Spaces:
Running
Running
// app.cpp - Modified version of eigen_analysis_corrected.cpp for Streamlit integration | |
// Function to compute the theoretical max value | |
double compute_theoretical_max(double a, double y, double beta) { | |
auto f = [a, y, beta](double k) -> double { | |
return (y * beta * (a - 1) * k + (a * k + 1) * ((y - 1) * k - 1)) / | |
((a * k + 1) * (k * k + k)); // Divide by y here | |
}; | |
// Use numerical optimization to find the maximum | |
// Grid search followed by golden section search | |
double best_k = 1.0; | |
double best_val = f(best_k); | |
// Initial grid search over a wide range | |
const int num_grid_points = 200; | |
for (int i = 0; i < num_grid_points; ++i) { | |
double k = 0.01 + 100.0 * i / (num_grid_points - 1); // From 0.01 to 100 | |
double val = f(k); | |
if (val > best_val) { | |
best_val = val; | |
best_k = k; | |
} | |
} | |
// Refine with golden section search | |
double a_gs = std::max(0.01, best_k / 10.0); | |
double b_gs = best_k * 10.0; | |
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0; | |
const double tolerance = 1e-10; | |
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
while (std::abs(b_gs - a_gs) > tolerance) { | |
if (f(c_gs) > f(d_gs)) { | |
b_gs = d_gs; | |
d_gs = c_gs; | |
c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
} else { | |
a_gs = c_gs; | |
c_gs = d_gs; | |
d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
} | |
} | |
// Multiply the result by y before returning | |
return f((a_gs + b_gs) / 2.0) *y ; | |
} | |
// Function to compute the theoretical min value | |
double compute_theoretical_min(double a, double y, double beta) { | |
auto f = [a, y, beta](double t) -> double { | |
return (y * beta * (a - 1) * t + (a * t + 1) * ((y - 1) * t - 1)) / | |
((a * t + 1) * (t * t + t) * y); // Divide by y here | |
}; | |
// Use numerical optimization to find the minimum | |
// Grid search followed by golden section search | |
double best_t = -0.5 / a; // Midpoint of (-1/a, 0) | |
double best_val = f(best_t); | |
// Initial grid search over the range (-1/a, 0) | |
const int num_grid_points = 200; | |
for (int i = 1; i < num_grid_points; ++i) { | |
// From slightly above -1/a to slightly below 0 | |
double t = -0.999/a + 0.998/a * i / (num_grid_points - 1); | |
if (t >= 0 || t <= -1.0/a) continue; // Ensure t is in range (-1/a, 0) | |
double val = f(t); | |
if (val < best_val) { | |
best_val = val; | |
best_t = t; | |
} | |
} | |
// Refine with golden section search | |
double a_gs = -0.999/a; // Slightly above -1/a | |
double b_gs = -0.001/a; // Slightly below 0 | |
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0; | |
const double tolerance = 1e-10; | |
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
while (std::abs(b_gs - a_gs) > tolerance) { | |
if (f(c_gs) < f(d_gs)) { | |
b_gs = d_gs; | |
d_gs = c_gs; | |
c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
} else { | |
a_gs = c_gs; | |
c_gs = d_gs; | |
d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
} | |
} | |
// Multiply the result by y before returning | |
return f((a_gs + b_gs) / 2.0) *y ; | |
} | |
int main(int argc, char* argv[]) { | |
// βββ Inputs from command line βββββββββββββββββββββββββββββββββββββββββββ | |
if (argc != 5) { | |
std::cerr << "Usage: " << argv[0] << " <n> <p> <a> <y>" << std::endl; | |
return 1; | |
} | |
int n = std::stoi(argv[1]); | |
int p = std::stoi(argv[2]); | |
double a = std::stod(argv[3]); | |
double y = std::stod(argv[4]); | |
const double b = 1.0; | |
