euler314's picture
Update app.py
aeff02a verified
raw
history blame
19.1 kB
import streamlit as st
import subprocess
import os
import json
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import time
import io
# Set page config with wider layout
st.set_page_config(
page_title="Eigenvalue Analysis Dashboard",
page_icon="πŸ“Š",
layout="wide",
initial_sidebar_state="expanded"
)
# Apply custom CSS for a dashboard-like appearance
st.markdown("""
<style>
.main-header {
font-size: 2.5rem;
color: #1E88E5;
text-align: center;
margin-bottom: 1rem;
padding-bottom: 1rem;
border-bottom: 2px solid #f0f0f0;
}
.dashboard-container {
background-color: #f9f9f9;
padding: 1.5rem;
border-radius: 10px;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
margin-bottom: 1.5rem;
}
.panel-header {
font-size: 1.3rem;
font-weight: bold;
margin-bottom: 1rem;
color: #424242;
border-left: 4px solid #1E88E5;
padding-left: 10px;
}
.stats-card {
background-color: white;
padding: 1rem;
border-radius: 8px;
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
text-align: center;
}
.stats-value {
font-size: 1.8rem;
font-weight: bold;
color: #1E88E5;
}
.stats-label {
font-size: 0.9rem;
color: #616161;
margin-top: 0.3rem;
}
</style>
""", unsafe_allow_html=True)
# Dashboard Header
st.markdown('<h1 class="main-header">Eigenvalue Analysis Dashboard</h1>', unsafe_allow_html=True)
# Create output directory in the current working directory
current_dir = os.getcwd()
output_dir = os.path.join(current_dir, "output")
os.makedirs(output_dir, exist_ok=True)
# Compile the C++ code at runtime
cpp_file = os.path.join(current_dir, "app.cpp")
executable = os.path.join(current_dir, "eigen_analysis")
# Two-column layout for the dashboard
left_column, right_column = st.columns([1, 3])
with left_column:
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
st.markdown('<div class="panel-header">Control Panel</div>', unsafe_allow_html=True)
# Check if cpp file exists and compile if necessary
if not os.path.exists(cpp_file):
st.error(f"C++ source file not found at: {cpp_file}")
st.stop()
# Compile the C++ code with the right OpenCV libraries
if not os.path.exists(executable) or st.button("Recompile C++ Code"):
with st.spinner("Compiling C++ code..."):
compile_commands = [
f"g++ -o {executable} {cpp_file} `pkg-config --cflags --libs opencv4` -std=c++11",
f"g++ -o {executable} {cpp_file} `pkg-config --cflags --libs opencv` -std=c++11",
f"g++ -o {executable} {cpp_file} -I/usr/include/opencv4 -lopencv_core -lopencv_imgproc -std=c++11"
]
compiled = False
for cmd in compile_commands:
compile_result = subprocess.run(
cmd,
shell=True,
capture_output=True,
text=True
)
if compile_result.returncode == 0:
compiled = True
break
if not compiled:
st.error("All compilation attempts failed. Please check the system requirements.")
st.stop()
# Make sure the executable is executable
os.chmod(executable, 0o755)
st.success("C++ code compiled successfully")
# Parameter inputs with defaults and validation
st.markdown("### Matrix Parameters")
n = st.number_input("Sample size (n)", min_value=5, max_value=1000, value=100, step=5, help="Number of samples")
p = st.number_input("Dimension (p)", min_value=5, max_value=1000, value=50, step=5, help="Dimensionality")
a = st.number_input("Value for a", min_value=1.1, max_value=10.0, value=2.0, step=0.1, help="Parameter a > 1")
# Automatically calculate y = p/n (as requested)
y = p/n
st.info(f"Value for y = p/n: {y:.4f}")
st.markdown("### Calculation Controls")
fineness = st.slider(
"Beta points",
min_value=20,
max_value=500,
value=100,
step=10,
help="Number of points to calculate along the Ξ² axis (0 to 1)"
)
with st.expander("Advanced Settings"):
# Add controls for theoretical calculation precision
theory_grid_points = st.slider(
"Theoretical grid points",
min_value=100,
max_value=1000,
value=200,
step=50,
help="Number of points in initial grid search for theoretical calculations"
)
theory_tolerance = st.number_input(
"Theoretical tolerance",
min_value=1e-12,
max_value=1e-6,
value=1e-10,
format="%.1e",
help="Convergence tolerance for golden section search"
)
# Generate button
generate_button = st.button("Generate Analysis", type="primary", use_container_width=True)
st.markdown('</div>', unsafe_allow_html=True)
# About section
with st.expander("About Eigenvalue Analysis"):
st.markdown("""
## Theory
This application visualizes the relationship between empirical and theoretical eigenvalues for matrices with specific properties.
