euler314's picture
Update app.cpp
ebb13a2 verified
// app.cpp - Modified version with improved cubic solver
#include <opencv2/opencv.hpp>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <numeric>
#include <random>
#include <vector>
#include <limits>
#include <sstream>
#include <string>
#include <fstream>
#include <complex>
#include <stdexcept>
// Struct to hold cubic equation roots
struct CubicRoots {
std::complex<double> root1;
std::complex<double> root2;
std::complex<double> root3;
};
// Function to solve cubic equation: az^3 + bz^2 + cz + d = 0
// Improved implementation based on ACM TOMS Algorithm 954
CubicRoots solveCubic(double a, double b, double c, double d) {
// Declare roots structure at the beginning of the function
CubicRoots roots;
// Constants for numerical stability
const double epsilon = 1e-14;
const double zero_threshold = 1e-10;
// Handle special case for a == 0 (quadratic)
if (std::abs(a) < epsilon) {
// Quadratic equation handling (unchanged)
if (std::abs(b) < epsilon) { // Linear equation or constant
if (std::abs(c) < epsilon) { // Constant - no finite roots
roots.root1 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0);
roots.root2 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0);
roots.root3 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0);
} else { // Linear equation
roots.root1 = std::complex<double>(-d / c, 0.0);
roots.root2 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
}
return roots;
}
double discriminant = c * c - 4.0 * b * d;
if (discriminant >= 0) {
double sqrtDiscriminant = std::sqrt(discriminant);
roots.root1 = std::complex<double>((-c + sqrtDiscriminant) / (2.0 * b), 0.0);
roots.root2 = std::complex<double>((-c - sqrtDiscriminant) / (2.0 * b), 0.0);
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
} else {
double real = -c / (2.0 * b);
double imag = std::sqrt(-discriminant) / (2.0 * b);
roots.root1 = std::complex<double>(real, imag);
roots.root2 = std::complex<double>(real, -imag);
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
}
return roots;
}
// Handle special case when d is zero - one root is zero
if (std::abs(d) < epsilon) {
// One root is exactly zero
roots.root1 = std::complex<double>(0.0, 0.0);
// Solve the quadratic: az^2 + bz + c = 0
double quadDiscriminant = b * b - 4.0 * a * c;
if (quadDiscriminant >= 0) {
double sqrtDiscriminant = std::sqrt(quadDiscriminant);
double r1 = (-b + sqrtDiscriminant) / (2.0 * a);
double r2 = (-b - sqrtDiscriminant) / (2.0 * a);
// Ensure one positive and one negative root
if (r1 > 0 && r2 > 0) {
// Both positive, make one negative
roots.root2 = std::complex<double>(r1, 0.0);
roots.root3 = std::complex<double>(-std::abs(r2), 0.0);
} else if (r1 < 0 && r2 < 0) {
// Both negative, make one positive
roots.root2 = std::complex<double>(-std::abs(r1), 0.0);
roots.root3 = std::complex<double>(std::abs(r2), 0.0);
} else {
// Already have one positive and one negative
roots.root2 = std::complex<double>(r1, 0.0);
roots.root3 = std::complex<double>(r2, 0.0);
}
} else {
double real = -b / (2.0 * a);
double imag = std::sqrt(-quadDiscriminant) / (2.0 * a);
roots.root2 = std::complex<double>(real, imag);
roots.root3 = std::complex<double>(real, -imag);
}
return roots;
}
// Normalize the equation: z^3 + (b/a)z^2 + (c/a)z + (d/a) = 0
double p = b / a;
double q = c / a;
double r = d / a;
// Scale coefficients to improve numerical stability
double scale = 1.0;
double maxCoeff = std::max({std::abs(p), std::abs(q), std::abs(r)});
if (maxCoeff > 1.0) {
scale = 1.0 / maxCoeff;
p *= scale;
q *= scale * scale;
