File size: 40,970 Bytes
7fa25f7
efb47b3
 
7fa25f7
efb47b3
 
 
 
 
 
 
 
 
7fa25f7
efb47b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fa25f7
 
efb47b3
7fa25f7
 
efb47b3
 
7fa25f7
 
efb47b3
 
 
7fa25f7
 
 
 
 
 
 
 
 
efb47b3
 
7fa25f7
 
 
57005a7
7fa25f7
efb47b3
57005a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3d5eda
7fa25f7
a3d5eda
7fa25f7
 
 
 
 
 
 
 
 
 
 
9a12078
a3d5eda
 
 
 
 
 
 
 
 
dd02776
a3d5eda
 
 
 
 
 
 
 
 
 
 
 
 
 
dd02776
a3d5eda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd02776
a3d5eda
 
 
 
 
 
 
dd02776
a3d5eda
 
 
dd02776
a3d5eda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55b0661
a3d5eda
 
 
 
 
7fa25f7
 
a3d5eda
7fa25f7
 
 
 
 
a3d5eda
efb47b3
7fa25f7
 
efb47b3
 
7fa25f7
efb47b3
 
 
 
 
 
 
 
7fa25f7
efb47b3
7fa25f7
efb47b3
7fa25f7
a3d5eda
7fa25f7
 
 
 
 
efb47b3
7fa25f7
 
a3d5eda
efb47b3
 
 
7fa25f7
 
 
a3d5eda
7fa25f7
 
 
 
 
 
a3d5eda
7fa25f7
 
 
a3d5eda
7fa25f7
 
efb47b3
7fa25f7
 
 
 
 
a3d5eda
7fa25f7
 
 
 
a3d5eda
7fa25f7
 
 
 
 
 
80709af
a3d5eda
80709af
 
 
 
 
 
 
 
 
 
 
7fa25f7
 
 
a3d5eda
7fa25f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
7fa25f7
a3d5eda
7fa25f7
efb47b3
7fa25f7
a3d5eda
 
 
7fa25f7
 
 
 
 
 
 
 
 
 
 
 
efb47b3
7fa25f7
efb47b3
7fa25f7
a3d5eda
7fa25f7
 
efb47b3
7fa25f7
 
 
 
efb47b3
7fa25f7
 
 
 
 
 
efb47b3
7fa25f7
 
 
 
 
 
 
 
4114999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6485687
4114999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6485687
4114999
6485687
a3d5eda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4114999
 
 
 
 
6485687
4114999
 
 
 
 
 
 
 
 
 
 
 
 
6485687
4114999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3d5eda
c7943cc
 
a3d5eda
 
 
 
 
 
 
 
 
 
 
 
 
 
c7943cc
a3d5eda
c7943cc
a3d5eda
 
 
 
 
 
 
 
 
 
7fa25f7
a3d5eda
7fa25f7
 
 
a3d5eda
c7943cc
 
7fa25f7
 
a3d5eda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
7fa25f7
a3d5eda
 
 
 
55508d2
a3d5eda
 
 
 
 
 
 
 
 
55508d2
a3d5eda
 
 
55508d2
a3d5eda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55508d2
a3d5eda
7fa25f7
a3d5eda
efb47b3
a3d5eda
7fa25f7
a3d5eda
 
 
7fa25f7
a3d5eda
 
 
7fa25f7
 
 
a3d5eda
 
 
 
 
 
 
 
 
 
 
efb47b3
a3d5eda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
a3d5eda
efb47b3
a3d5eda
 
 
 
 
 
 
 
 
 
efb47b3
a3d5eda
7fa25f7
a3d5eda
 
 
 
c7943cc
a3d5eda
 
c7943cc
a3d5eda
 
 
c7943cc
a3d5eda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7943cc
 
 
a3d5eda
c7943cc
a3d5eda
c7943cc
 
 
a3d5eda
c7943cc
 
 
 
a3d5eda
c7943cc
 
 
a3d5eda
 
c7943cc
a3d5eda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7943cc
a3d5eda
 
 
 
 
 
 
 
 
 
 
 
 
c7943cc
a3d5eda
 
c7943cc
a3d5eda
 
 
 
 
 
7fa25f7
a3d5eda
7fa25f7
a3d5eda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fa25f7
 
 
 
 
 
efb47b3
7fa25f7
 
 
 
 
 
 
 
 
 
efb47b3
7fa25f7
 
 
 
 
efb47b3
7fa25f7
efb47b3
a3d5eda
efb47b3
c7943cc
a3d5eda
 
c7943cc
a3d5eda
c7943cc
a3d5eda
c7943cc
 
 
a3d5eda
 
 
c7943cc
 
 
 
 
 
 
 
 
 
a3d5eda
 
 
 
 
 
 
 
 
c7943cc
a3d5eda
 
c7943cc
 
7fa25f7
 
 
a3d5eda
 
c7943cc
a3d5eda
c7943cc
7fa25f7
c7943cc
7fa25f7
 
 
 
 
 
 
 
efb47b3
c7943cc
 
6485687
c7943cc
 
7fa25f7
 
 
c7943cc
7fa25f7
efb47b3
c7943cc
 
 
 
 
 
 
 
 
a3d5eda
c7943cc
 
 
 
