tsne / app.py
euler314's picture
Update app.py
599c56e verified
raw
history blame
8.66 kB
import io
import textwrap
import itertools
import zipfile
from typing import List, Tuple
import numpy as np
import pandas as pd
import streamlit as st
from sklearn.manifold import TSNE, trustworthiness
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans, DBSCAN
import umap.umap_ as umap
import plotly.express as px
from scipy.spatial.distance import cdist
from sklearn.datasets import make_swiss_roll
# ── Example shapes (some generated on demand) ────────────────────────────────
def generate_hypercube(n=4):
return np.array(list(itertools.product([0, 1], repeat=n)), dtype=float)
def generate_simplex(n=3):
eye = np.eye(n, dtype=float)
origin = np.zeros((1, n), dtype=float)
return np.vstack([eye, origin])
def generate_swiss_roll(n_samples=500, noise=0.05):
X, _ = make_swiss_roll(n_samples=n_samples, noise=noise)
return X
EXAMPLE_SHAPES = {
"Cube (3‑D, 8 pts)": np.array([
[0,0,0],[0,0,1],[0,1,0],[0,1,1],
[1,0,0],[1,0,1],[1,1,0],[1,1,1]
], dtype=float),
"Square pyramid (3‑D, 5 pts)": np.array([
[-1,-1,0],[1,-1,0],[1,1,0],[-1,1,0],[0,0,1]
], dtype=float),
"4‑D hypercube (16 pts)": generate_hypercube(4),
"3‑simplex (4 pts in 3‑D)": generate_simplex(3),
"Swiss roll (500 pts, 3‑D)": generate_swiss_roll,
}
# ── Helpers ──────────────────────────────────────────────────────────────────
def parse_text_points(text: str) -> np.ndarray:
txt = textwrap.dedent(text.strip())
rows = [r for r in txt.splitlines() if r.strip()]
data = [list(map(float, r.replace(",", " ").split())) for r in rows]
return np.array(data, dtype=float)
def run_tsne(data, perp, seed):
ts = TSNE(n_components=2, perplexity=perp, random_state=seed, init="pca")
emb = ts.fit_transform(data)
return emb, ts.kl_divergence_
def run_pca(data):
pca = PCA(n_components=2)
return pca.fit_transform(data), None
def run_umap(data, n_neighbors, min_dist, seed):
um = umap.UMAP(n_components=2, n_neighbors=n_neighbors,
min_dist=min_dist, random_state=seed)
return um.fit_transform(data), None
# ── Streamlit UI ─────────────────────────────────────────────────────────────
st.set_page_config(layout="wide")
st.title("πŸŒ€ Dimensionality Reduction Explorer")
st.write("""
Upload **one or many** CSV/TXT files *or* use the other sources, pick an algorithm,
(optionally cluster), and explore the 2‑D embedding. Each result is downloadable
with a full pair‑wise distance table.
""")
# Sidebar ────────────────────────────────────────────────────────────────────
with st.sidebar:
st.header("1️⃣ Data Input")
mode = st.radio("Source", ["Example shape", "Upload CSV/TXT", "Paste text"])
datasets: List[Tuple[str, np.ndarray]] = []
if mode == "Example shape":
key = st.selectbox("Choose example", list(EXAMPLE_SHAPES.keys()))
src = EXAMPLE_SHAPES[key]
data_raw = src() if callable(src) else src
datasets.append((key.replace(" ", "_"), data_raw))
elif mode == "Upload CSV/TXT":
uploads = st.file_uploader(
"Upload one **or many** files",
type=["csv", "txt"],
accept_multiple_files=True
)
if not uploads:
st.stop()
for up in uploads:
txt = io.StringIO(up.getvalue().decode("utf-8")).read()
pts = parse_text_points(txt)
datasets.append((up.name.rsplit(".", 1)[0], pts))
else: # Paste text
placeholder = "e.g.\n0,0,0\n0,0,1\n0,1,0\n..."