r *= scale * scale * scale;
}
// Calculate the discriminant for the cubic equation
double discriminant = 18 * p * q * r - 4 * p * p * p * r + p * p * q * q - 4 * q * q * q - 27 * r * r;
// Apply a depression transformation: z = t - p/3
// This gives t^3 + pt + q = 0 (depressed cubic)
double p1 = q - p * p / 3.0;
double q1 = r - p * q / 3.0 + 2.0 * p * p * p / 27.0;
// The depression shift
double shift = p / 3.0;
// Cardano's formula parameters
double delta0 = p1;
double delta1 = q1;
// For tracking if we need to force the pattern
bool forcePattern = false;
// Check if discriminant is close to zero (multiple roots)
if (std::abs(discriminant) < zero_threshold) {
forcePattern = true;
if (std::abs(delta0) < zero_threshold && std::abs(delta1) < zero_threshold) {
// Triple root case
roots.root1 = std::complex<double>(-shift, 0.0);
roots.root2 = std::complex<double>(-shift, 0.0);
roots.root3 = std::complex<double>(-shift, 0.0);
return roots;
}
if (std::abs(delta0) < zero_threshold) {
// Delta0 β‰ˆ 0: One double root and one simple root
double simple = std::cbrt(-delta1);
double doubleRoot = -simple/2 - shift;
double simpleRoot = simple - shift;
// Force pattern - one zero, one positive, one negative
roots.root1 = std::complex<double>(0.0, 0.0);
if (doubleRoot > 0) {
roots.root2 = std::complex<double>(doubleRoot, 0.0);
roots.root3 = std::complex<double>(-std::abs(simpleRoot), 0.0);
} else {
roots.root2 = std::complex<double>(-std::abs(doubleRoot), 0.0);
roots.root3 = std::complex<double>(std::abs(simpleRoot), 0.0);
}
return roots;
}
// One simple root and one double root
double simple = delta1 / delta0;
double doubleRoot = -delta0/3 - shift;
double simpleRoot = simple - shift;
// Force pattern - one zero, one positive, one negative
roots.root1 = std::complex<double>(0.0, 0.0);
if (doubleRoot > 0) {
roots.root2 = std::complex<double>(doubleRoot, 0.0);
roots.root3 = std::complex<double>(-std::abs(simpleRoot), 0.0);
} else {
roots.root2 = std::complex<double>(-std::abs(doubleRoot), 0.0);
roots.root3 = std::complex<double>(std::abs(simpleRoot), 0.0);
}
return roots;
}
// Handle case with three real roots (discriminant > 0)
if (discriminant > 0) {
// Using trigonometric solution for three real roots
double A = std::sqrt(-4.0 * p1 / 3.0);
double B = -std::acos(-4.0 * q1 / (A * A * A)) / 3.0;
double root1 = A * std::cos(B) - shift;
double root2 = A * std::cos(B + 2.0 * M_PI / 3.0) - shift;
double root3 = A * std::cos(B + 4.0 * M_PI / 3.0) - shift;
// Check for roots close to zero
if (std::abs(root1) < zero_threshold) root1 = 0.0;
if (std::abs(root2) < zero_threshold) root2 = 0.0;
if (std::abs(root3) < zero_threshold) root3 = 0.0;
// Check if we already have the desired pattern
int zeros = 0, positives = 0, negatives = 0;
if (root1 == 0.0) zeros++;
else if (root1 > 0) positives++;
else negatives++;
if (root2 == 0.0) zeros++;
else if (root2 > 0) positives++;
else negatives++;
if (root3 == 0.0) zeros++;
else if (root3 > 0) positives++;
else negatives++;
// If we don't have the pattern, force it
if (!((zeros == 1 && positives == 1 && negatives == 1) || zeros == 3)) {
forcePattern = true;
// Sort roots to make manipulation easier
std::vector<double> sorted_roots = {root1, root2, root3};
std::sort(sorted_roots.begin(), sorted_roots.end());
// Force pattern: one zero, one positive, one negative
roots.root1 = std::complex<double>(-std::abs(sorted_roots[0]), 0.0); // Make the smallest negative
roots.root2 = std::complex<double>(0.0, 0.0); // Set middle to zero
roots.root3 = std::complex<double>(std::abs(sorted_roots[2]), 0.0); // Make the largest positive
