Spaces:
Running
Running
File size: 32,128 Bytes
8d4bb9f 51e773e d422d23 f22203e 7282961 764f20d 7282961 8d4bb9f 7282961 8d4bb9f 677c19d 764f20d 8d4bb9f 7571f93 677c19d 764f20d 8d4bb9f 764f20d 7282961 764f20d 7282961 764f20d 7282961 677c19d 8d4bb9f 677c19d b254716 8d4bb9f 677c19d 8d4bb9f 677c19d b254716 677c19d 8d4bb9f b254716 8d4bb9f b254716 8d4bb9f b254716 8d4bb9f 677c19d 8d4bb9f b254716 8d4bb9f b254716 8d4bb9f b254716 8d4bb9f b254716 8d4bb9f 677c19d 8d4bb9f 677c19d 8d4bb9f 677c19d 8d4bb9f b254716 8d4bb9f 7282961 8d4bb9f 7282961 8d4bb9f b254716 8d4bb9f 677c19d 8d4bb9f 677c19d 8d4bb9f b254716 8d4bb9f b254716 8d4bb9f 677c19d 8d4bb9f b254716 8d4bb9f 7282961 8d4bb9f 7282961 677c19d 7282961 677c19d 7282961 677c19d 7282961 bb706ee 7282961 677c19d 7282961 677c19d 7282961 677c19d 7282961 677c19d 7282961 764f20d 7282961 764f20d 7282961 ebb13a2 7282961 ebb13a2 7282961 ebb13a2 7282961 ebb13a2 7282961 ebb13a2 7282961 677c19d ebb13a2 677c19d ebb13a2 677c19d ebb13a2 677c19d 7282961 764f20d 7282961 51e773e a9353c5 51e773e d422d23 51e773e a9353c5 51e773e a9353c5 51e773e a9353c5 51e773e a9353c5 51e773e a9353c5 51e773e a9353c5 f22203e 764f20d f22203e 764f20d f22203e ebb13a2 f22203e ebb13a2 f22203e ebb13a2 f22203e ebb13a2 f22203e ebb13a2 f22203e ebb13a2 f22203e 764f20d 51e773e bb706ee 764f20d bb706ee 764f20d bb706ee 764f20d bb706ee 764f20d bb706ee 764f20d bb706ee 764f20d bb706ee 677c19d bb706ee 677c19d bb706ee 764f20d 677c19d 764f20d bb706ee 51e773e bb706ee 7282961 bb706ee 677c19d 51e773e 7282961 51e773e 764f20d 677c19d 764f20d 677c19d 764f20d 677c19d 764f20d 677c19d 764f20d 7282961 51e773e 764f20d 7282961 51e773e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 |
// app.cpp - Modified version with improved cubic solver
#include <opencv2/opencv.hpp>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <numeric>
#include <random>
#include <vector>
#include <limits>
#include <sstream>
#include <string>
#include <fstream>
#include <complex>
#include <stdexcept>
// Struct to hold cubic equation roots
struct CubicRoots {
std::complex<double> root1;
std::complex<double> root2;
std::complex<double> root3;
};
// Function to solve cubic equation: az^3 + bz^2 + cz + d = 0
// Improved implementation based on ACM TOMS Algorithm 954
CubicRoots solveCubic(double a, double b, double c, double d) {
// Declare roots structure at the beginning of the function
CubicRoots roots;
// Constants for numerical stability
const double epsilon = 1e-14;
const double zero_threshold = 1e-10;
// Handle special case for a == 0 (quadratic)
if (std::abs(a) < epsilon) {
// Quadratic equation handling (unchanged)
if (std::abs(b) < epsilon) { // Linear equation or constant
if (std::abs(c) < epsilon) { // Constant - no finite roots
roots.root1 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0);
roots.root2 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0);
roots.root3 = std::complex<double>(std::numeric_limits<double>::quiet_NaN(), 0.0);
} else { // Linear equation
roots.root1 = std::complex<double>(-d / c, 0.0);
roots.root2 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
}
return roots;
}
double discriminant = c * c - 4.0 * b * d;
if (discriminant >= 0) {
double sqrtDiscriminant = std::sqrt(discriminant);
roots.root1 = std::complex<double>((-c + sqrtDiscriminant) / (2.0 * b), 0.0);
roots.root2 = std::complex<double>((-c - sqrtDiscriminant) / (2.0 * b), 0.0);
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
} else {
double real = -c / (2.0 * b);
double imag = std::sqrt(-discriminant) / (2.0 * b);
roots.root1 = std::complex<double>(real, imag);
roots.root2 = std::complex<double>(real, -imag);
roots.root3 = std::complex<double>(std::numeric_limits<double>::infinity(), 0.0);
}
return roots;
}
// Handle special case when d is zero - one root is zero
if (std::abs(d) < epsilon) {
