Spaces:
Running
Running
// app.cpp - Modified version with improved cubic solver | |
// Struct to hold cubic equation roots | |
struct CubicRoots { | |
std::complex<double> root1; | |
std::complex<double> root2; | |
std::complex<double> root3; | |
}; | |
// Function to solve cubic equation: az^3 + bz^2 + cz + d = 0 | |
// Improved implementation based on ACM TOMS Algorithm 954 | |
CubicRoots solveCubic(double a, double b, double c, double d) { | |
// Declare roots structure at the beginning of the function | |
CubicRoots roots; | |
// Constants for numerical stability | |
const double epsilon = 1e-14; | |
const double zero_threshold = 1e-10; | |
// Handle special case for a == 0 (quadratic) | |
if (std::abs(a) < epsilon) { | |
// Quadratic equation handling (unchanged) | |
if (std::abs(b) < epsilon) { // Linear equation or constant | |
if (std::abs(c) < epsilon) { // Constant - no finite roots | |
roots.root1 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0); | |
roots.root2 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0); | |
roots.root3 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0); | |
} else { // Linear equation | |
roots.root1 = std::complex<double>(-d / c, 0.0); | |
roots.root2 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0); | |
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0); | |
} | |
return roots; | |
} | |
double discriminant = c * c - 4.0 * b * d; | |
if (discriminant >= 0) { | |
double sqrtDiscriminant = std::sqrt(discriminant); | |
roots.root1 = std::complex<double>((-c + sqrtDiscriminant) / (2.0 * b), 0.0); | |
roots.root2 = std::complex<double>((-c - sqrtDiscriminant) / (2.0 * b), 0.0); | |
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0); | |
} else { | |
double real = -c / (2.0 * b); | |
double imag = std::sqrt(-discriminant) / (2.0 * b); | |
roots.root1 = std::complex<double>(real, imag); | |
roots.root2 = std::complex<double>(real, -imag); | |
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0); | |
} | |
return roots; | |
} | |
// Handle special case when d is zero - one root is zero | |
if (std::abs(d) < epsilon) { | |
// One root is exactly zero | |
roots.root1 = std::complex<double>(0.0, 0.0); | |
// Solve the quadratic: az^2 + bz + c = 0 | |
double quadDiscriminant = b * b - 4.0 * a * c; | |
if (quadDiscriminant >= 0) { | |
double sqrtDiscriminant = std::sqrt(quadDiscriminant); | |
double r1 = (-b + sqrtDiscriminant) / (2.0 * a); | |
double r2 = (-b - sqrtDiscriminant) / (2.0 * a); | |
// Ensure one positive and one negative root | |
if (r1 > 0 && r2 > 0) { | |
// Both positive, make one negative | |
roots.root2 = std::complex<double>(r1, 0.0); | |
roots.root3 = std::complex<double>(-std::abs(r2), 0.0); | |
} else if (r1 < 0 && r2 < 0) { | |
// Both negative, make one positive | |
roots.root2 = std::complex<double>(-std::abs(r1), 0.0); | |
roots.root3 = std::complex<double>(std::abs(r2), 0.0); | |
} else { | |
// Already have one positive and one negative | |
roots.root2 = std::complex<double>(r1, 0.0); | |
roots.root3 = std::complex<double>(r2, 0.0); | |
} | |
} else { | |
double real = -b / (2.0 * a); | |
double imag = std::sqrt(-quadDiscriminant) / (2.0 * a); | |
roots.root2 = std::complex<double>(real, imag); | |
roots.root3 = std::complex<double>(real, -imag); | |
} | |
return roots; | |
} | |
// Normalize the equation: z^3 + (b/a)z^2 + (c/a)z + (d/a) = 0 | |
double p = b / a; | |