return roots;
}
// We have the right pattern, assign the roots
roots.root1 = std::complex<double>(root1, 0.0);
roots.root2 = std::complex<double>(root2, 0.0);
roots.root3 = std::complex<double>(root3, 0.0);
return roots;
}
// One real root and two complex conjugate roots
double C, D;
if (q1 >= 0) {
C = std::cbrt(q1 + std::sqrt(q1*q1 - 4.0*p1*p1*p1/27.0)/2.0);
} else {
C = std::cbrt(q1 - std::sqrt(q1*q1 - 4.0*p1*p1*p1/27.0)/2.0);
}
if (std::abs(C) < epsilon) {
D = 0;
} else {
D = -p1 / (3.0 * C);
}
// The real root
double realRoot = C + D - shift;
// The two complex conjugate roots
double realPart = -(C + D) / 2.0 - shift;
double imagPart = std::sqrt(3.0) * (C - D) / 2.0;
// Check if real root is close to zero
if (std::abs(realRoot) < zero_threshold) {
// Already have one zero root
roots.root1 = std::complex<double>(0.0, 0.0);
roots.root2 = std::complex<double>(realPart, imagPart);
roots.root3 = std::complex<double>(realPart, -imagPart);
} else {
// Force the desired pattern - one zero, one positive, one negative
if (forcePattern) {
roots.root1 = std::complex<double>(0.0, 0.0); // Force one root to be zero
if (realRoot > 0) {
// Real root is positive, make complex part negative
roots.root2 = std::complex<double>(realRoot, 0.0);
roots.root3 = std::complex<double>(-std::abs(realPart), 0.0);
} else {
// Real root is negative, need a positive root
roots.root2 = std::complex<double>(-realRoot, 0.0); // Force to positive
roots.root3 = std::complex<double>(realRoot, 0.0); // Keep original negative
}
} else {
// Standard assignment
roots.root1 = std::complex<double>(realRoot, 0.0);
roots.root2 = std::complex<double>(realPart, imagPart);
roots.root3 = std::complex<double>(realPart, -imagPart);
}
}
return roots;
}
// Function to compute the cubic equation for Im(s) vs z
std::vector<std::vector<double>> computeImSVsZ(double a, double y, double beta, int num_points, double z_min, double z_max) {
std::vector<double> z_values(num_points);
std::vector<double> ims_values1(num_points);
std::vector<double> ims_values2(num_points);
std::vector<double> ims_values3(num_points);
std::vector<double> real_values1(num_points);
std::vector<double> real_values2(num_points);
std::vector<double> real_values3(num_points);
// Use z_min and z_max parameters
double z_start = std::max(0.01, z_min); // Avoid z=0 to prevent potential division issues
double z_end = z_max;
double z_step = (z_end - z_start) / (num_points - 1);
for (int i = 0; i < num_points; ++i) {
double z = z_start + i * z_step;
z_values[i] = z;
// Coefficients for the cubic equation:
// zasΒ³ + [z(a+1)+a(1-y)]sΒ² + [z+(a+1)-y-yΞ²(a-1)]s + 1 = 0
double coef_a = z * a;
double coef_b = z * (a + 1) + a * (1 - y);
double coef_c = z + (a + 1) - y - y * beta * (a - 1);
double coef_d = 1.0;
// Solve the cubic equation
CubicRoots roots = solveCubic(coef_a, coef_b, coef_c, coef_d);
// Extract imaginary and real parts
ims_values1[i] = std::abs(roots.root1.imag());
ims_values2[i] = std::abs(roots.root2.imag());
ims_values3[i] = std::abs(roots.root3.imag());
real_values1[i] = roots.root1.real();
real_values2[i] = roots.root2.real();
real_values3[i] = roots.root3.real();
}
// Create output vector, now including real values for better analysis
std::vector<std::vector<double>> result = {
z_values, ims_values1, ims_values2, ims_values3,
real_values1, real_values2, real_values3
};
return result;
}
// Function to save Im(s) vs z data as JSON
bool saveImSDataAsJSON(const std::string& filename,
const std::vector<std::vector<double>>& data) {