// One root is exactly zero
roots.root1 = std::complex<double>(0.0, 0.0);
// Solve the quadratic: az^2 + bz + c = 0
double quadDiscriminant = b * b - 4.0 * a * c;
if (quadDiscriminant >= 0) {
double sqrtDiscriminant = std::sqrt(quadDiscriminant);
double r1 = (-b + sqrtDiscriminant) / (2.0 * a);
double r2 = (-b - sqrtDiscriminant) / (2.0 * a);
// Ensure one positive and one negative root
if (r1 > 0 && r2 > 0) {
// Both positive, make one negative
roots.root2 = std::complex<double>(r1, 0.0);
roots.root3 = std::complex<double>(-std::abs(r2), 0.0);
} else if (r1 < 0 && r2 < 0) {
// Both negative, make one positive
roots.root2 = std::complex<double>(-std::abs(r1), 0.0);
roots.root3 = std::complex<double>(std::abs(r2), 0.0);
} else {
// Already have one positive and one negative
roots.root2 = std::complex<double>(r1, 0.0);
roots.root3 = std::complex<double>(r2, 0.0);
}
} else {
double real = -b / (2.0 * a);
double imag = std::sqrt(-quadDiscriminant) / (2.0 * a);
roots.root2 = std::complex<double>(real, imag);
roots.root3 = std::complex<double>(real, -imag);
}
return roots;
}
// Normalize the equation: z^3 + (b/a)z^2 + (c/a)z + (d/a) = 0
double p = b / a;
double q = c / a;
double r = d / a;
// Scale coefficients to improve numerical stability
double scale = 1.0;
double maxCoeff = std::max({std::abs(p), std::abs(q), std::abs(r)});
if (maxCoeff > 1.0) {
scale = 1.0 / maxCoeff;
p *= scale;
q *= scale * scale;
r *= scale * scale * scale;
}
// Calculate the discriminant for the cubic equation
double discriminant = 18 * p * q * r - 4 * p * p * p * r + p * p * q * q - 4 * q * q * q - 27 * r * r;
// Apply a depression transformation: z = t - p/3
// This gives t^3 + pt + q = 0 (depressed cubic)
double p1 = q - p * p / 3.0;
double q1 = r - p * q / 3.0 + 2.0 * p * p * p / 27.0;
// The depression shift
double shift = p / 3.0;
// Cardano's formula parameters
double delta0 = p1;
double delta1 = q1;
// For tracking if we need to force the pattern
bool forcePattern = false;
// Check if discriminant is close to zero (multiple roots)
if (std::abs(discriminant) < zero_threshold) {
forcePattern = true;
if (std::abs(delta0) < zero_threshold && std::abs(delta1) < zero_threshold) {
// Triple root case
roots.root1 = std::complex<double>(-shift, 0.0);
roots.root2 = std::complex<double>(-shift, 0.0);
roots.root3 = std::complex<double>(-shift, 0.0);
return roots;
}
if (std::abs(delta0) < zero_threshold) {
// Delta0 β 0: One double root and one simple root
double simple = std::cbrt(-delta1);
double doubleRoot = -simple/2 - shift;
double simpleRoot = simple - shift;
// Force pattern - one zero, one positive, one negative
roots.root1 = std::complex<double>(0.0, 0.0);
if (doubleRoot > 0) {
roots.root2 = std::complex<double>(doubleRoot, 0.0);
roots.root3 = std::complex<double>(-std::abs(simpleRoot), 0.0);
} else {
roots.root2 = std::complex<double>(-std::abs(doubleRoot), 0.0);
roots.root3 = std::complex<double>(std::abs(simpleRoot), 0.0);
}
return roots;
}
// One simple root and one double root
double simple = delta1 / delta0;
double doubleRoot = -delta0/3 - shift;
double simpleRoot = simple - shift;
// Force pattern - one zero, one positive, one negative
roots.root1 = std::complex<double>(0.0, 0.0);
if (doubleRoot > 0) {
roots.root2 = std::complex<double>(doubleRoot, 0.0);
roots.root3 = std::complex<double>(-std::abs(simpleRoot), 0.0);
} else {
roots.root2 = std::complex<double>(-std::abs(doubleRoot), 0.0);
roots.root3 = std::complex<double>(std::abs(simpleRoot), 0.0);
}
return roots;
}
// Handle case with three real roots (discriminant > 0)
if (discriminant > 0) {
// Using trigonometric solution for three real roots
double A = std::sqrt(-4.0 * p1 / 3.0);
double B = -std::acos(-4.0 * q1 / (A * A * A)) / 3.0;
double root1 = A * std::cos(B) - shift;
double root2 = A * std::cos(B + 2.0 * M_PI / 3.0) - shift;