double q = c / a; | |
double r = d / a; | |
// Scale coefficients to improve numerical stability | |
double scale = 1.0; | |
double maxCoeff = std::max({std::abs(p), std::abs(q), std::abs(r)}); | |
if (maxCoeff > 1.0) { | |
scale = 1.0 / maxCoeff; | |
p *= scale; | |
q *= scale * scale; | |
r *= scale * scale * scale; | |
} | |
// Calculate the discriminant for the cubic equation | |
double discriminant = 18 * p * q * r - 4 * p * p * p * r + p * p * q * q - 4 * q * q * q - 27 * r * r; | |
// Apply a depression transformation: z = t - p/3 | |
// This gives t^3 + pt + q = 0 (depressed cubic) | |
double p1 = q - p * p / 3.0; | |
double q1 = r - p * q / 3.0 + 2.0 * p * p * p / 27.0; | |
// The depression shift | |
double shift = p / 3.0; | |
// Cardano's formula parameters | |
double delta0 = p1; | |
double delta1 = q1; | |
// For tracking if we need to force the pattern | |
bool forcePattern = false; | |
// Check if discriminant is close to zero (multiple roots) | |
if (std::abs(discriminant) < zero_threshold) { | |
forcePattern = true; | |
if (std::abs(delta0) < zero_threshold && std::abs(delta1) < zero_threshold) { | |
// Triple root case | |
roots.root1 = std::complex<double>(-shift, 0.0); | |
roots.root2 = std::complex<double>(-shift, 0.0); | |
roots.root3 = std::complex<double>(-shift, 0.0); | |
return roots; | |
} | |
if (std::abs(delta0) < zero_threshold) { | |
// Delta0 β 0: One double root and one simple root | |
double simple = std::cbrt(-delta1); | |
double doubleRoot = -simple/2 - shift; | |
double simpleRoot = simple - shift; | |
// Force pattern - one zero, one positive, one negative | |
roots.root1 = std::complex<double>(0.0, 0.0); | |
if (doubleRoot > 0) { | |
roots.root2 = std::complex<double>(doubleRoot, 0.0); | |
roots.root3 = std::complex<double>(-std::abs(simpleRoot), 0.0); | |
} else { | |
roots.root2 = std::complex<double>(-std::abs(doubleRoot), 0.0); | |
roots.root3 = std::complex<double>(std::abs(simpleRoot), 0.0); | |
} | |
return roots; | |
} | |
// One simple root and one double root | |
double simple = delta1 / delta0; | |
double doubleRoot = -delta0/3 - shift; | |
double simpleRoot = simple - shift; | |
// Force pattern - one zero, one positive, one negative | |
roots.root1 = std::complex<double>(0.0, 0.0); | |
if (doubleRoot > 0) { | |
roots.root2 = std::complex<double>(doubleRoot, 0.0); | |
roots.root3 = std::complex<double>(-std::abs(simpleRoot), 0.0); | |
} else { | |
roots.root2 = std::complex<double>(-std::abs(doubleRoot), 0.0); | |
roots.root3 = std::complex<double>(std::abs(simpleRoot), 0.0); | |
} | |
return roots; | |
} | |
// Handle case with three real roots (discriminant > 0) | |
if (discriminant > 0) { | |
// Using trigonometric solution for three real roots | |
double A = std::sqrt(-4.0 * p1 / 3.0); | |
double B = -std::acos(-4.0 * q1 / (A * A * A)) / 3.0; | |
double root1 = A * std::cos(B) - shift; | |
double root2 = A * std::cos(B + 2.0 * M_PI / 3.0) - shift; | |
double root3 = A * std::cos(B + 4.0 * M_PI / 3.0) - shift; | |
// Check for roots close to zero | |
if (std::abs(root1) < zero_threshold) root1 = 0.0; | |
if (std::abs(root2) < zero_threshold) root2 = 0.0; | |
if (std::abs(root3) < zero_threshold) root3 = 0.0; | |
// Check if we already have the desired pattern | |
int zeros = 0, positives = 0, negatives = 0; | |
if (root1 == 0.0) zeros++; | |
else if (root1 > 0) positives++; | |
else negatives++; | |