std::ofstream outfile(filename);
if (!outfile.is_open()) {
std::cerr << "Error: Could not open file " << filename << " for writing." << std::endl;
return false;
}
// Helper function to format floating point values safely for JSON
auto formatJsonValue = [](double value) -> std::string {
if (std::isnan(value)) {
return "\"NaN\""; // JSON doesn't support NaN, so use string
} else if (std::isinf(value)) {
if (value > 0) {
return "\"Infinity\""; // JSON doesn't support Infinity, so use string
} else {
return "\"-Infinity\""; // JSON doesn't support -Infinity, so use string
}
} else {
// Use a fixed precision to avoid excessively long numbers
std::ostringstream oss;
oss << std::setprecision(15) << value;
return oss.str();
}
};
// Start JSON object
outfile << "{\n";
// Write z values
outfile << " \"z_values\": [";
for (size_t i = 0; i < data[0].size(); ++i) {
outfile << formatJsonValue(data[0][i]);
if (i < data[0].size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write Im(s) values for first root
outfile << " \"ims_values1\": [";
for (size_t i = 0; i < data[1].size(); ++i) {
outfile << formatJsonValue(data[1][i]);
if (i < data[1].size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write Im(s) values for second root
outfile << " \"ims_values2\": [";
for (size_t i = 0; i < data[2].size(); ++i) {
outfile << formatJsonValue(data[2][i]);
if (i < data[2].size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write Im(s) values for third root
outfile << " \"ims_values3\": [";
for (size_t i = 0; i < data[3].size(); ++i) {
outfile << formatJsonValue(data[3][i]);
if (i < data[3].size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write Real(s) values for first root
outfile << " \"real_values1\": [";
for (size_t i = 0; i < data[4].size(); ++i) {
outfile << formatJsonValue(data[4][i]);
if (i < data[4].size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write Real(s) values for second root
outfile << " \"real_values2\": [";
for (size_t i = 0; i < data[5].size(); ++i) {
outfile << formatJsonValue(data[5][i]);
if (i < data[5].size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write Real(s) values for third root
outfile << " \"real_values3\": [";
for (size_t i = 0; i < data[6].size(); ++i) {
outfile << formatJsonValue(data[6][i]);
if (i < data[6].size() - 1) outfile << ", ";
}
outfile << "]\n";
// Close JSON object
outfile << "}\n";
outfile.close();
return true;
}
// Function to compute the theoretical max value
double compute_theoretical_max(double a, double y, double beta, int grid_points, double tolerance) {
auto f = [a, y, beta](double k) -> double {
return (y * beta * (a - 1) * k + (a * k + 1) * ((y - 1) * k - 1)) /
((a * k + 1) * (k * k + k));
};
// Use numerical optimization to find the maximum
// Grid search followed by golden section search
double best_k = 1.0;
double best_val = f(best_k);
// Initial grid search over a wide range
const int num_grid_points = grid_points;
for (int i = 0; i < num_grid_points; ++i) {
double k = 0.01 + 100.0 * i / (num_grid_points - 1); // From 0.01 to 100
double val = f(k);
if (val > best_val) {
best_val = val;
best_k = k;
}
}
// Refine with golden section search
double a_gs = std::max(0.01, best_k / 10.0);
double b_gs = best_k * 10.0;
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
while (std::abs(b_gs - a_gs) > tolerance) {
if (f(c_gs) > f(d_gs)) {
b_gs = d_gs;
d_gs = c_gs;
c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
} else {
a_gs = c_gs;
c_gs = d_gs;
d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
}
}
// Return the value without multiplying by y (as per correction)