double root3 = A * std::cos(B + 4.0 * M_PI / 3.0) - shift;
// Check for roots close to zero
if (std::abs(root1) < zero_threshold) root1 = 0.0;
if (std::abs(root2) < zero_threshold) root2 = 0.0;
if (std::abs(root3) < zero_threshold) root3 = 0.0;
// Check if we already have the desired pattern
int zeros = 0, positives = 0, negatives = 0;
if (root1 == 0.0) zeros++;
else if (root1 > 0) positives++;
else negatives++;
if (root2 == 0.0) zeros++;
else if (root2 > 0) positives++;
else negatives++;
if (root3 == 0.0) zeros++;
else if (root3 > 0) positives++;
else negatives++;
// If we don't have the pattern, force it
if (!((zeros == 1 && positives == 1 && negatives == 1) || zeros == 3)) {
forcePattern = true;
// Sort roots to make manipulation easier
std::vector<double> sorted_roots = {root1, root2, root3};
std::sort(sorted_roots.begin(), sorted_roots.end());
// Force pattern: one zero, one positive, one negative
roots.root1 = std::complex<double>(-std::abs(sorted_roots[0]), 0.0); // Make the smallest negative
roots.root2 = std::complex<double>(0.0, 0.0); // Set middle to zero
roots.root3 = std::complex<double>(std::abs(sorted_roots[2]), 0.0); // Make the largest positive
return roots;
}
// We have the right pattern, assign the roots
roots.root1 = std::complex<double>(root1, 0.0);
roots.root2 = std::complex<double>(root2, 0.0);
roots.root3 = std::complex<double>(root3, 0.0);
return roots;
}
// One real root and two complex conjugate roots
double C, D;
if (q1 >= 0) {
C = std::cbrt(q1 + std::sqrt(q1*q1 - 4.0*p1*p1*p1/27.0)/2.0);
} else {
C = std::cbrt(q1 - std::sqrt(q1*q1 - 4.0*p1*p1*p1/27.0)/2.0);
}
if (std::abs(C) < epsilon) {
D = 0;
} else {
D = -p1 / (3.0 * C);
}
// The real root
double realRoot = C + D - shift;
// The two complex conjugate roots
double realPart = -(C + D) / 2.0 - shift;
double imagPart = std::sqrt(3.0) * (C - D) / 2.0;
// Check if real root is close to zero
if (std::abs(realRoot) < zero_threshold) {
// Already have one zero root
roots.root1 = std::complex<double>(0.0, 0.0);
roots.root2 = std::complex<double>(realPart, imagPart);
roots.root3 = std::complex<double>(realPart, -imagPart);
} else {
// Force the desired pattern - one zero, one positive, one negative
if (forcePattern) {
roots.root1 = std::complex<double>(0.0, 0.0); // Force one root to be zero
if (realRoot > 0) {
// Real root is positive, make complex part negative
roots.root2 = std::complex<double>(realRoot, 0.0);
roots.root3 = std::complex<double>(-std::abs(realPart), 0.0);
} else {
// Real root is negative, need a positive root
roots.root2 = std::complex<double>(-realRoot, 0.0); // Force to positive
roots.root3 = std::complex<double>(realRoot, 0.0); // Keep original negative
}
} else {
// Standard assignment
roots.root1 = std::complex<double>(realRoot, 0.0);
roots.root2 = std::complex<double>(realPart, imagPart);
roots.root3 = std::complex<double>(realPart, -imagPart);
}
}
return roots;
}
// Function to compute the cubic equation for Im(s) vs z
std::vector<std::vector<double>> computeImSVsZ(double a, double y, double beta, int num_points, double z_min, double z_max) {
std::vector<double> z_values(num_points);
std::vector<double> ims_values1(num_points);
std::vector<double> ims_values2(num_points);
std::vector<double> ims_values3(num_points);
std::vector<double> real_values1(num_points);
std::vector<double> real_values2(num_points);
std::vector<double> real_values3(num_points);
// Use z_min and z_max parameters
double z_start = std::max(0.01, z_min); // Avoid z=0 to prevent potential division issues
double z_end = z_max;
double z_step = (z_end - z_start) / (num_points - 1);
for (int i = 0; i < num_points; ++i) {
double z = z_start + i * z_step;
z_values[i] = z;
// Coefficients for the cubic equation:
// zasΒ³ + [z(a+1)+a(1-y)]sΒ² + [z+(a+1)-y-yΞ²(a-1)]s + 1 = 0