txt = st.text_area("Paste coordinates", height=200, placeholder=placeholder)
if not txt.strip():
st.stop()
data_raw = parse_text_points(txt)
datasets.append(("pasted_points", data_raw))
st.header("2️⃣ Algorithm & Params")
algo = st.selectbox("Method", ["t‑SNE", "PCA", "UMAP"])
seed = st.number_input("Random seed", value=42, step=1)
if algo == "t‑SNE":
perp = st.slider("Perplexity", 1.0, 50.0, 30.0, 1.0)
elif algo == "UMAP":
neighbors = st.slider("n_neighbors", 5, 200, 15, 5)
min_dist = st.slider("min_dist", 0.0, 0.99, 0.1, 0.01)
st.header("3️⃣ Clustering (optional)")
do_cluster = st.checkbox("Cluster embedding")
if do_cluster:
cluster_algo = st.selectbox("Algorithm", ["KMeans", "DBSCAN"])
if cluster_algo == "KMeans":
n_clusters = st.slider("n_clusters", 2, 10, 3, 1)
else:
eps = st.slider("DBSCAN eps", 0.1, 5.0, 0.5, 0.1)
st.markdown("---")
run = st.button("Run & Visualize πŸš€")
# ── Main processing ─────────────────────────────────────────────────────────
def process_dataset(name: str, pts: np.ndarray):
if pts.ndim != 2 or pts.shape[0] < 2:
st.error(f"Dataset **{name}** needs at least two points in an (n_pts Γ— n_dims) array.")
return None, None
# Dimensionality reduction
if algo == "t‑SNE":
emb, kl = run_tsne(pts, perp, seed)
elif algo == "PCA":
emb, kl = run_pca(pts)
else:
emb, kl = run_umap(pts, neighbors, min_dist, seed)
# Trustworthiness
n_samples = pts.shape[0]
k_max = (n_samples - 1) // 2
tw = trustworthiness(pts, emb, n_neighbors=k_max) if k_max >= 1 else None
# DataFrame for embedding
df = pd.DataFrame(emb, columns=["x", "y"])
# Clustering
if do_cluster:
if cluster_algo == "KMeans":
labels = KMeans(n_clusters=n_clusters, random_state=seed).fit_predict(emb)
else:
labels = DBSCAN(eps=eps).fit_predict(emb)
df["cluster"] = labels.astype(str)
# Pair‑wise distances in embedding
dist_matrix = cdist(emb, emb, metric="euclidean")
dist_df = pd.DataFrame(dist_matrix,
columns=[f"dist_{i}" for i in range(n_samples)])
out_df = pd.concat([df, dist_df], axis=1)
return out_df, {"kl": kl, "tw": tw, "k_max": k_max}
if run:
results: List[Tuple[str, pd.DataFrame]] = []
for name, pts in datasets:
st.subheader(f"πŸ“‚ Dataset: {name}")
out_df, stats = process_dataset(name, pts)
if out_df is None:
continue
# Scatter plot
color_arg = "cluster" if ("cluster" in out_df.columns) else None
fig = px.scatter(out_df, x="x", y="y", color=color_arg,
title=f"{algo} embedding ({name})",
width=700, height=500)
fig.update_traces(marker=dict(size=8))
fig.update_layout(margin=dict(l=20, r=20, t=40, b=20))
st.plotly_chart(fig, use_container_width=True)
# Stats
if stats["tw"] is not None:
st.markdown(f"**Trustworthiness (k={stats['k_max']}):** {stats['tw']:.3f}")
else:
st.markdown("**Trustworthiness:** Not enough samples to compute (need β‰₯β€―3 points).")
if stats["kl"] is not None:
st.markdown(f"**t‑SNE KL divergence:** {stats['kl']:.3f}")
# Distance matrix preview
with st.expander("πŸ” Show pair‑wise distance matrix"):
st.dataframe(out_df.filter(like="dist_"))
# Download CSV for this dataset
csv_bytes = out_df.to_csv(index=False).encode("utf‑8")
st.download_button(
f"Download embeddingβ€―+β€―distances ({name})",
data=csv_bytes,
file_name=f"{name}_embedding_with_distances.csv",
mime="text/csv"
)
# Keep for ZIP if batch
results.append((name, csv_bytes))
# One‑click ZIP if multiple datasets
if len(results) >= 2:
zip_buf = io.BytesIO()
with zipfile.ZipFile(zip_buf, "w", zipfile.ZIP_DEFLATED) as zf:
for nm, csv_b in results:
zf.writestr(f"{nm}_embedding_with_distances.csv", csv_b)
st.download_button(
"πŸ“¦ Download **all** results as ZIP",
data=zip_buf.getvalue(),
file_name="all_embeddings_with_distances.zip",
mime="application/zip"
)