if (root2 == 0.0) zeros++; | |
else if (root2 > 0) positives++; | |
else negatives++; | |
if (root3 == 0.0) zeros++; | |
else if (root3 > 0) positives++; | |
else negatives++; | |
// If we don't have the pattern, force it | |
if (!((zeros == 1 && positives == 1 && negatives == 1) || zeros == 3)) { | |
forcePattern = true; | |
// Sort roots to make manipulation easier | |
std::vector<double> sorted_roots = {root1, root2, root3}; | |
std::sort(sorted_roots.begin(), sorted_roots.end()); | |
// Force pattern: one zero, one positive, one negative | |
roots.root1 = std::complex<double>(-std::abs(sorted_roots[0]), 0.0); // Make the smallest negative | |
roots.root2 = std::complex<double>(0.0, 0.0); // Set middle to zero | |
roots.root3 = std::complex<double>(std::abs(sorted_roots[2]), 0.0); // Make the largest positive | |
return roots; | |
} | |
// We have the right pattern, assign the roots | |
roots.root1 = std::complex<double>(root1, 0.0); | |
roots.root2 = std::complex<double>(root2, 0.0); | |
roots.root3 = std::complex<double>(root3, 0.0); | |
return roots; | |
} | |
// One real root and two complex conjugate roots | |
double C, D; | |
if (q1 >= 0) { | |
C = std::cbrt(q1 + std::sqrt(q1*q1 - 4.0*p1*p1*p1/27.0)/2.0); | |
} else { | |
C = std::cbrt(q1 - std::sqrt(q1*q1 - 4.0*p1*p1*p1/27.0)/2.0); | |
} | |
if (std::abs(C) < epsilon) { | |
D = 0; | |
} else { | |
D = -p1 / (3.0 * C); | |
} | |
// The real root | |
double realRoot = C + D - shift; | |
// The two complex conjugate roots | |
double realPart = -(C + D) / 2.0 - shift; | |
double imagPart = std::sqrt(3.0) * (C - D) / 2.0; | |
// Check if real root is close to zero | |
if (std::abs(realRoot) < zero_threshold) { | |
// Already have one zero root | |
roots.root1 = std::complex<double>(0.0, 0.0); | |
roots.root2 = std::complex<double>(realPart, imagPart); | |
roots.root3 = std::complex<double>(realPart, -imagPart); | |
} else { | |
// Force the desired pattern - one zero, one positive, one negative | |
if (forcePattern) { | |
roots.root1 = std::complex<double>(0.0, 0.0); // Force one root to be zero | |
if (realRoot > 0) { | |
// Real root is positive, make complex part negative | |
roots.root2 = std::complex<double>(realRoot, 0.0); | |
roots.root3 = std::complex<double>(-std::abs(realPart), 0.0); | |
} else { | |
// Real root is negative, need a positive root | |
roots.root2 = std::complex<double>(-realRoot, 0.0); // Force to positive | |
roots.root3 = std::complex<double>(realRoot, 0.0); // Keep original negative | |
} | |
} else { | |
// Standard assignment | |
roots.root1 = std::complex<double>(realRoot, 0.0); | |
roots.root2 = std::complex<double>(realPart, imagPart); | |
roots.root3 = std::complex<double>(realPart, -imagPart); | |
} | |
} | |
return roots; | |
} | |
// Function to compute the cubic equation for Im(s) vs z | |
std::vector<std::vector<double>> computeImSVsZ(double a, double y, double beta, int num_points, double z_min, double z_max) { | |
std::vector<double> z_values(num_points); | |
std::vector<double> ims_values1(num_points); | |
std::vector<double> ims_values2(num_points); | |
std::vector<double> ims_values3(num_points); | |
std::vector<double> real_values1(num_points); | |
std::vector<double> real_values2(num_points); | |
std::vector<double> real_values3(num_points); | |
// Use z_min and z_max parameters | |
double z_start = std::max(0.01, z_min); // Avoid z=0 to prevent potential division issues | |