std::cout << "Running with parameters: n = " << n << ", p = " << p | |
<< ", a = " << a << ", y = " << y << std::endl; | |
// βββ Beta range parameters ββββββββββββββββββββββββββββββββββββββββ | |
const int num_beta_points = 100; // More points for smoother curves | |
std::vector<double> beta_values(num_beta_points); | |
for (int i = 0; i < num_beta_points; ++i) { | |
beta_values[i] = static_cast<double>(i) / (num_beta_points - 1); | |
} | |
// βββ Storage for results ββββββββββββββββββββββββββββββββββββββββ | |
std::vector<double> max_eigenvalues(num_beta_points); | |
std::vector<double> min_eigenvalues(num_beta_points); | |
std::vector<double> theoretical_max_values(num_beta_points); | |
std::vector<double> theoretical_min_values(num_beta_points); | |
// βββ RandomβGaussian X and S_n ββββββββββββββββββββββββββββββββ | |
std::mt19937_64 rng{std::random_device{}()}; | |
std::normal_distribution<double> norm(0.0, 1.0); | |
cv::Mat X(p, n, CV_64F); | |
for(int i = 0; i < p; ++i) | |
for(int j = 0; j < n; ++j) | |
X.at<double>(i,j) = norm(rng); | |
// βββ Process each beta value βββββββββββββββββββββββββββββββββ | |
for (int beta_idx = 0; beta_idx < num_beta_points; ++beta_idx) { | |
double beta = beta_values[beta_idx]; | |
// Compute theoretical values | |
theoretical_max_values[beta_idx] = compute_theoretical_max(a, y, beta); | |
theoretical_min_values[beta_idx] = compute_theoretical_min(a, y, beta); | |
// βββ Build T_n matrix ββββββββββββββββββββββββββββββββββ | |
int k = static_cast<int>(std::floor(beta * p)); | |
std::vector<double> diags(p); | |
std::fill_n(diags.begin(), k, a); | |
std::fill_n(diags.begin()+k, p-k, b); | |
std::shuffle(diags.begin(), diags.end(), rng); | |
cv::Mat T_n = cv::Mat::zeros(p, p, CV_64F); | |
for(int i = 0; i < p; ++i){ | |
T_n.at<double>(i,i) = diags[i]; | |
} | |
// βββ Form B_n = (1/n) * X * T_n * X^T ββββββββββββ | |
cv::Mat B = (X.t() * T_n * X) / static_cast<double>(n); | |
// βββ Compute eigenvalues of B ββββββββββββββββββββββββββββ | |
cv::Mat eigVals; | |
cv::eigen(B, eigVals); | |
std::vector<double> eigs(n); | |
for(int i = 0; i < n; ++i) | |
eigs[i] = eigVals.at<double>(i, 0); | |
max_eigenvalues[beta_idx] = *std::max_element(eigs.begin(), eigs.end()); | |
min_eigenvalues[beta_idx] = *std::min_element(eigs.begin(), eigs.end()); | |
// Progress indicator - modified to be less verbose for Streamlit | |
if (beta_idx % 20 == 0) { | |
std::cout << "Processing beta = " << beta | |
<< " (" << beta_idx+1 << "/" << num_beta_points << ")" << std::endl; | |
} | |
} | |
// βββ Prepare canvas for plotting ββββββββββββββββββββββββββββββββ | |
const int H = 950, W = 1200; // Taller canvas to accommodate legend below | |
cv::Mat canvas(H, W, CV_8UC3, cv::Scalar(250, 250, 250)); // Slightly off-white background | |
// βββ Find min/max for scaling βββββββββββββββββββββββββββββββββββ | |
double min_y = std::numeric_limits<double>::max(); | |
double max_y = std::numeric_limits<double>::lowest(); | |
for (double v : max_eigenvalues) max_y = std::max(max_y, v); | |
for (double v : min_eigenvalues) min_y = std::min(min_y, v); | |
for (double v : theoretical_max_values) max_y = std::max(max_y, v); | |
for (double v : theoretical_min_values) min_y = std::min(min_y, v); | |
// Add some padding | |
double y_padding = (max_y - min_y) * 0.15; // More padding for better spacing | |
min_y -= y_padding; | |
max_y += y_padding; | |
// βββ Draw coordinate axes βββββββββββββββββββββββββββββββββββββββ | |
const int margin = 100; // Larger margin for better spacing | |