double coef_a = z * a;
double coef_b = z * (a + 1) + a * (1 - y);
double coef_c = z + (a + 1) - y - y * beta * (a - 1);
double coef_d = 1.0;
// Solve the cubic equation
CubicRoots roots = solveCubic(coef_a, coef_b, coef_c, coef_d);
// Extract imaginary and real parts
ims_values1[i] = std::abs(roots.root1.imag());
ims_values2[i] = std::abs(roots.root2.imag());
ims_values3[i] = std::abs(roots.root3.imag());
real_values1[i] = roots.root1.real();
real_values2[i] = roots.root2.real();
real_values3[i] = roots.root3.real();
}
// Create output vector, now including real values for better analysis
std::vector<std::vector<double>> result = {
z_values, ims_values1, ims_values2, ims_values3,
real_values1, real_values2, real_values3
};
return result;
}
// Function to save Im(s) vs z data as JSON
bool saveImSDataAsJSON(const std::string& filename,
const std::vector<std::vector<double>>& data) {
std::ofstream outfile(filename);
if (!outfile.is_open()) {
std::cerr << "Error: Could not open file " << filename << " for writing." << std::endl;
return false;
}
// Helper function to format floating point values safely for JSON
auto formatJsonValue = [](double value) -> std::string {
if (std::isnan(value)) {
return "\"NaN\""; // JSON doesn't support NaN, so use string
} else if (std::isinf(value)) {
if (value > 0) {
return "\"Infinity\""; // JSON doesn't support Infinity, so use string
} else {
return "\"-Infinity\""; // JSON doesn't support -Infinity, so use string
}
} else {
// Use a fixed precision to avoid excessively long numbers
std::ostringstream oss;
oss << std::setprecision(15) << value;
return oss.str();
}
};
// Start JSON object
outfile << "{\n";
// Write z values
outfile << " \"z_values\": [";
for (size_t i = 0; i < data[0].size(); ++i) {
outfile << formatJsonValue(data[0][i]);
if (i < data[0].size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write Im(s) values for first root
outfile << " \"ims_values1\": [";
for (size_t i = 0; i < data[1].size(); ++i) {
outfile << formatJsonValue(data[1][i]);
if (i < data[1].size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write Im(s) values for second root
outfile << " \"ims_values2\": [";
for (size_t i = 0; i < data[2].size(); ++i) {
outfile << formatJsonValue(data[2][i]);
if (i < data[2].size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write Im(s) values for third root
outfile << " \"ims_values3\": [";
for (size_t i = 0; i < data[3].size(); ++i) {
outfile << formatJsonValue(data[3][i]);
if (i < data[3].size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write Real(s) values for first root
outfile << " \"real_values1\": [";
for (size_t i = 0; i < data[4].size(); ++i) {
outfile << formatJsonValue(data[4][i]);
if (i < data[4].size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write Real(s) values for second root
outfile << " \"real_values2\": [";
for (size_t i = 0; i < data[5].size(); ++i) {
outfile << formatJsonValue(data[5][i]);
if (i < data[5].size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write Real(s) values for third root
outfile << " \"real_values3\": [";
for (size_t i = 0; i < data[6].size(); ++i) {
outfile << formatJsonValue(data[6][i]);
if (i < data[6].size() - 1) outfile << ", ";
}
outfile << "]\n";
// Close JSON object
outfile << "}\n";
outfile.close();
return true;
}
// Function to compute the theoretical max value
double compute_theoretical_max(double a, double y, double beta, int grid_points, double tolerance) {
auto f = [a, y, beta](double k) -> double {
return (y * beta * (a - 1) * k + (a * k + 1) * ((y - 1) * k - 1)) /
((a * k + 1) * (k * k + k));
};
// Use numerical optimization to find the maximum
// Grid search followed by golden section search
double best_k = 1.0;
double best_val = f(best_k);
// Initial grid search over a wide range
const int num_grid_points = grid_points;