double z_end = z_max; | |
double z_step = (z_end - z_start) / (num_points - 1); | |
for (int i = 0; i < num_points; ++i) { | |
double z = z_start + i * z_step; | |
z_values[i] = z; | |
// Coefficients for the cubic equation: | |
// zasΒ³ + [z(a+1)+a(1-y)]sΒ² + [z+(a+1)-y-yΞ²(a-1)]s + 1 = 0 | |
double coef_a = z * a; | |
double coef_b = z * (a + 1) + a * (1 - y); | |
double coef_c = z + (a + 1) - y - y * beta * (a - 1); | |
double coef_d = 1.0; | |
// Solve the cubic equation | |
CubicRoots roots = solveCubic(coef_a, coef_b, coef_c, coef_d); | |
// Extract imaginary and real parts | |
ims_values1[i] = std::abs(roots.root1.imag()); | |
ims_values2[i] = std::abs(roots.root2.imag()); | |
ims_values3[i] = std::abs(roots.root3.imag()); | |
real_values1[i] = roots.root1.real(); | |
real_values2[i] = roots.root2.real(); | |
real_values3[i] = roots.root3.real(); | |
} | |
// Create output vector, now including real values for better analysis | |
std::vector<std::vector<double>> result = { | |
z_values, ims_values1, ims_values2, ims_values3, | |
real_values1, real_values2, real_values3 | |
}; | |
return result; | |
} | |
// Function to save Im(s) vs z data as JSON | |
bool saveImSDataAsJSON(const std::string& filename, | |
const std::vector<std::vector<double>>& data) { | |
std::ofstream outfile(filename); | |
if (!outfile.is_open()) { | |
std::cerr << "Error: Could not open file " << filename << " for writing." << std::endl; | |
return false; | |
} | |
// Helper function to format floating point values safely for JSON | |
auto formatJsonValue = [](double value) -> std::string { | |
if (std::isnan(value)) { | |
return "\"NaN\""; // JSON doesn't support NaN, so use string | |
} else if (std::isinf(value)) { | |
if (value > 0) { | |
return "\"Infinity\""; // JSON doesn't support Infinity, so use string | |
} else { | |
return "\"-Infinity\""; // JSON doesn't support -Infinity, so use string | |
} | |
} else { | |
// Use a fixed precision to avoid excessively long numbers | |
std::ostringstream oss; | |
oss << std::setprecision(15) << value; | |
return oss.str(); | |
} | |
}; | |
// Start JSON object | |
outfile << "{\n"; | |
// Write z values | |
outfile << " \"z_values\": ["; | |
for (size_t i = 0; i < data[0].size(); ++i) { | |
outfile << formatJsonValue(data[0][i]); | |
if (i < data[0].size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write Im(s) values for first root | |
outfile << " \"ims_values1\": ["; | |
for (size_t i = 0; i < data[1].size(); ++i) { | |
outfile << formatJsonValue(data[1][i]); | |
if (i < data[1].size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write Im(s) values for second root | |
outfile << " \"ims_values2\": ["; | |
for (size_t i = 0; i < data[2].size(); ++i) { | |
outfile << formatJsonValue(data[2][i]); | |
if (i < data[2].size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write Im(s) values for third root | |
outfile << " \"ims_values3\": ["; | |
for (size_t i = 0; i < data[3].size(); ++i) { | |
outfile << formatJsonValue(data[3][i]); | |
if (i < data[3].size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write Real(s) values for first root | |
outfile << " \"real_values1\": ["; | |
for (size_t i = 0; i < data[4].size(); ++i) { | |
outfile << formatJsonValue(data[4][i]); | |
if (i < data[4].size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write Real(s) values for second root | |
outfile << " \"real_values2\": ["; | |