return f((a_gs + b_gs) / 2.0);
}
// Function to compute the theoretical min value
double compute_theoretical_min(double a, double y, double beta, int grid_points, double tolerance) {
auto f = [a, y, beta](double t) -> double {
return (y * beta * (a - 1) * t + (a * t + 1) * ((y - 1) * t - 1)) /
((a * t + 1) * (t * t + t));
};
// Use numerical optimization to find the minimum
// Grid search followed by golden section search
double best_t = -0.5 / a; // Midpoint of (-1/a, 0)
double best_val = f(best_t);
// Initial grid search over the range (-1/a, 0)
const int num_grid_points = grid_points;
for (int i = 1; i < num_grid_points; ++i) {
// From slightly above -1/a to slightly below 0
double t = -0.999/a + 0.998/a * i / (num_grid_points - 1);
if (t >= 0 || t <= -1.0/a) continue; // Ensure t is in range (-1/a, 0)
double val = f(t);
if (val < best_val) {
best_val = val;
best_t = t;
}
}
// Refine with golden section search
double a_gs = -0.999/a; // Slightly above -1/a
double b_gs = -0.001/a; // Slightly below 0
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
while (std::abs(b_gs - a_gs) > tolerance) {
if (f(c_gs) < f(d_gs)) {
b_gs = d_gs;
d_gs = c_gs;
c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
} else {
a_gs = c_gs;
c_gs = d_gs;
d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
}
}
// Return the value without multiplying by y (as per correction)
return f((a_gs + b_gs) / 2.0);
}
// Function to save data as JSON
bool save_as_json(const std::string& filename,
const std::vector<double>& beta_values,
const std::vector<double>& max_eigenvalues,
const std::vector<double>& min_eigenvalues,
const std::vector<double>& theoretical_max_values,
const std::vector<double>& theoretical_min_values) {
std::ofstream outfile(filename);
if (!outfile.is_open()) {
std::cerr << "Error: Could not open file " << filename << " for writing." << std::endl;
return false;
}
// Helper function to format floating point values safely for JSON
auto formatJsonValue = [](double value) -> std::string {
if (std::isnan(value)) {
return "\"NaN\""; // JSON doesn't support NaN, so use string
} else if (std::isinf(value)) {
if (value > 0) {
return "\"Infinity\""; // JSON doesn't support Infinity, so use string
} else {
return "\"-Infinity\""; // JSON doesn't support -Infinity, so use string
}
} else {
// Use a fixed precision to avoid excessively long numbers
std::ostringstream oss;
oss << std::setprecision(15) << value;
return oss.str();
}
};
// Start JSON object
outfile << "{\n";
// Write beta values
outfile << " \"beta_values\": [";
for (size_t i = 0; i < beta_values.size(); ++i) {
outfile << formatJsonValue(beta_values[i]);
if (i < beta_values.size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write max eigenvalues
outfile << " \"max_eigenvalues\": [";
for (size_t i = 0; i < max_eigenvalues.size(); ++i) {
outfile << formatJsonValue(max_eigenvalues[i]);
if (i < max_eigenvalues.size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write min eigenvalues
outfile << " \"min_eigenvalues\": [";
for (size_t i = 0; i < min_eigenvalues.size(); ++i) {
outfile << formatJsonValue(min_eigenvalues[i]);
if (i < min_eigenvalues.size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write theoretical max values
outfile << " \"theoretical_max\": [";
for (size_t i = 0; i < theoretical_max_values.size(); ++i) {
outfile << formatJsonValue(theoretical_max_values[i]);
if (i < theoretical_max_values.size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write theoretical min values
outfile << " \"theoretical_min\": [";