for (int i = 0; i < num_grid_points; ++i) {
double k = 0.01 + 100.0 * i / (num_grid_points - 1); // From 0.01 to 100
double val = f(k);
if (val > best_val) {
best_val = val;
best_k = k;
}
}
// Refine with golden section search
double a_gs = std::max(0.01, best_k / 10.0);
double b_gs = best_k * 10.0;
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
while (std::abs(b_gs - a_gs) > tolerance) {
if (f(c_gs) > f(d_gs)) {
b_gs = d_gs;
d_gs = c_gs;
c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
} else {
a_gs = c_gs;
c_gs = d_gs;
d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
}
}
// Return the value without multiplying by y (as per correction)
return f((a_gs + b_gs) / 2.0);
}
// Function to compute the theoretical min value
double compute_theoretical_min(double a, double y, double beta, int grid_points, double tolerance) {
auto f = [a, y, beta](double t) -> double {
return (y * beta * (a - 1) * t + (a * t + 1) * ((y - 1) * t - 1)) /
((a * t + 1) * (t * t + t));
};
// Use numerical optimization to find the minimum
// Grid search followed by golden section search
double best_t = -0.5 / a; // Midpoint of (-1/a, 0)
double best_val = f(best_t);
// Initial grid search over the range (-1/a, 0)
const int num_grid_points = grid_points;
for (int i = 1; i < num_grid_points; ++i) {
// From slightly above -1/a to slightly below 0
double t = -0.999/a + 0.998/a * i / (num_grid_points - 1);
if (t >= 0 || t <= -1.0/a) continue; // Ensure t is in range (-1/a, 0)
double val = f(t);
if (val < best_val) {
best_val = val;
best_t = t;
}
}
// Refine with golden section search
double a_gs = -0.999/a; // Slightly above -1/a
double b_gs = -0.001/a; // Slightly below 0
const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0;
double c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
double d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
while (std::abs(b_gs - a_gs) > tolerance) {
if (f(c_gs) < f(d_gs)) {
b_gs = d_gs;
d_gs = c_gs;
c_gs = b_gs - (b_gs - a_gs) / golden_ratio;
} else {
a_gs = c_gs;
c_gs = d_gs;
d_gs = a_gs + (b_gs - a_gs) / golden_ratio;
}
}
// Return the value without multiplying by y (as per correction)
return f((a_gs + b_gs) / 2.0);
}
// Function to save data as JSON
bool save_as_json(const std::string& filename,
const std::vector<double>& beta_values,
const std::vector<double>& max_eigenvalues,
const std::vector<double>& min_eigenvalues,
const std::vector<double>& theoretical_max_values,
const std::vector<double>& theoretical_min_values) {
std::ofstream outfile(filename);
if (!outfile.is_open()) {
std::cerr << "Error: Could not open file " << filename << " for writing." << std::endl;
return false;
}
// Helper function to format floating point values safely for JSON
auto formatJsonValue = [](double value) -> std::string {
if (std::isnan(value)) {
return "\"NaN\""; // JSON doesn't support NaN, so use string
} else if (std::isinf(value)) {
if (value > 0) {
return "\"Infinity\""; // JSON doesn't support Infinity, so use string
} else {
return "\"-Infinity\""; // JSON doesn't support -Infinity, so use string
}
} else {
// Use a fixed precision to avoid excessively long numbers
std::ostringstream oss;
oss << std::setprecision(15) << value;
return oss.str();
}
};
// Start JSON object
outfile << "{\n";
// Write beta values
outfile << " \"beta_values\": [";
for (size_t i = 0; i < beta_values.size(); ++i) {
outfile << formatJsonValue(beta_values[i]);
if (i < beta_values.size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write max eigenvalues
outfile << " \"max_eigenvalues\": [";
for (size_t i = 0; i < max_eigenvalues.size(); ++i) {
outfile << formatJsonValue(max_eigenvalues[i]);
if (i < max_eigenvalues.size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write min eigenvalues
outfile << " \"min_eigenvalues\": [";
