tsne / app.py
euler314's picture
Update app.py
d7768bb verified
raw
history blame
9.08 kB
import io
import itertools
import textwrap
import zipfile
from typing import List, Tuple
import numpy as np
import pandas as pd
import plotly.express as px
import streamlit as st
from scipy.spatial.distance import cdist
from sklearn.cluster import DBSCAN, KMeans
from sklearn.decomposition import PCA
from sklearn.datasets import make_swiss_roll
from sklearn.manifold import TSNE, trustworthiness
import umap.umap_ as umap
# ── Example shapes ───────────────────────────────────────────────────────────
def generate_hypercube(n=4):
return np.array(list(itertools.product([0, 1], repeat=n)), dtype=float)
def generate_simplex(n=3):
eye = np.eye(n, dtype=float)
origin = np.zeros((1, n), dtype=float)
return np.vstack([eye, origin])
def generate_swiss_roll(n_samples=500, noise=0.05):
X, _ = make_swiss_roll(n_samples=n_samples, noise=noise)
return X
EXAMPLE_SHAPES = {
"Cube (3-D, 8 pts)": np.array([
[0,0,0],[0,0,1],[0,1,0],[0,1,1],
[1,0,0],[1,0,1],[1,1,0],[1,1,1]
], dtype=float),
"Square pyramid (3-D, 5 pts)": np.array([
[-1,-1,0],[1,-1,0],[1,1,0],[-1,1,0],[0,0,1]
], dtype=float),
"4-D hypercube (16 pts)": generate_hypercube(4),
"3-simplex (4 pts in 3-D)": generate_simplex(3),
"Swiss roll (500 pts, 3-D)": generate_swiss_roll,
}
# ── Helpers ──────────────────────────────────────────────────────────────────
def parse_text_points(text: str) -> np.ndarray:
txt = textwrap.dedent(text.strip())
rows = [r for r in txt.splitlines() if r.strip()]
data = [list(map(float, r.replace(",", " ").split())) for r in rows]
return np.array(data, dtype=float)
def run_tsne(data, perp, seed):
ts = TSNE(n_components=2, perplexity=perp, random_state=seed, init="pca")
emb = ts.fit_transform(data)
return emb, ts.kl_divergence_
def run_pca(data):
pca = PCA(n_components=2)
return pca.fit_transform(data), None
def run_umap(data, n_neighbors, min_dist, seed):
um = umap.UMAP(n_components=2, n_neighbors=n_neighbors,
min_dist=min_dist, random_state=seed)
return um.fit_transform(data), None
def distinct_count(dist_row: np.ndarray, tol: float = 1e-3) -> int:
"""Count unique non-zero distances in a row after rounding to 3 decimals."""
nz = dist_row[dist_row > tol]
rounded = (nz * 1000).round().astype(int) # rounding to 3 d.p.
return len(np.unique(rounded))
# ── Streamlit UI ─────────────────────────────────────────────────────────────
st.set_page_config(layout="wide")
st.title("πŸŒ€ Dimensionality Reduction Explorer")
st.write("""
Upload **one or many** CSV/TXT files *or* use an example shape, pick an algorithm,
(optionally cluster), and explore the 2-D embedding.
Every output CSV now contains the embedding, the original point coordinates,
all pair-wise distances, **and** the number of distinct distances per point.
""")
# ── Sidebar ──────────────────────────────────────────────────────────────────
with st.sidebar:
st.header("1️⃣ Data Input")
mode = st.radio("Source", ["Example shape", "Upload CSV/TXT", "Paste text"])
datasets: List[Tuple[str, np.ndarray]] = []
if mode == "Example shape":
key = st.selectbox("Choose example", list(EXAMPLE_SHAPES.keys()))
src = EXAMPLE_SHAPES[key]
data_raw = src() if callable(src) else src
datasets.append((key.replace(" ", "_"), data_raw))
elif mode == "Upload CSV/TXT":
uploads = st.file_uploader(
"Upload file(s)", type=["csv", "txt"], accept_multiple_files=True
)
if not uploads:
st.stop()
for up in uploads:
txt = io.StringIO(up.getvalue().decode("utf-8")).read()
pts = parse_text_points(txt)
datasets.append((up.name.rsplit(".", 1)[0], pts))
else: # Paste text
placeholder = "e.g.\n0,0,0\n0,0,1\n0,1,0\n..."