for (size_t i = 0; i < data[5].size(); ++i) { | |
outfile << formatJsonValue(data[5][i]); | |
if (i < data[5].size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write Real(s) values for third root | |
outfile << " \"real_values3\": ["; | |
for (size_t i = 0; i < data[6].size(); ++i) { | |
outfile << formatJsonValue(data[6][i]); | |
if (i < data[6].size() - 1) outfile << ", "; | |
} | |
outfile << "]\n"; | |
// Close JSON object | |
outfile << "}\n"; | |
outfile.close(); | |
return true; | |
} | |
// Function to compute the theoretical max value | |
double compute_theoretical_max(double a, double y, double beta, int grid_points, double tolerance) { | |
auto f = [a, y, beta](double k) -> double { | |
return (y * beta * (a - 1) * k + (a * k + 1) * ((y - 1) * k - 1)) / | |
((a * k + 1) * (k * k + k)); | |
}; | |
// Use numerical optimization to find the maximum | |
// Grid search followed by golden section search | |
double best_k = 1.0; | |
double best_val = f(best_k); | |
// Initial grid search over a wide range | |
const int num_grid_points = grid_points; | |
for (int i = 0; i < num_grid_points; ++i) { | |
double k = 0.01 + 100.0 * i / (num_grid_points - 1); // From 0.01 to 100 | |
double val = f(k); | |
if (val > best_val) { | |
best_val = val; | |
best_k = k; | |
} | |
} | |
// Refine with golden section search | |
double a_gs = std::max(0.01, best_k / 10.0); | |
double b_gs = best_k * 10.0; | |
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0; | |
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
while (std::abs(b_gs - a_gs) > tolerance) { | |
if (f(c_gs) > f(d_gs)) { | |
b_gs = d_gs; | |
d_gs = c_gs; | |
c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
} else { | |
a_gs = c_gs; | |
c_gs = d_gs; | |
d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
} | |
} | |
// Return the value without multiplying by y (as per correction) | |
return f((a_gs + b_gs) / 2.0); | |
} | |
// Function to compute the theoretical min value | |
double compute_theoretical_min(double a, double y, double beta, int grid_points, double tolerance) { | |
auto f = [a, y, beta](double t) -> double { | |
return (y * beta * (a - 1) * t + (a * t + 1) * ((y - 1) * t - 1)) / | |
((a * t + 1) * (t * t + t)); | |
}; | |
// Use numerical optimization to find the minimum | |
// Grid search followed by golden section search | |
double best_t = -0.5 / a; // Midpoint of (-1/a, 0) | |
double best_val = f(best_t); | |
// Initial grid search over the range (-1/a, 0) | |
const int num_grid_points = grid_points; | |
for (int i = 1; i < num_grid_points; ++i) { | |
// From slightly above -1/a to slightly below 0 | |
double t = -0.999/a + 0.998/a * i / (num_grid_points - 1); | |
if (t >= 0 || t <= -1.0/a) continue; // Ensure t is in range (-1/a, 0) | |
double val = f(t); | |
if (val < best_val) { | |
best_val = val; | |
best_t = t; | |
} | |
} | |
// Refine with golden section search | |
double a_gs = -0.999/a; // Slightly above -1/a | |
double b_gs = -0.001/a; // Slightly below 0 | |
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0; | |
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
while (std::abs(b_gs - a_gs) > tolerance) { | |
if (f(c_gs) < f(d_gs)) { | |
b_gs = d_gs; | |
d_gs = c_gs; | |
c_gs = b_gs - (b_gs - a_gs) / golden_ratio; | |
} else { | |
a_gs = c_gs; | |
c_gs = d_gs; | |
d_gs = a_gs + (b_gs - a_gs) / golden_ratio; | |
} | |
} | |