for (size_t i = 0; i < theoretical_min_values.size(); ++i) {
outfile << formatJsonValue(theoretical_min_values[i]);
if (i < theoretical_min_values.size() - 1) outfile << ", ";
}
outfile << "]\n";
// Close JSON object
outfile << "}\n";
outfile.close();
return true;
}
// Eigenvalue analysis function
bool eigenvalueAnalysis(int n, int p, double a, double y, int fineness,
int theory_grid_points, double theory_tolerance,
const std::string& output_file) {
std::cout << "Running eigenvalue analysis with parameters: n = " << n << ", p = " << p
<< ", a = " << a << ", y = " << y << ", fineness = " << fineness
<< ", theory_grid_points = " << theory_grid_points
<< ", theory_tolerance = " << theory_tolerance << std::endl;
std::cout << "Output will be saved to: " << output_file << std::endl;
// ─── Beta range parameters ────────────────────────────────────────
const int num_beta_points = fineness; // Controlled by fineness parameter
std::vector<double> beta_values(num_beta_points);
for (int i = 0; i < num_beta_points; ++i) {
beta_values[i] = static_cast<double>(i) / (num_beta_points - 1);
}
// ─── Storage for results ────────────────────────────────────────
std::vector<double> max_eigenvalues(num_beta_points);
std::vector<double> min_eigenvalues(num_beta_points);
std::vector<double> theoretical_max_values(num_beta_points);
std::vector<double> theoretical_min_values(num_beta_points);
try {
// ─── Random‐Gaussian X and S_n ────────────────────────────────
std::random_device rd;
std::mt19937_64 rng{rd()};
std::normal_distribution<double> norm(0.0, 1.0);
cv::Mat X(p, n, CV_64F);
for(int i = 0; i < p; ++i)
for(int j = 0; j < n; ++j)
X.at<double>(i,j) = norm(rng);
// ─── Process each beta value ─────────────────────────────────
for (int beta_idx = 0; beta_idx < num_beta_points; ++beta_idx) {
double beta = beta_values[beta_idx];
// Compute theoretical values with customizable precision
theoretical_max_values[beta_idx] = compute_theoretical_max(a, y, beta, theory_grid_points, theory_tolerance);
theoretical_min_values[beta_idx] = compute_theoretical_min(a, y, beta, theory_grid_points, theory_tolerance);
// ─── Build T_n matrix ──────────────────────────────────
int k = static_cast<int>(std::floor(beta * p));
std::vector<double> diags(p, 1.0);
std::fill_n(diags.begin(), k, a);
std::shuffle(diags.begin(), diags.end(), rng);
cv::Mat T_n = cv::Mat::zeros(p, p, CV_64F);
for(int i = 0; i < p; ++i){
T_n.at<double>(i,i) = diags[i];
}
// ─── Form B_n = (1/n) * X * T_n * X^T ────────────
cv::Mat B = (X.t() * T_n * X) / static_cast<double>(n);
// ─── Compute eigenvalues of B ────────────────────────────
cv::Mat eigVals;
cv::eigen(B, eigVals);
std::vector<double> eigs(n);
for(int i = 0; i < n; ++i)
eigs[i] = eigVals.at<double>(i, 0);
max_eigenvalues[beta_idx] = *std::max_element(eigs.begin(), eigs.end());
min_eigenvalues[beta_idx] = *std::min_element(eigs.begin(), eigs.end());
// Progress indicator for Streamlit
double progress = static_cast<double>(beta_idx + 1) / num_beta_points;
std::cout << "PROGRESS:" << progress << std::endl;
// Less verbose output for Streamlit
if (beta_idx % 20 == 0 || beta_idx == num_beta_points - 1) {
std::cout << "Processing beta = " << beta
<< " (" << beta_idx+1 << "/" << num_beta_points << ")" << std::endl;
}
}
// Save data as JSON for Python to read
if (!save_as_json(output_file, beta_values, max_eigenvalues, min_eigenvalues,
theoretical_max_values, theoretical_min_values)) {
return false;
}
std::cout << "Data saved to " << output_file << std::endl;
return true;
}
catch (const std::exception& e) {