The analysis examines:
- **Empirical Max/Min Eigenvalues**: The maximum and minimum eigenvalues calculated from the generated matrices
- **Theoretical Max/Min Functions**: The theoretical bounds derived from mathematical analysis
### Key Parameters
- **n**: Sample size
- **p**: Dimension
- **a**: Value > 1 that affects the distribution of eigenvalues
- **y**: Value calculated as p/n that affects scaling
### Calculation Controls
- **Beta points**: Number of points calculated along the Ξ² range (0 to 1)
- **Theoretical grid points**: Number of points in initial grid search for finding theoretical max/min
- **Theoretical tolerance**: Convergence tolerance for golden section search algorithm
### Mathematical Formulas
Max Function:
max{k ∈ (0,∞)} [yβ(a-1)k + (ak+1)((y-1)k-1)]/[(ak+1)(k²+k)]
Min Function:
min{t ∈ (-1/a,0)} [yβ(a-1)t + (at+1)((y-1)t-1)]/[(at+1)(t²+t)]
""")
with right_column:
# Main visualization area
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
st.markdown('<div class="panel-header">Eigenvalue Analysis Visualization</div>', unsafe_allow_html=True)
# Container for the analysis results
results_container = st.container()
# Process when generate button is clicked
if generate_button:
with results_container:
# Show progress
progress_container = st.container()
with progress_container:
progress_bar = st.progress(0)
status_text = st.empty()
try:
# Run the C++ executable with the parameters in JSON output mode
data_file = os.path.join(output_dir, "eigenvalue_data.json")
# Delete previous output if exists
if os.path.exists(data_file):
os.remove(data_file)
# Execute the C++ program
cmd = [
executable,
str(n),
str(p),
str(a),
str(y),
str(fineness),
str(theory_grid_points),
str(theory_tolerance),
data_file
]
process = subprocess.Popen(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True
)
# Show output in a status area
status_text.text("Starting calculations...")
last_progress = 0
while process.poll() is None:
output = process.stdout.readline()
if output:
if output.startswith("PROGRESS:"):
try:
# Update progress bar
progress_value = float(output.split(":")[1].strip())
progress_bar.progress(progress_value)
last_progress = progress_value
status_text.text(f"Calculating... {int(progress_value * 100)}% complete")
except:
pass
else:
status_text.text(output.strip())
time.sleep(0.1)
return_code = process.poll()
if return_code != 0:
error = process.stderr.read()
st.error(f"Error executing the analysis: {error}")
else:
progress_bar.progress(1.0)
status_text.text("Calculations complete! Generating visualization...")
# Load the results from the JSON file
with open(data_file, 'r') as f:
data = json.load(f)
# Extract data
beta_values = np.array(data['beta_values'])
max_eigenvalues = np.array(data['max_eigenvalues'])
min_eigenvalues = np.array(data['min_eigenvalues'])
theoretical_max = np.array(data['theoretical_max'])
theoretical_min = np.array(data['theoretical_min'])
# Create the plot
fig, ax = plt.subplots(figsize=(12, 8), dpi=100)
# Set the background color
fig.patch.set_facecolor('#f9f9f9')
ax.set_facecolor('#f0f0f0')
# Plot the data with improved styling
ax.plot(beta_values, max_eigenvalues, 'r-', linewidth=2.5,
label='Empirical Max Eigenvalue', marker='o', markevery=len(beta_values)//20, markersize=6)
ax.plot(beta_values, min_eigenvalues, 'b-', linewidth=2.5,
label='Empirical Min Eigenvalue', marker='o', markevery=len(beta_values)//20, markersize=6)
ax.plot(beta_values, theoretical_max, 'g-', linewidth=2.5,
label='Theoretical Max Function', marker='D', markevery=len(beta_values)//20, markersize=6)
ax.plot(beta_values, theoretical_min, 'm-', linewidth=2.5,
label='Theoretical Min Function', marker='D', markevery=len(beta_values)//20, markersize=6)
# Add grid
ax.grid(True, linestyle='--', alpha=0.7)
# Set labels and title with better formatting
ax.set_xlabel('Ξ² Parameter', fontsize=14, fontweight='bold')
ax.set_ylabel('Eigenvalues', fontsize=14, fontweight='bold')
ax.set_title(f'Eigenvalue Analysis: n={n}, p={p}, a={a}, y={y:.4f}',
fontsize=16, fontweight='bold', pad=15)
# Add legend with improved styling
legend = ax.legend(loc='best', fontsize=12, framealpha=0.9,
fancybox=True, shadow=True, borderpad=1)