const int plot_width = W - 2 * margin; | |
const int plot_height = H - 2 * margin - 150; // Reduced height to make room for legend below | |
// Plot area background (light gray) | |
cv::rectangle(canvas, | |
cv::Point(margin, margin), | |
cv::Point(W - margin, margin + plot_height), | |
cv::Scalar(245, 245, 245), cv::FILLED); | |
// X-axis (beta) | |
cv::line(canvas, | |
cv::Point(margin, margin + plot_height), | |
cv::Point(W - margin, margin + plot_height), | |
cv::Scalar(40, 40, 40), 2); | |
// Y-axis (eigenvalues) | |
cv::line(canvas, | |
cv::Point(margin, margin + plot_height), | |
cv::Point(margin, margin), | |
cv::Scalar(40, 40, 40), 2); | |
// βββ Draw axes labels ββββββββββββββββββββββββββββββββββββββββββββ | |
cv::putText(canvas, "Ξ²", | |
cv::Point(W - margin/2, margin + plot_height + 30), | |
cv::FONT_HERSHEY_COMPLEX, 1.0, cv::Scalar(0, 0, 0), 2); | |
// Y-axis label (fixed - no rotation) | |
cv::putText(canvas, "Eigenvalues", | |
cv::Point(margin/4, margin/2 - 10), | |
cv::FONT_HERSHEY_COMPLEX, 1.0, cv::Scalar(0, 0, 0), 2); | |
// βββ Draw title βββββββββββββββββββββββββββββββββββββββββββββββββββ | |
std::stringstream title_ss; | |
title_ss << std::fixed << std::setprecision(2); | |
title_ss << "Eigenvalue Analysis: a = " << a << ", y = " << y; | |
cv::putText(canvas, title_ss.str(), | |
cv::Point(W/2 - 200, 45), | |
cv::FONT_HERSHEY_COMPLEX, 1.2, cv::Scalar(0, 0, 0), 2); | |
// βββ Draw grid lines ββββββββββββββββββββββββββββββββββββββββββββββββ | |
const int num_grid_lines = 11; // 0.0, 0.1, 0.2, ..., 1.0 for beta | |
for (int i = 0; i < num_grid_lines; ++i) { | |
// Horizontal grid lines | |
int y_pos = margin + i * (plot_height / (num_grid_lines - 1)); | |
cv::line(canvas, | |
cv::Point(margin, y_pos), | |
cv::Point(W - margin, y_pos), | |
cv::Scalar(220, 220, 220), 1); | |
// Vertical grid lines | |
int x_pos = margin + i * (plot_width / (num_grid_lines - 1)); | |
cv::line(canvas, | |
cv::Point(x_pos, margin), | |
cv::Point(x_pos, margin + plot_height), | |
cv::Scalar(220, 220, 220), 1); | |
// X-axis labels (beta values) | |
double beta_val = static_cast<double>(i) / (num_grid_lines - 1); | |
std::stringstream ss; | |
ss << std::fixed << std::setprecision(1) << beta_val; | |
cv::putText(canvas, ss.str(), | |
cv::Point(x_pos - 10, margin + plot_height + 30), | |
cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1); | |
// Y-axis labels (eigenvalue values) | |
double eig_val = min_y + (max_y - min_y) * i / (num_grid_lines - 1); | |
std::stringstream ss2; | |
ss2 << std::fixed << std::setprecision(2) << eig_val; | |
cv::putText(canvas, ss2.str(), | |
cv::Point(margin/2 - 40, margin + plot_height - i * (plot_height / (num_grid_lines - 1)) + 5), | |
cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1); | |
} | |
// βββ Draw the four curves βββββββββββββββββββββββββββββββββββββββββββ | |
// Convert data points to pixel coordinates | |
auto to_point = [&](double beta, double val) -> cv::Point { | |
int x = margin + static_cast<int>(beta * plot_width); | |
int y = margin + plot_height - static_cast<int>((val - min_y) / (max_y - min_y) * plot_height); | |
return cv::Point(x, y); | |
}; | |
// Better colors for visibility | |
cv::Scalar emp_max_color(60, 60, 220); // Dark red | |
cv::Scalar emp_min_color(220, 60, 60); // Dark blue | |
cv::Scalar theo_max_color(30, 180, 30); // Dark green | |
cv::Scalar theo_min_color(180, 30, 180); // Dark purple | |
// Empirical max eigenvalues (red) | |
std::vector<cv::Point> max_eig_points; | |
