout( | |
title=f"Eigenvalue Distribution (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f}, n={n})", | |
xaxis_title="Eigenvalue", | |
yaxis_title="Density", | |
hovermode="x unified" | |
) | |
return fig | |
# ----------------- Streamlit UI ----------------- | |
st.title("Cubic Root Analysis") | |
# Define three tabs (removed "Curve Intersections" tab) | |
tab1, tab2, tab3 = st.tabs(["z*(β) Curves", "Im{s} vs. z", "Differential Analysis"]) | |
# ----- Tab 1: z*(β) Curves ----- | |
with tab1: | |
st.header("Find z Values where Cubic Roots Transition Between Real and Complex") | |
col1, col2 = st.columns([1, 2]) | |
with col1: | |
z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1") | |
y_1 = st.number_input("y", value=1.0, key="y_1") | |
z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1") | |
z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1") | |
with st.expander("Resolution Settings"): | |
beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, key="beta_steps") | |
z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, step=1000, key="z_steps") | |
st.subheader("Custom Expression 1 (s-based)") | |
st.markdown("""Enter expressions for s = numerator/denominator | |
(using variables `y`, `beta`, `z_a`, and `sqrt()`)""") | |
st.latex(r"\text{This s will be inserted into:}") | |
st.latex(r"\frac{y\beta(z_a-1)\underline{s}+(a\underline{s}+1)((y-1)\underline{s}-1)}{(a\underline{s}+1)(\underline{s}^2 + \underline{s})}") | |
s_num = st.text_input("s numerator", value="y*beta*(z_a-1)", key="s_num") | |
s_denom = st.text_input("s denominator", value="z_a", key="s_denom") | |
st.subheader("Custom Expression 2 (direct z(β))") | |
st.markdown("""Enter direct expression for z(β) = numerator/denominator | |
(using variables `y`, `beta`, `z_a`, and `sqrt()`)""") | |
z_num = st.text_input("z(β) numerator", value="y*beta*(z_a-1)", key="z_num") | |
z_denom = st.text_input("z(β) denominator", value="1", key="z_denom") | |
show_derivatives = st.checkbox("Show derivatives", value=False) | |
if st.button("Compute z vs. β Curves", key="tab1_button"): | |
with col2: | |
fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, z_steps, | |
s_num, s_denom, z_num, z_denom, show_derivatives) | |
if fig is not None: | |
st.plotly_chart(fig, use_container_width=True) | |
st.markdown("### Curve Explanations") | |
st.markdown(""" | |
- **Upper z*(β)** (Blue): Maximum z value where discriminant is zero | |
- **Lower z*(β)** (Light Blue): Minimum z value where discriminant is zero | |
- **High y Expression** (Green): Asymptotic approximation for high y values | |
- **Alternate Low Expression** (Orange): Alternative asymptotic expression | |
- **Custom Expression 1** (Purple): Result from user-defined s substituted into the main formula | |
- **Custom Expression 2** (Magenta): Direct z(β) expression | |
""") | |
if show_derivatives: | |
st.markdown(""" | |
Derivatives are shown as: | |
- Dashed lines: First derivatives (d/dβ) | |
- Dotted lines: Second derivatives (d²/dβ²) | |
""") | |
# ----- Tab 2: Im{s} vs. z and Eigenvalue Distribution ----- | |
with tab2: | |
st.header("Plot Complex Roots vs. z and Eigenvalue Distribution") | |
col1, col2 = st.columns([1, 2]) | |
with col1: | |
beta = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_tab2") | |
y_2 = st.number_input("y", value=1.0, key="y_tab2") | |
z_a_2 = st.number_input("z_a", value=1.0, key="z_a_tab2") | |
z_min_2 = st.number_input("z_min", value=-10.0, key="z_min_tab2") | |
z_max_2 = st.number_input("z_max", value=10.0, key="z_max_tab2") | |
with st.expander("Resolution Settings"): | |
z_points = st.slider("z grid points", min_value=1000, max_value=10000, value=5000, step=500, key="z_points") | |
# Add new settings for eigenvalue distribution | |
st.subheader("Eigenvalue Distribution Settings") | |
matrix_size = st.slider("Matrix size (n)", min_value=50, max_value=1000, value=200, step=50, key="matrix_size") | |
num_samples = st.slider("Number of matrix samples", min_value=1, max_value=50, value=10, step=1, key="num_samples") | |
bandwidth = st.slider("KDE bandwidth", min_value=0.01, max_value=0.5, value=0.1, step=0.01, key="kde_bandwidth") | |
if st.button("Compute", key="tab2_button"): | |
with col2: | |
fig_im, fig_re = generate_root_plots(beta, y_2, z_a_2, z_min_2, z_max_2, z_points) | |
if fig_im is not None and fig_re is not None: | |
st.plotly_chart(fig_im, use_container_width=True) | |
st.plotly_chart(fig_re, use_container_width=True) | |