// Return the value without multiplying by y (as per correction) | |
return f((a_gs + b_gs) / 2.0); | |
} | |
// Function to save data as JSON | |
bool save_as_json(const std::string& filename, | |
const std::vector<double>& beta_values, | |
const std::vector<double>& max_eigenvalues, | |
const std::vector<double>& min_eigenvalues, | |
const std::vector<double>& theoretical_max_values, | |
const std::vector<double>& theoretical_min_values) { | |
std::ofstream outfile(filename); | |
if (!outfile.is_open()) { | |
std::cerr << "Error: Could not open file " << filename << " for writing." << std::endl; | |
return false; | |
} | |
// Helper function to format floating point values safely for JSON | |
auto formatJsonValue = [](double value) -> std::string { | |
if (std::isnan(value)) { | |
return "\"NaN\""; // JSON doesn't support NaN, so use string | |
} else if (std::isinf(value)) { | |
if (value > 0) { | |
return "\"Infinity\""; // JSON doesn't support Infinity, so use string | |
} else { | |
return "\"-Infinity\""; // JSON doesn't support -Infinity, so use string | |
} | |
} else { | |
// Use a fixed precision to avoid excessively long numbers | |
std::ostringstream oss; | |
oss << std::setprecision(15) << value; | |
return oss.str(); | |
} | |
}; | |
// Start JSON object | |
outfile << "{\n"; | |
// Write beta values | |
outfile << " \"beta_values\": ["; | |
for (size_t i = 0; i < beta_values.size(); ++i) { | |
outfile << formatJsonValue(beta_values[i]); | |
if (i < beta_values.size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write max eigenvalues | |
outfile << " \"max_eigenvalues\": ["; | |
for (size_t i = 0; i < max_eigenvalues.size(); ++i) { | |
outfile << formatJsonValue(max_eigenvalues[i]); | |
if (i < max_eigenvalues.size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write min eigenvalues | |
outfile << " \"min_eigenvalues\": ["; | |
for (size_t i = 0; i < min_eigenvalues.size(); ++i) { | |
outfile << formatJsonValue(min_eigenvalues[i]); | |
if (i < min_eigenvalues.size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write theoretical max values | |
outfile << " \"theoretical_max\": ["; | |
for (size_t i = 0; i < theoretical_max_values.size(); ++i) { | |
outfile << formatJsonValue(theoretical_max_values[i]); | |
if (i < theoretical_max_values.size() - 1) outfile << ", "; | |
} | |
outfile << "],\n"; | |
// Write theoretical min values | |
outfile << " \"theoretical_min\": ["; | |
for (size_t i = 0; i < theoretical_min_values.size(); ++i) { | |
outfile << formatJsonValue(theoretical_min_values[i]); | |
if (i < theoretical_min_values.size() - 1) outfile << ", "; | |
} | |
outfile << "]\n"; | |
// Close JSON object | |
outfile << "}\n"; | |
outfile.close(); | |
return true; | |
} | |
// Eigenvalue analysis function | |
bool eigenvalueAnalysis(int n, int p, double a, double y, int fineness, | |
int theory_grid_points, double theory_tolerance, | |
const std::string& output_file) { | |
std::cout << "Running eigenvalue analysis with parameters: n = " << n << ", p = " << p | |
<< ", a = " << a << ", y = " << y << ", fineness = " << fineness | |
<< ", theory_grid_points = " << theory_grid_points | |
<< ", theory_tolerance = " << theory_tolerance << std::endl; | |
std::cout << "Output will be saved to: " << output_file << std::endl; | |
// βββ Beta range parameters ββββββββββββββββββββββββββββββββββββββββ | |
const int num_beta_points = fineness; // Controlled by fineness parameter | |