for (int i = 0; i < num_beta_points; ++i) { | |
max_eig_points.push_back(to_point(beta_values[i], max_eigenvalues[i])); | |
} | |
cv::polylines(canvas, max_eig_points, false, emp_max_color, 3); | |
// Empirical min eigenvalues (blue) | |
std::vector<cv::Point> min_eig_points; | |
for (int i = 0; i < num_beta_points; ++i) { | |
min_eig_points.push_back(to_point(beta_values[i], min_eigenvalues[i])); | |
} | |
cv::polylines(canvas, min_eig_points, false, emp_min_color, 3); | |
// Theoretical max values (green) | |
std::vector<cv::Point> theo_max_points; | |
for (int i = 0; i < num_beta_points; ++i) { | |
theo_max_points.push_back(to_point(beta_values[i], theoretical_max_values[i])); | |
} | |
cv::polylines(canvas, theo_max_points, false, theo_max_color, 3); | |
// Theoretical min values (purple) | |
std::vector<cv::Point> theo_min_points; | |
for (int i = 0; i < num_beta_points; ++i) { | |
theo_min_points.push_back(to_point(beta_values[i], theoretical_min_values[i])); | |
} | |
cv::polylines(canvas, theo_min_points, false, theo_min_color, 3); | |
// βββ Draw markers on the curves for better visibility ββββββββββββββ | |
const int marker_interval = 10; // Show markers every 10 points | |
for (int i = 0; i < num_beta_points; i += marker_interval) { | |
// Max empirical eigenvalue markers | |
cv::circle(canvas, max_eig_points[i], 5, emp_max_color, cv::FILLED); | |
cv::circle(canvas, max_eig_points[i], 5, cv::Scalar(255, 255, 255), 1); | |
// Min empirical eigenvalue markers | |
cv::circle(canvas, min_eig_points[i], 5, emp_min_color, cv::FILLED); | |
cv::circle(canvas, min_eig_points[i], 5, cv::Scalar(255, 255, 255), 1); | |
// Theoretical max markers | |
cv::drawMarker(canvas, theo_max_points[i], theo_max_color, cv::MARKER_DIAMOND, 10, 2); | |
// Theoretical min markers | |
cv::drawMarker(canvas, theo_min_points[i], theo_min_color, cv::MARKER_DIAMOND, 10, 2); | |
} | |
// βββ Draw legend BELOW the graph ββββββββββββββββββββββββββββββββββββ | |
// Set up dimensions for the legend | |
const int legend_width = 600; | |
const int legend_height = 100; | |
// Center the legend horizontally | |
const int legend_x = W/2 - legend_width/2; | |
// Position legend below the graph | |
const int legend_y = margin + plot_height + 70; | |
const int line_length = 40; | |
const int line_spacing = 35; | |
// Box around legend with shadow effect | |
cv::rectangle(canvas, | |
cv::Point(legend_x + 3, legend_y + 3), | |
cv::Point(legend_x + legend_width + 3, legend_y + legend_height + 3), | |
cv::Scalar(180, 180, 180), cv::FILLED); // Shadow | |
cv::rectangle(canvas, | |
cv::Point(legend_x, legend_y), | |
cv::Point(legend_x + legend_width, legend_y + legend_height), | |
cv::Scalar(240, 240, 240), cv::FILLED); // Main box | |
cv::rectangle(canvas, | |
cv::Point(legend_x, legend_y), | |
cv::Point(legend_x + legend_width, legend_y + legend_height), | |
cv::Scalar(0, 0, 0), 1); // Border | |
// Legend title | |
cv::putText(canvas, "Legend", | |
cv::Point(legend_x + legend_width/2 - 30, legend_y + 20), | |
cv::FONT_HERSHEY_SIMPLEX, 0.8, cv::Scalar(0, 0, 0), 1); | |
cv::line(canvas, | |
cv::Point(legend_x + 5, legend_y + 30), | |
cv::Point(legend_x + legend_width - 5, legend_y + 30), | |
cv::Scalar(150, 150, 150), 1); | |
// Two legend entries per row, in two columns | |
// First row | |
// Empirical max (red) | |
cv::line(canvas, | |
cv::Point(legend_x + 20, legend_y + 50), | |
cv::Point(legend_x + 20 + line_length, legend_y + 50), | |
emp_max_color, 3); | |
