Spaces:
Sleeping
Sleeping
// app.cpp - Modified version for Hugging Face Spaces (calculation only) | |
// Function to compute the theoretical max value | |
double compute_theoretical_max(double a, double y, double beta, int grid_points, double tolerance) { | |
auto f = [a, y, beta](double k) -> double { | |
return (y * beta * (a - 1) * k + (a * k + 1) * ((y - 1) * k - 1)) / | |
((a * k + 1) * (k * k + k)); | |
}; | |
// Use numerical optimization to find the maximum | |
// Grid search followed by golden section search | |
double best_k = 1.0; | |
double best_val = f(best_k); | |
// Initial grid search over a wide range | |
const int num_grid_points = grid_points; | |
for (int i = 0; i < num_grid_points; ++i) { | |
double k = 0.01 + 100.0 * i / (num_grid_points - 1); // From 0.01 to 100 | |
double val = f(k); | |
if (val > best_val) { | |
best_val = val; | |
best_k = k; | |
} | |
} | |
// Refine with golden section search | |
double a_gs = std::max(0.01, best_k / 10.0); | |
double b_gs = best_k * 10.0; | |
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0; | |
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
while (std::abs(b_gs - a_gs) > tolerance) { | |
if (f(c_gs) > f(d_gs)) { | |
b_gs = d_gs; | |
d_gs = c_gs; | |
c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
} else { | |
a_gs = c_gs; | |
c_gs = d_gs; | |
d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
} | |
} | |
// Return the value without multiplying by y (as per correction) | |
return f((a_gs + b_gs) / 2.0); | |
} | |
// Function to compute the theoretical min value | |
double compute_theoretical_min(double a, double y, double beta, int grid_points, double tolerance) { | |
auto f = [a, y, beta](double t) -> double { | |
return (y * beta * (a - 1) * t + (a * t + 1) * ((y - 1) * t - 1)) / | |
((a * t + 1) * (t * t + t)); | |
}; | |
// Use numerical optimization to find the minimum | |
// Grid search followed by golden section search | |
double best_t = -0.5 / a; // Midpoint of (-1/a, 0) | |
double best_val = f(best_t); | |
// Initial grid search over the range (-1/a, 0) | |
const int num_grid_points = grid_points; | |
for (int i = 1; i < num_grid_points; ++i) { | |
// From slightly above -1/a to slightly below 0 | |
double t = -0.999/a + 0.998/a * i / (num_grid_points - 1); | |
if (t >= 0 || t <= -1.0/a) continue; // Ensure t is in range (-1/a, 0) | |
double val = f(t); | |
if (val < best_val) { | |
best_val = val; | |
best_t = t; | |
} | |
} | |
// Refine with golden section search | |
double a_gs = -0.999/a; // Slightly above -1/a | |
double b_gs = -0.001/a; // Slightly below 0 | |
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0; | |
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
while (std::abs(b_gs - a_gs) > tolerance) { | |
if (f(c_gs) < f(d_gs)) { | |
b_gs = d_gs; | |
d_gs = c_gs; | |
c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
} else { | |
a_gs = c_gs; | |
c_gs = d_gs; | |
d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
} | |
} | |
// Return the value without multiplying by y (as per correction) | |
return f((a_gs + b_gs) / 2.0); | |
} | |
// Function to save data as JSON | |
void save_as_json(const std::string& filename, | |
const std::vector<double>& beta_values, | |
const std::vector<double>& max_eigenvalues, | |
const std::vector<double>& min_eigenvalues, | |
const std::vector<double>& theoretical_max_values, | |
const std::vector<double>& theoretical_min_values) { | |
std::ofstream outfile(filename); | |
if (!outfile.is_open()) { | |
std::cerr << "Error: Could not open file " << filename << " for writing." << std::endl; | |
return; | |
} | |
// Start JSON object | |
outfile << "{\n"; | |
// Write beta values | |
outfile << " \"beta_values\": ["; | |
for (size_t i = 0; i < beta_values.size(); ++i) { | |
outfile << beta_values[i]; | |
if (i < beta_values.size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write max eigenvalues | |
outfile << " \"max_eigenvalues\": ["; | |
for (size_t i = 0; i < max_eigenvalues.size(); ++i) { | |
outfile << max_eigenvalues[i]; | |
if (i < max_eigenvalues.size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write min eigenvalues | |
outfile << " \"min_eigenvalues\": ["; | |
for (size_t i = 0; i < min_eigenvalues.size(); ++i) { | |
outfile << min_eigenvalues[i]; | |
if (i < min_eigenvalues.size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write theoretical max values | |
outfile << " \"theoretical_max\": ["; | |