# Add formulas as text with better styling
formula_text1 = r"Max Function: $\max_{k \in (0,\infty)} \frac{y\beta(a-1)k + (ak+1)((y-1)k-1)}{(ak+1)(k^2+k)}$"
formula_text2 = r"Min Function: $\min_{t \in (-1/a,0)} \frac{y\beta(a-1)t + (at+1)((y-1)t-1)}{(at+1)(t^2+t)}$"
plt.figtext(0.02, 0.02, formula_text1, fontsize=10, color='green',
bbox=dict(facecolor='white', alpha=0.8, edgecolor='green', boxstyle='round,pad=0.5'))
plt.figtext(0.55, 0.02, formula_text2, fontsize=10, color='purple',
bbox=dict(facecolor='white', alpha=0.8, edgecolor='purple', boxstyle='round,pad=0.5'))
# Adjust layout
plt.tight_layout(rect=[0, 0.05, 1, 0.95])
# Save the plot to a buffer
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=100)
buf.seek(0)
# Save to file
output_file = os.path.join(output_dir, "eigenvalue_analysis.png")
plt.savefig(output_file, format='png', dpi=100)
plt.close()
# Clear progress container
progress_container.empty()
# Display the image in Streamlit (with fixed deprecated parameter)
st.image(buf, use_container_width=True)
# Provide download button
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
with open(output_file, "rb") as file:
btn = st.download_button(
label="Download Plot",
data=file,
file_name=f"eigenvalue_analysis_n{n}_p{p}_a{a}_y{y:.4f}.png",
mime="image/png",
use_container_width=True
)
# Add statistics section with cards
st.markdown("### Results Summary")
# Calculate key statistics
emp_max = max(max_eigenvalues)
emp_min = min(min_eigenvalues)
theo_max = max(theoretical_max)
theo_min = min(theoretical_min)
max_diff = abs(emp_max - theo_max)
min_diff = abs(emp_min - theo_min)
# Display statistics in a card layout
col1, col2, col3, col4 = st.columns(4)
with col1:
st.markdown('<div class="stats-card">', unsafe_allow_html=True)
st.markdown(f'<div class="stats-value">{emp_max:.4f}</div>', unsafe_allow_html=True)
st.markdown('<div class="stats-label">Empirical Maximum</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
with col2:
st.markdown('<div class="stats-card">', unsafe_allow_html=True)
st.markdown(f'<div class="stats-value">{emp_min:.4f}</div>', unsafe_allow_html=True)
st.markdown('<div class="stats-label">Empirical Minimum</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
with col3:
st.markdown('<div class="stats-card">', unsafe_allow_html=True)
st.markdown(f'<div class="stats-value">{theo_max:.4f}</div>', unsafe_allow_html=True)
st.markdown('<div class="stats-label">Theoretical Maximum</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
with col4:
st.markdown('<div class="stats-card">', unsafe_allow_html=True)
st.markdown(f'<div class="stats-value">{theo_min:.4f}</div>', unsafe_allow_html=True)
st.markdown('<div class="stats-label">Theoretical Minimum</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
st.markdown("<br>", unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
st.markdown('<div class="stats-card">', unsafe_allow_html=True)
st.markdown(f'<div class="stats-value">{max_diff:.4f}</div>', unsafe_allow_html=True)
st.markdown('<div class="stats-label">Max Difference</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
with col2:
st.markdown('<div class="stats-card">', unsafe_allow_html=True)
st.markdown(f'<div class="stats-value">{min_diff:.4f}</div>', unsafe_allow_html=True)
st.markdown('<div class="stats-label">Min Difference</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Add calculation settings
with st.expander("Calculation Details"):
st.markdown(f"""
- **Matrix Dimensions**: {n} Γ— {p}
- **Parameter a**: {a}
- **Parameter y (p/n)**: {y:.4f}
- **Beta points**: {fineness}
- **Theoretical grid points**: {theory_grid_points}
- **Theoretical tolerance**: {theory_tolerance:.1e}
""")
except Exception as e:
st.error(f"An error occurred: {str(e)}")
else:
# Check for existing results
example_file = os.path.join(output_dir, "eigenvalue_analysis.png")
if os.path.exists(example_file):
# Show the most recent plot by default
st.image(example_file, use_container_width=True)
st.info("This is the most recent analysis result. Adjust parameters and click 'Generate Analysis' to create a new visualization.")
else:
# Show placeholder
st.info("πŸ‘ˆ Set parameters and click 'Generate Analysis' to create a visualization.")
st.markdown('</div>', unsafe_allow_html=True)