std::vector<double> beta_values(num_beta_points); | |
for (int i = 0; i < num_beta_points; ++i) { | |
beta_values[i] = static_cast<double>(i) / (num_beta_points - 1); | |
} | |
// βββ Storage for results ββββββββββββββββββββββββββββββββββββββββ | |
std::vector<double> max_eigenvalues(num_beta_points); | |
std::vector<double> min_eigenvalues(num_beta_points); | |
std::vector<double> theoretical_max_values(num_beta_points); | |
std::vector<double> theoretical_min_values(num_beta_points); | |
try { | |
// βββ RandomβGaussian X and S_n ββββββββββββββββββββββββββββββββ | |
std::random_device rd; | |
std::mt19937_64 rng{rd()}; | |
std::normal_distribution<double> norm(0.0, 1.0); | |
cv::Mat X(p, n, CV_64F); | |
for(int i = 0; i < p; ++i) | |
for(int j = 0; j < n; ++j) | |
X.at<double>(i,j) = norm(rng); | |
// βββ Process each beta value βββββββββββββββββββββββββββββββββ | |
for (int beta_idx = 0; beta_idx < num_beta_points; ++beta_idx) { | |
double beta = beta_values[beta_idx]; | |
// Compute theoretical values with customizable precision | |
theoretical_max_values[beta_idx] = compute_theoretical_max(a, y, beta, theory_grid_points, theory_tolerance); | |
theoretical_min_values[beta_idx] = compute_theoretical_min(a, y, beta, theory_grid_points, theory_tolerance); | |
// βββ Build T_n matrix ββββββββββββββββββββββββββββββββββ | |
int k = static_cast<int>(std::floor(beta * p)); | |
std::vector<double> diags(p, 1.0); | |
std::fill_n(diags.begin(), k, a); | |
std::shuffle(diags.begin(), diags.end(), rng); | |
cv::Mat T_n = cv::Mat::zeros(p, p, CV_64F); | |
for(int i = 0; i < p; ++i){ | |
T_n.at<double>(i,i) = diags[i]; | |
} | |
// βββ Form B_n = (1/n) * X * T_n * X^T ββββββββββββ | |
cv::Mat B = (X.t() * T_n * X) / static_cast<double>(n); | |
// βββ Compute eigenvalues of B ββββββββββββββββββββββββββββ | |
cv::Mat eigVals; | |
cv::eigen(B, eigVals); | |
std::vector<double> eigs(n); | |
for(int i = 0; i < n; ++i) | |
eigs[i] = eigVals.at<double>(i, 0); | |
max_eigenvalues[beta_idx] = *std::max_element(eigs.begin(), eigs.end()); | |
min_eigenvalues[beta_idx] = *std::min_element(eigs.begin(), eigs.end()); | |
// Progress indicator for Streamlit | |
double progress = static_cast<double>(beta_idx + 1) / num_beta_points; | |
std::cout << "PROGRESS:" << progress << std::endl; | |
// Less verbose output for Streamlit | |
if (beta_idx % 20 == 0 || beta_idx == num_beta_points - 1) { | |
std::cout << "Processing beta = " << beta | |
<< " (" << beta_idx+1 << "/" << num_beta_points << ")" << std::endl; | |
} | |
} | |
// Save data as JSON for Python to read | |
if (!save_as_json(output_file, beta_values, max_eigenvalues, min_eigenvalues, | |
theoretical_max_values, theoretical_min_values)) { | |
return false; | |
} | |
std::cout << "Data saved to " << output_file << std::endl; | |
return true; | |
} | |
catch (const std::exception& e) { | |
std::cerr << "Error in eigenvalue analysis: " << e.what() << std::endl; | |
return false; | |
} | |
catch (...) { | |
std::cerr << "Unknown error in eigenvalue analysis" << std::endl; | |
return false; | |
} | |
} | |
// Cubic equation analysis function | |
bool cubicAnalysis(double a, double y, double beta, int num_points, double z_min, double z_max, const std::string& output_file) { | |
std::cout << "Running cubic equation analysis with parameters: a = " << a | |
<< ", y = " << y << ", beta = " << beta << ", num_points = " << num_points | |