# Add eigenvalue distribution plot with direct computation and KDE | |
with st.spinner("Computing eigenvalue distribution..."): | |
fig_esd = generate_esd_plot_direct(z_a_2, y_2, beta, matrix_size, num_samples, bandwidth) | |
st.plotly_chart(fig_esd, use_container_width=True) | |
st.markdown(""" | |
### Eigenvalue Distribution Explanation | |
This plot shows the eigenvalue distribution of B_n = (1/n)XX* where: | |
- X is a p×n matrix with p/n = y | |
- Elements of X are i.i.d. following distribution β·δ_a + (1-β)·δ_1 | |
- a = z_a, y = y, β = β | |
The distribution is computed by: | |
1. Directly generating random matrices with the specified distribution | |
2. Computing the eigenvalues of B_n | |
3. Using Kernel Density Estimation (KDE) to visualize the distribution | |
Red markers at the bottom indicate individual eigenvalues. | |
""") | |
# ----- Tab 3: Differential Analysis ----- | |
with tab3: | |
st.header("Differential Analysis vs. β") | |
st.markdown("This page shows the difference between the Upper (blue) and Lower (lightblue) z*(β) curves, along with their first and second derivatives with respect to β.") | |
col1, col2 = st.columns([1, 2]) | |
with col1: | |
z_a_diff = st.number_input("z_a", value=1.0, key="z_a_diff") | |
y_diff = st.number_input("y", value=1.0, key="y_diff") | |
z_min_diff = st.number_input("z_min", value=-10.0, key="z_min_diff") | |
z_max_diff = st.number_input("z_max", value=10.0, key="z_max_diff") | |
with st.expander("Resolution Settings"): | |
beta_steps_diff = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, key="beta_steps_diff") | |
z_steps_diff = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, step=1000, key="z_steps_diff") | |
# Add options for curve selection | |
st.subheader("Curves to Analyze") | |
analyze_upper_lower = st.checkbox("Upper-Lower Difference", value=True) | |
analyze_high_y = st.checkbox("High y Expression", value=False) | |
analyze_alt_low = st.checkbox("Alternate Low Expression", value=False) | |
if st.button("Compute Differentials", key="tab3_button"): | |
with col2: | |
betas_diff, lower_vals, upper_vals = sweep_beta_and_find_z_bounds(z_a_diff, y_diff, z_min_diff, z_max_diff, beta_steps_diff, z_steps_diff) | |
# Create figure | |
fig_diff = go.Figure() | |
if analyze_upper_lower: | |
diff_curve = upper_vals - lower_vals | |
d1 = np.gradient(diff_curve, betas_diff) | |
d2 = np.gradient(d1, betas_diff) | |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=diff_curve, mode="lines", | |
name="Upper-Lower Difference", line=dict(color="magenta", width=2))) | |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines", | |
name="Upper-Lower d/dβ", line=dict(color="magenta", dash='dash'))) | |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines", | |
name="Upper-Lower d²/dβ²", line=dict(color="magenta", dash='dot'))) | |
if analyze_high_y: | |
high_y_curve = compute_high_y_curve(betas_diff, z_a_diff, y_diff) | |
d1 = np.gradient(high_y_curve, betas_diff) | |
d2 = np.gradient(d1, betas_diff) | |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=high_y_curve, mode="lines", | |
name="High y", line=dict(color="green", width=2))) | |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines", | |
name="High y d/dβ", line=dict(color="green", dash='dash'))) | |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines", | |
name="High y d²/dβ²", line=dict(color="green", dash='dot'))) | |
if analyze_alt_low: | |
alt_low_curve = compute_alternate_low_expr(betas_diff, z_a_diff, y_diff) | |
d1 = np.gradient(alt_low_curve, betas_diff) | |
d2 = np.gradient(d1, betas_diff) | |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=alt_low_curve, mode="lines", | |
name="Alt Low", line=dict(color="orange", width=2))) | |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines", | |
name="Alt Low d/dβ", line=dict(color="orange", dash='dash'))) | |
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines", | |
name="Alt Low d²/dβ²", line=dict(color="orange", dash='dot'))) | |
fig_diff.update_layout( | |
title="Differential Analysis vs. β", | |
xaxis_title="β", | |
yaxis_title="Value", | |
hovermode="x unified", | |
showlegend=True, | |
legend=dict( | |
yanchor="top", | |
y=0.99, | |
xanchor="left", | |
x=0.01 | |
) | |
) | |
st.plotly_chart(fig_diff, use_container_width=True) | |
st.markdown(""" | |
### Curve Types | |
- Solid lines: Original curves | |
- Dashed lines: First derivatives (d/dβ) | |
- Dotted lines: Second derivatives (d²/dβ²) | |
""") |