txt = st.text_area("Paste coordinates", height=200, placeholder=placeholder)
if not txt.strip():
st.stop()
datasets.append(("pasted_points", parse_text_points(txt)))
st.header("2️⃣ Algorithm & Params")
algo = st.selectbox("Method", ["t-SNE", "PCA", "UMAP"])
seed = st.number_input("Random seed", value=42, step=1)
if algo == "t-SNE":
perp = st.slider("Perplexity", 1.0, 50.0, 30.0, 1.0)
elif algo == "UMAP":
neighbors = st.slider("n_neighbors", 5, 200, 15, 5)
min_dist = st.slider("min_dist", 0.0, 0.99, 0.1, 0.01)
st.header("3️⃣ Clustering (optional)")
do_cluster = st.checkbox("Cluster embedding")
if do_cluster:
cluster_algo = st.selectbox("Algorithm", ["KMeans", "DBSCAN"])
if cluster_algo == "KMeans":
n_clusters = st.slider("n_clusters", 2, 10, 3, 1)
else:
eps = st.slider("DBSCAN eps", 0.1, 5.0, 0.5, 0.1)
st.markdown("---")
run = st.button("Run & Visualize πŸš€")
# ── Main processing ─────────────────────────────────────────────────────────
def process_dataset(name: str, pts: np.ndarray) -> Tuple[pd.DataFrame, dict]:
if pts.ndim != 2 or pts.shape[0] < 2:
st.error(f"Dataset **{name}** needs at least two points (rows).")
return None, None
# 1. Reduce dimensionality
if algo == "t-SNE":
emb, kl = run_tsne(pts, perp, seed)
elif algo == "PCA":
emb, kl = run_pca(pts)
else:
emb, kl = run_umap(pts, neighbors, min_dist, seed)
# 2. Trustworthiness
n_samples = pts.shape[0]
k_max = (n_samples - 1) // 2
tw = trustworthiness(pts, emb, n_neighbors=k_max) if k_max >= 1 else None
# 3. Build DataFrame in requested column order
df_emb = pd.DataFrame(emb, columns=["x", "y"])
df_pts = pd.DataFrame(pts, columns=[f"p{i}" for i in range(pts.shape[1])])
df = pd.concat([df_emb, df_pts], axis=1)
# 4. Clustering (optional)
if do_cluster:
if cluster_algo == "KMeans":
labels = KMeans(n_clusters=n_clusters, random_state=seed).fit_predict(emb)
else:
labels = DBSCAN(eps=eps).fit_predict(emb)
df["cluster"] = labels.astype(str)
# 5. Pair-wise distances (in embedding space)
dists = cdist(emb, emb, metric="euclidean")
dist_df = pd.DataFrame(dists, columns=[f"dist_{i}" for i in range(n_samples)])
df = pd.concat([df, dist_df], axis=1)
# 6. Distinct-distance count per point
df["distinct_count"] = [distinct_count(row) for row in dists]
return df, {"kl": kl, "tw": tw, "k_max": k_max}
if run:
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, "w", zipfile.ZIP_DEFLATED) as zf:
for name, pts in datasets:
st.subheader(f"πŸ“‚ Dataset: {name}")
out_df, stats = process_dataset(name, pts)
if out_df is None:
continue
# Plot
color_col = "cluster" if "cluster" in out_df.columns else None
fig = px.scatter(out_df, x="x", y="y", color=color_col,
title=f"{algo} embedding ({name})",
width=700, height=500)
fig.update_traces(marker=dict(size=8))
fig.update_layout(margin=dict(l=20, r=20, t=40, b=20))
st.plotly_chart(fig, use_container_width=True)
# Stats
if stats["tw"] is not None:
st.markdown(f"**Trustworthiness (k={stats['k_max']}):** {stats['tw']:.3f}")
else:
st.markdown("**Trustworthiness:** Not enough samples to compute.")
if stats["kl"] is not None:
st.markdown(f"**t-SNE KL divergence:** {stats['kl']:.3f}")
# Data preview
with st.expander("Preview first 10 rows"):
st.dataframe(out_df.head(10))
# Individual CSV download
csv_bytes = out_df.to_csv(index=False).encode("utf-8")
st.download_button(
f"Download CSV ({name})",
data=csv_bytes,
file_name=f"{name}_embedding_with_distances.csv",
mime="text/csv"
)
# Add to ZIP
zf.writestr(f"{name}_embedding_with_distances.csv", csv_bytes)
# ZIP download (always available once run)
st.download_button(
"πŸ“¦ Download ALL results as ZIP",
data=zip_buffer.getvalue(),
file_name="all_embeddings_with_distances.zip",
mime="application/zip"
)