<< ", z_min = " << z_min << ", z_max = " << z_max << std::endl; | |
std::cout << "Output will be saved to: " << output_file << std::endl; | |
try { | |
// Compute Im(s) vs z data with z_min and z_max parameters | |
std::vector<std::vector<double>> ims_data = computeImSVsZ(a, y, beta, num_points, z_min, z_max); | |
// Save to JSON | |
if (!saveImSDataAsJSON(output_file, ims_data)) { | |
return false; | |
} | |
std::cout << "Cubic equation data saved to " << output_file << std::endl; | |
return true; | |
} | |
catch (const std::exception& e) { | |
std::cerr << "Error in cubic analysis: " << e.what() << std::endl; | |
return false; | |
} | |
catch (...) { | |
std::cerr << "Unknown error in cubic analysis" << std::endl; | |
return false; | |
} | |
} | |
int main(int argc, char* argv[]) { | |
// Print received arguments for debugging | |
std::cout << "Received " << argc << " arguments:" << std::endl; | |
for (int i = 0; i < argc; ++i) { | |
std::cout << " argv[" << i << "]: " << argv[i] << std::endl; | |
} | |
// Check for mode argument | |
if (argc < 2) { | |
std::cerr << "Error: Missing mode argument." << std::endl; | |
std::cerr << "Usage: " << argv[0] << " eigenvalues <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl; | |
std::cerr << " or: " << argv[0] << " cubic <a> <y> <beta> <num_points> <z_min> <z_max> <output_file>" << std::endl; | |
return 1; | |
} | |
std::string mode = argv[1]; | |
try { | |
if (mode == "eigenvalues") { | |
// βββ Eigenvalue analysis mode βββββββββββββββββββββββββββββββββββββββββββ | |
if (argc != 10) { | |
std::cerr << "Error: Incorrect number of arguments for eigenvalues mode." << std::endl; | |
std::cerr << "Usage: " << argv[0] << " eigenvalues <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl; | |
std::cerr << "Received " << argc << " arguments, expected 10." << std::endl; | |
return 1; | |
} | |
int n = std::stoi(argv[2]); | |
int p = std::stoi(argv[3]); | |
double a = std::stod(argv[4]); | |
double y = std::stod(argv[5]); | |
int fineness = std::stoi(argv[6]); | |
int theory_grid_points = std::stoi(argv[7]); | |
double theory_tolerance = std::stod(argv[8]); | |
std::string output_file = argv[9]; | |
if (!eigenvalueAnalysis(n, p, a, y, fineness, theory_grid_points, theory_tolerance, output_file)) { | |
return 1; | |
} | |
} else if (mode == "cubic") { | |
// βββ Cubic equation analysis mode βββββββββββββββββββββββββββββββββββββββββββ | |
if (argc != 9) { | |
std::cerr << "Error: Incorrect number of arguments for cubic mode." << std::endl; | |
std::cerr << "Usage: " << argv[0] << " cubic <a> <y> <beta> <num_points> <z_min> <z_max> <output_file>" << std::endl; | |
std::cerr << "Received " << argc << " arguments, expected 9." << std::endl; | |
return 1; | |
} | |
double a = std::stod(argv[2]); | |
double y = std::stod(argv[3]); | |
double beta = std::stod(argv[4]); | |
int num_points = std::stoi(argv[5]); | |
double z_min = std::stod(argv[6]); | |
double z_max = std::stod(argv[7]); | |
std::string output_file = argv[8]; | |
if (!cubicAnalysis(a, y, beta, num_points, z_min, z_max, output_file)) { | |
return 1; | |
} | |
} else { | |
std::cerr << "Error: Unknown mode: " << mode << std::endl; | |
std::cerr << "Use 'eigenvalues' or 'cubic'" << std::endl; | |
return 1; | |
} | |
} | |
catch (const std::exception& e) { | |
std::cerr << "Error: " << e.what() << std::endl; | |
return 1; | |
} | |
return 0; | |
} |