cv::circle(canvas, cv::Point(legend_x + 20 + line_length/2, legend_y + 50), 5, emp_max_color, cv::FILLED); | |
cv::putText(canvas, "Empirical Max Eigenvalue", | |
cv::Point(legend_x + 20 + line_length + 10, legend_y + 50 + 5), | |
cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1); | |
// Empirical min (blue) | |
cv::line(canvas, | |
cv::Point(legend_x + 20 + legend_width/2, legend_y + 50), | |
cv::Point(legend_x + 20 + line_length + legend_width/2, legend_y + 50), | |
emp_min_color, 3); | |
cv::circle(canvas, cv::Point(legend_x + 20 + line_length/2 + legend_width/2, legend_y + 50), 5, emp_min_color, cv::FILLED); | |
cv::putText(canvas, "Empirical Min Eigenvalue", | |
cv::Point(legend_x + 20 + line_length + 10 + legend_width/2, legend_y + 50 + 5), | |
cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1); | |
// Second row | |
// Theoretical max (green) | |
cv::line(canvas, | |
cv::Point(legend_x + 20, legend_y + 80), | |
cv::Point(legend_x + 20 + line_length, legend_y + 80), | |
theo_max_color, 3); | |
cv::drawMarker(canvas, cv::Point(legend_x + 20 + line_length/2, legend_y + 80), | |
theo_max_color, cv::MARKER_DIAMOND, 10, 2); | |
cv::putText(canvas, "Theoretical Max Function", | |
cv::Point(legend_x + 20 + line_length + 10, legend_y + 80 + 5), | |
cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1); | |
// Theoretical min (purple) | |
cv::line(canvas, | |
cv::Point(legend_x + 20 + legend_width/2, legend_y + 80), | |
cv::Point(legend_x + 20 + line_length + legend_width/2, legend_y + 80), | |
theo_min_color, 3); | |
cv::drawMarker(canvas, cv::Point(legend_x + 20 + line_length/2 + legend_width/2, legend_y + 80), | |
theo_min_color, cv::MARKER_DIAMOND, 10, 2); | |
cv::putText(canvas, "Theoretical Min Function", | |
cv::Point(legend_x + 20 + line_length + 10 + legend_width/2, legend_y + 80 + 5), | |
cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1); | |
// βββ Draw mathematical formulas in a box ββββββββββββββββββββββββββββββ | |
cv::rectangle(canvas, | |
cv::Point(margin + 3, H - 80 + 3), | |
cv::Point(W - margin + 3, H - 20 + 3), | |
cv::Scalar(180, 180, 180), cv::FILLED); // Shadow | |
cv::rectangle(canvas, | |
cv::Point(margin, H - 80), | |
cv::Point(W - margin, H - 20), | |
cv::Scalar(240, 240, 240), cv::FILLED); // Main box | |
cv::rectangle(canvas, | |
cv::Point(margin, H - 80), | |
cv::Point(W - margin, H - 20), | |
cv::Scalar(0, 0, 0), 1); // Border | |
std::string formula_text1 = "Max Function: max{k β (0,β)} [yΞ²(a-1)k + (ak+1)((y-1)k-1)]/[(ak+1)(kΒ²+k)y]"; | |
std::string formula_text2 = "Min Function: min{t β (-1/a,0)} [yΞ²(a-1)t + (at+1)((y-1)t-1)]/[(at+1)(tΒ²+t)y]"; | |
cv::putText(canvas, formula_text1, | |
cv::Point(margin + 20, H - 55), | |
cv::FONT_HERSHEY_SIMPLEX, 0.6, theo_max_color, 2); | |
cv::putText(canvas, formula_text2, | |
cv::Point(W/2 + 20, H - 55), | |
cv::FONT_HERSHEY_SIMPLEX, 0.6, theo_min_color, 2); | |
// βββ Draw parameter info ββββββββββββββββββββββββββββββββββββββββββββ | |
std::stringstream params_ss; | |
params_ss << std::fixed << std::setprecision(2); | |
params_ss << "Parameters: n = " << n << ", p = " << p << ", a = " << a << ", y = " << y; | |
cv::putText(canvas, params_ss.str(), | |
cv::Point(margin, 80), | |
cv::FONT_HERSHEY_COMPLEX, 0.8, cv::Scalar(0, 0, 0), 1); | |
// βββ Save the image to the output directory βββββββββββββββββββββββββββ | |
std::string output_path = "/app/output/eigenvalue_analysis.png"; | |
cv::imwrite(output_path, canvas); | |
std::cout << "Plot saved as " << output_path << std::endl; | |
return 0; | |
} |