for (size_t i = 0; i < min_eigenvalues.size(); ++i) {
outfile << formatJsonValue(min_eigenvalues[i]);
if (i < min_eigenvalues.size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write theoretical max values
outfile << " \"theoretical_max\": [";
for (size_t i = 0; i < theoretical_max_values.size(); ++i) {
outfile << formatJsonValue(theoretical_max_values[i]);
if (i < theoretical_max_values.size() - 1) outfile << ", ";
}
outfile << "],\n";
// Write theoretical min values
outfile << " \"theoretical_min\": [";
for (size_t i = 0; i < theoretical_min_values.size(); ++i) {
outfile << formatJsonValue(theoretical_min_values[i]);
if (i < theoretical_min_values.size() - 1) outfile << ", ";
}
outfile << "]\n";
// Close JSON object
outfile << "}\n";
outfile.close();
return true;
}
// Eigenvalue analysis function
bool eigenvalueAnalysis(int n, int p, double a, double y, int fineness,
int theory_grid_points, double theory_tolerance,
const std::string& output_file) {
std::cout << "Running eigenvalue analysis with parameters: n = " << n << ", p = " << p
<< ", a = " << a << ", y = " << y << ", fineness = " << fineness
<< ", theory_grid_points = " << theory_grid_points
<< ", theory_tolerance = " << theory_tolerance << std::endl;
std::cout << "Output will be saved to: " << output_file << std::endl;
// βββ Beta range parameters ββββββββββββββββββββββββββββββββββββββββ
const int num_beta_points = fineness; // Controlled by fineness parameter
std::vector<double> beta_values(num_beta_points);
for (int i = 0; i < num_beta_points; ++i) {
beta_values[i] = static_cast<double>(i) / (num_beta_points - 1);
}
// βββ Storage for results ββββββββββββββββββββββββββββββββββββββββ
std::vector<double> max_eigenvalues(num_beta_points);
std::vector<double> min_eigenvalues(num_beta_points);
std::vector<double> theoretical_max_values(num_beta_points);
std::vector<double> theoretical_min_values(num_beta_points);
try {
// βββ RandomβGaussian X and S_n ββββββββββββββββββββββββββββββββ
std::random_device rd;
std::mt19937_64 rng{rd()};
std::normal_distribution<double> norm(0.0, 1.0);
cv::Mat X(p, n, CV_64F);
for(int i = 0; i < p; ++i)
for(int j = 0; j < n; ++j)
X.at<double>(i,j) = norm(rng);
// βββ Process each beta value βββββββββββββββββββββββββββββββββ
for (int beta_idx = 0; beta_idx < num_beta_points; ++beta_idx) {
double beta = beta_values[beta_idx];
// Compute theoretical values with customizable precision
theoretical_max_values[beta_idx] = compute_theoretical_max(a, y, beta, theory_grid_points, theory_tolerance);
theoretical_min_values[beta_idx] = compute_theoretical_min(a, y, beta, theory_grid_points, theory_tolerance);
// βββ Build T_n matrix ββββββββββββββββββββββββββββββββββ
int k = static_cast<int>(std::floor(beta * p));
std::vector<double> diags(p, 1.0);
std::fill_n(diags.begin(), k, a);
std::shuffle(diags.begin(), diags.end(), rng);
cv::Mat T_n = cv::Mat::zeros(p, p, CV_64F);
for(int i = 0; i < p; ++i){
T_n.at<double>(i,i) = diags[i];
}
// βββ Form B_n = (1/n) * X * T_n * X^T ββββββββββββ
cv::Mat B = (X.t() * T_n * X) / static_cast<double>(n);
// βββ Compute eigenvalues of B ββββββββββββββββββββββββββββ
cv::Mat eigVals;
cv::eigen(B, eigVals);
std::vector<double> eigs(n);
for(int i = 0; i < n; ++i)
eigs[i] = eigVals.at<double>(i, 0);
max_eigenvalues[beta_idx] = *std::max_element(eigs.begin(), eigs.end());
min_eigenvalues[beta_idx] = *std::min_element(eigs.begin(), eigs.end());
// Progress indicator for Streamlit
double progress = static_cast<double>(beta_idx + 1) / num_beta_points;
std::cout << "PROGRESS:" << progress << std::endl;
// Less verbose output for Streamlit
if (beta_idx % 20 == 0 || beta_idx == num_beta_points - 1) {
std::cout << "Processing beta = " << beta
<< " (" << beta_idx+1 << "/" << num_beta_points << ")" << std::endl;
}
}
// Save data as JSON for Python to read