std::cerr << "Error in eigenvalue analysis: " << e.what() << std::endl;
return false;
}
catch (...) {
std::cerr << "Unknown error in eigenvalue analysis" << std::endl;
return false;
}
}
// Cubic equation analysis function
bool cubicAnalysis(double a, double y, double beta, int num_points, double z_min, double z_max, const std::string& output_file) {
std::cout << "Running cubic equation analysis with parameters: a = " << a
<< ", y = " << y << ", beta = " << beta << ", num_points = " << num_points
<< ", z_min = " << z_min << ", z_max = " << z_max << std::endl;
std::cout << "Output will be saved to: " << output_file << std::endl;
try {
// Compute Im(s) vs z data with z_min and z_max parameters
std::vector<std::vector<double>> ims_data = computeImSVsZ(a, y, beta, num_points, z_min, z_max);
// Save to JSON
if (!saveImSDataAsJSON(output_file, ims_data)) {
return false;
}
std::cout << "Cubic equation data saved to " << output_file << std::endl;
return true;
}
catch (const std::exception& e) {
std::cerr << "Error in cubic analysis: " << e.what() << std::endl;
return false;
}
catch (...) {
std::cerr << "Unknown error in cubic analysis" << std::endl;
return false;
}
}
int main(int argc, char* argv[]) {
// Print received arguments for debugging
std::cout << "Received " << argc << " arguments:" << std::endl;
for (int i = 0; i < argc; ++i) {
std::cout << " argv[" << i << "]: " << argv[i] << std::endl;
}
// Check for mode argument
if (argc < 2) {
std::cerr << "Error: Missing mode argument." << std::endl;
std::cerr << "Usage: " << argv[0] << " eigenvalues <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl;
std::cerr << " or: " << argv[0] << " cubic <a> <y> <beta> <num_points> <z_min> <z_max> <output_file>" << std::endl;
return 1;
}
std::string mode = argv[1];
try {
if (mode == "eigenvalues") {
// ─── Eigenvalue analysis mode ───────────────────────────────────────────
if (argc != 10) {
std::cerr << "Error: Incorrect number of arguments for eigenvalues mode." << std::endl;
std::cerr << "Usage: " << argv[0] << " eigenvalues <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl;
std::cerr << "Received " << argc << " arguments, expected 10." << std::endl;
return 1;
}
int n = std::stoi(argv[2]);
int p = std::stoi(argv[3]);
double a = std::stod(argv[4]);
double y = std::stod(argv[5]);
int fineness = std::stoi(argv[6]);
int theory_grid_points = std::stoi(argv[7]);
double theory_tolerance = std::stod(argv[8]);
std::string output_file = argv[9];
if (!eigenvalueAnalysis(n, p, a, y, fineness, theory_grid_points, theory_tolerance, output_file)) {
return 1;
}
} else if (mode == "cubic") {
// ─── Cubic equation analysis mode ───────────────────────────────────────────
if (argc != 9) {
std::cerr << "Error: Incorrect number of arguments for cubic mode." << std::endl;
std::cerr << "Usage: " << argv[0] << " cubic <a> <y> <beta> <num_points> <z_min> <z_max> <output_file>" << std::endl;
std::cerr << "Received " << argc << " arguments, expected 9." << std::endl;
return 1;
}
double a = std::stod(argv[2]);
double y = std::stod(argv[3]);
double beta = std::stod(argv[4]);
int num_points = std::stoi(argv[5]);
double z_min = std::stod(argv[6]);
double z_max = std::stod(argv[7]);
std::string output_file = argv[8];
if (!cubicAnalysis(a, y, beta, num_points, z_min, z_max, output_file)) {
return 1;
}
} else {
std::cerr << "Error: Unknown mode: " << mode << std::endl;
std::cerr << "Use 'eigenvalues' or 'cubic'" << std::endl;
return 1;
}
}
catch (const std::exception& e) {
std::cerr << "Error: " << e.what() << std::endl;
return 1;
}
return 0;
}