for (size_t i = 0; i < theoretical_max_values.size(); ++i) { | |
outfile << theoretical_max_values[i]; | |
if (i < theoretical_max_values.size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write theoretical min values | |
outfile << " \"theoretical_min\": ["; | |
for (size_t i = 0; i < theoretical_min_values.size(); ++i) { | |
outfile << theoretical_min_values[i]; | |
if (i < theoretical_min_values.size() - 1) outfile << ", "; | |
} | |
outfile << "]\n"; | |
// Close JSON object | |
outfile << "}\n"; | |
outfile.close(); | |
} | |
int main(int argc, char* argv[]) { | |
// βββ Inputs from command line βββββββββββββββββββββββββββββββββββββββββββ | |
if (argc != 9) { | |
std::cerr << "Usage: " << argv[0] << " <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl; | |
return 1; | |
} | |
int n = std::stoi(argv[1]); | |
int p = std::stoi(argv[2]); | |
double a = std::stod(argv[3]); | |
double y = std::stod(argv[4]); | |
int fineness = std::stoi(argv[5]); | |
int theory_grid_points = std::stoi(argv[6]); | |
double theory_tolerance = std::stod(argv[7]); | |
std::string output_file = argv[8]; | |
const double b = 1.0; | |
std::cout << "Running with parameters: n = " << n << ", p = " << p | |
<< ", a = " << a << ", y = " << y << ", fineness = " << fineness | |
<< ", theory_grid_points = " << theory_grid_points | |
<< ", theory_tolerance = " << theory_tolerance << std::endl; | |
std::cout << "Output will be saved to: " << output_file << std::endl; | |
// βββ Beta range parameters ββββββββββββββββββββββββββββββββββββββββ | |
const int num_beta_points = fineness; // Controlled by fineness parameter | |
std::vector<double> beta_values(num_beta_points); | |
for (int i = 0; i < num_beta_points; ++i) { | |
beta_values[i] = static_cast<double>(i) / (num_beta_points - 1); | |
} | |
// βββ Storage for results ββββββββββββββββββββββββββββββββββββββββ | |
std::vector<double> max_eigenvalues(num_beta_points); | |
std::vector<double> min_eigenvalues(num_beta_points); | |
std::vector<double> theoretical_max_values(num_beta_points); | |
std::vector<double> theoretical_min_values(num_beta_points); | |
// βββ RandomβGaussian X and S_n ββββββββββββββββββββββββββββββββ | |
std::mt19937_64 rng{std::random_device{}()}; | |
std::normal_distribution<double> norm(0.0, 1.0); | |
cv::Mat X(p, n, CV_64F); | |
for(int i = 0; i < p; ++i) | |
for(int j = 0; j < n; ++j) | |
X.at<double>(i,j) = norm(rng); | |
// βββ Process each beta value βββββββββββββββββββββββββββββββββ | |
for (int beta_idx = 0; beta_idx < num_beta_points; ++beta_idx) { | |
double beta = beta_values[beta_idx]; | |
// Compute theoretical values with customizable precision | |
theoretical_max_values[beta_idx] = compute_theoretical_max(a, y, beta, theory_grid_points, theory_tolerance); | |
theoretical_min_values[beta_idx] = compute_theoretical_min(a, y, beta, theory_grid_points, theory_tolerance); | |
// βββ Build T_n matrix ββββββββββββββββββββββββββββββββββ | |
int k = static_cast<int>(std::floor(beta * p)); | |
std::vector<double> diags(p); | |
std::fill_n(diags.begin(), k, a); | |
std::fill_n(diags.begin()+k, p-k, b); | |
std::shuffle(diags.begin(), diags.end(), rng); | |
cv::Mat T_n = cv::Mat::zeros(p, p, CV_64F); | |
for(int i = 0; i < p; ++i){ | |
T_n.at<double>(i,i) = diags[i]; | |
} | |
// βββ Form B_n = (1/n) * X * T_n * X^T ββββββββββββ | |
cv::Mat B = (X.t() * T_n * X) / static_cast<double>(n); | |
// βββ Compute eigenvalues of B ββββββββββββββββββββββββββββ | |
cv::Mat eigVals; | |
cv::eigen(B, eigVals); | |
std::vector<double> eigs(n); | |
for(int i = 0; i < n; ++i) | |
eigs[i] = eigVals.at<double>(i, 0); | |
max_eigenvalues[beta_idx] = *std::max_element(eigs.begin(), eigs.end()); | |
min_eigenvalues[beta_idx] = *std::min_element(eigs.begin(), eigs.end()); | |
// Progress indicator for Streamlit | |
double progress = static_cast<double>(beta_idx + 1) / num_beta_points; | |
std::cout << "PROGRESS:" << progress << std::endl; | |
// Less verbose output for Streamlit | |
if (beta_idx % 20 == 0 || beta_idx == num_beta_points - 1) { | |
std::cout << "Processing beta = " << beta | |
<< " (" << beta_idx+1 << "/" << num_beta_points << ")" << std::endl; | |
} | |
} | |
// Save data as JSON for Python to read | |
save_as_json(output_file, beta_values, max_eigenvalues, min_eigenvalues, | |
theoretical_max_values, theoretical_min_values); | |
std::cout << "Data saved to " << output_file << std::endl; | |
return 0; | |
} |