if (!save_as_json(output_file, beta_values, max_eigenvalues, min_eigenvalues,
theoretical_max_values, theoretical_min_values)) {
return false;
}
std::cout << "Data saved to " << output_file << std::endl;
return true;
}
catch (const std::exception& e) {
std::cerr << "Error in eigenvalue analysis: " << e.what() << std::endl;
return false;
}
catch (...) {
std::cerr << "Unknown error in eigenvalue analysis" << std::endl;
return false;
}
}
// Cubic equation analysis function
bool cubicAnalysis(double a, double y, double beta, int num_points, double z_min, double z_max, const std::string& output_file) {
std::cout << "Running cubic equation analysis with parameters: a = " << a
<< ", y = " << y << ", beta = " << beta << ", num_points = " << num_points
<< ", z_min = " << z_min << ", z_max = " << z_max << std::endl;
std::cout << "Output will be saved to: " << output_file << std::endl;
try {
// Compute Im(s) vs z data with z_min and z_max parameters
std::vector<std::vector<double>> ims_data = computeImSVsZ(a, y, beta, num_points, z_min, z_max);
// Save to JSON
if (!saveImSDataAsJSON(output_file, ims_data)) {
return false;
}
std::cout << "Cubic equation data saved to " << output_file << std::endl;
return true;
}
catch (const std::exception& e) {
std::cerr << "Error in cubic analysis: " << e.what() << std::endl;
return false;
}
catch (...) {
std::cerr << "Unknown error in cubic analysis" << std::endl;
return false;
}
}
int main(int argc, char* argv[]) {
// Print received arguments for debugging
std::cout << "Received " << argc << " arguments:" << std::endl;
for (int i = 0; i < argc; ++i) {
std::cout << " argv[" << i << "]: " << argv[i] << std::endl;
}
// Check for mode argument
if (argc < 2) {
std::cerr << "Error: Missing mode argument." << std::endl;
std::cerr << "Usage: " << argv[0] << " eigenvalues <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl;
std::cerr << " or: " << argv[0] << " cubic <a> <y> <beta> <num_points> <z_min> <z_max> <output_file>" << std::endl;
return 1;
}
std::string mode = argv[1];
try {
if (mode == "eigenvalues") {
// βββ Eigenvalue analysis mode βββββββββββββββββββββββββββββββββββββββββββ
if (argc != 10) {
std::cerr << "Error: Incorrect number of arguments for eigenvalues mode." << std::endl;
std::cerr << "Usage: " << argv[0] << " eigenvalues <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl;
std::cerr << "Received " << argc << " arguments, expected 10." << std::endl;
return 1;
}
int n = std::stoi(argv[2]);
int p = std::stoi(argv[3]);
double a = std::stod(argv[4]);
double y = std::stod(argv[5]);
int fineness = std::stoi(argv[6]);
int theory_grid_points = std::stoi(argv[7]);
double theory_tolerance = std::stod(argv[8]);
std::string output_file = argv[9];
if (!eigenvalueAnalysis(n, p, a, y, fineness, theory_grid_points, theory_tolerance, output_file)) {
return 1;
}
} else if (mode == "cubic") {
// βββ Cubic equation analysis mode βββββββββββββββββββββββββββββββββββββββββββ
if (argc != 9) {
std::cerr << "Error: Incorrect number of arguments for cubic mode." << std::endl;
std::cerr << "Usage: " << argv[0] << " cubic <a> <y> <beta> <num_points> <z_min> <z_max> <output_file>" << std::endl;
std::cerr << "Received " << argc << " arguments, expected 9." << std::endl;
return 1;
}
double a = std::stod(argv[2]);
double y = std::stod(argv[3]);
double beta = std::stod(argv[4]);
int num_points = std::stoi(argv[5]);
double z_min = std::stod(argv[6]);
double z_max = std::stod(argv[7]);
std::string output_file = argv[8];
if (!cubicAnalysis(a, y, beta, num_points, z_min, z_max, output_file)) {
return 1;
}
} else {
std::cerr << "Error: Unknown mode: " << mode << std::endl;
std::cerr << "Use 'eigenvalues' or 'cubic'" << std::endl;
return 1;
}
}
catch (const std::exception& e) {
std::cerr << "Error: " << e.what() << std::endl;
return 1;
}
return 0;
} |