7fa25f7
a3d5eda
 
 
7fa25f7
efb47b3
7fa25f7
efb47b3
 
7fa25f7
 
 
 
 
63be654
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
import gradio as gr
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import pickle
import tropycal.tracks as tracks
import pandas as pd
import numpy as np
import cachetools
import functools
import hashlib
import os
from datetime import datetime, timedelta
from datetime import date
from scipy import stats
from scipy.optimize import minimize, curve_fit
from sklearn.linear_model import LinearRegression
from sklearn.cluster import KMeans
from scipy.interpolate import interp1d
from fractions import Fraction
import statsmodels.api as sm
import time
import threading
import requests
from io import StringIO   
import tempfile
import csv  
from collections import defaultdict
import shutil
import filecmp
import warnings
warnings.filterwarnings('ignore')

# Constants
DATA_PATH = os.getcwd()
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
LOCAL_iBtrace_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r00.csv')
iBtrace_uri = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r00/access/csv/ibtracs.WP.list.v04r00.csv'
CACHE_FILE = 'ibtracs_cache.pkl'
CACHE_EXPIRY_DAYS = 1

# Color mappings
COLOR_MAP = {
    'C5 Super Typhoon': 'rgb(255, 0, 0)',
    'C4 Very Strong Typhoon': 'rgb(255, 63, 0)', 
    'C3 Strong Typhoon': 'rgb(255, 127, 0)',
    'C2 Typhoon': 'rgb(255, 191, 0)',
    'C1 Typhoon': 'rgb(255, 255, 0)',
    'Tropical Storm': 'rgb(0, 255, 255)',
    'Tropical Depression': 'rgb(173, 216, 230)'
}

class TyphoonAnalyzer:
    def __init__(self):
        self.last_oni_update = None
        self.ensure_data_files_exist()
        self.load_initial_data()
        
    def ensure_data_files_exist(self):
        """Ensure all required data files exist before loading"""
        print("Checking and downloading required data files...")
        
        # Create data directory if it doesn't exist
        os.makedirs(DATA_PATH, exist_ok=True)
        
        # Download ONI data if it doesn't exist
        if not os.path.exists(ONI_DATA_PATH):
            print("Downloading ONI data...")
            url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
            temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
            try:
                response = requests.get(url)
                response.raise_for_status()
                with open(temp_file, 'wb') as f:
                    f.write(response.content)
                self.convert_oni_ascii_to_csv(temp_file, ONI_DATA_PATH)
                print("ONI data downloaded and converted successfully")
            except Exception as e:
                print(f"Error downloading ONI data: {e}")
                raise
            finally:
                if os.path.exists(temp_file):
                    os.remove(temp_file)

        # Download IBTrACS data if it doesn't exist
        if not os.path.exists(LOCAL_iBtrace_PATH):
            print("Downloading IBTrACS data...")
            try:
                response = requests.get(iBtrace_uri)
                response.raise_for_status()
                with open(LOCAL_iBtrace_PATH, 'w') as f:
                    f.write(response.text)
                print("IBTrACS data downloaded successfully")
            except Exception as e:
                print(f"Error downloading IBTrACS data: {e}")
                raise

        # Create processed typhoon data if it doesn't exist
        if not os.path.exists(TYPHOON_DATA_PATH):
            print("Processing typhoon data...")
            try:
                self.convert_typhoondata(LOCAL_iBtrace_PATH, TYPHOON_DATA_PATH)
                print("Typhoon data processed successfully")
            except Exception as e:
                print(f"Error processing typhoon data: {e}")
                raise

        print("All required data files are ready")

    def load_initial_data(self):
        """Initialize all required data"""
        print("Loading initial data...")
        self.update_oni_data()
        self.oni_df = self.fetch_oni_data_from_csv()
        self.ibtracs = self.load_ibtracs_data()
        self.update_typhoon_data()
        self.oni_data, self.typhoon_data = self.load_data()
        self.oni_long = self.process_oni_data(self.oni_data)
        self.typhoon_max = self.process_typhoon_data(self.typhoon_data)
        self.merged_data = self.merge_data()
        print("Initial data loading complete")

    def convert_typhoondata(self, input_file, output_file):
        """Convert IBTrACS data to processed format"""
        print(f"Converting typhoon data from {input_file} to {output_file}")
        with open(input_file, 'r') as infile:
            # Skip the header lines
            next(infile)
            next(infile)
            
            reader = csv.reader(infile)
            sid_data = defaultdict(list)
            
            for row in reader:
                if not row:  # Skip blank lines
                    continue
                
                sid = row[0]
                iso_time = row[6]
                sid_data[sid].append((row, iso_time))

        with open(output_file, 'w', newline='') as outfile:
            fieldnames = ['SID', 'ISO_TIME', 'LAT', 'LON', 'SEASON', 'NAME', 
                         'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES', 
                         'START_DATE', 'END_DATE']
            writer = csv.DictWriter(outfile, fieldnames=fieldnames)
            writer.writeheader()
            
            for sid, data in sid_data.items():
                start_date = min(data, key=lambda x: x[1])[1]
                end_date = max(data, key=lambda x: x[1])[1]
                
                for row, iso_time in data:
                    writer.writerow({
                        'SID': row[0],
                        'ISO_TIME': iso_time,
                        'LAT': row[8],
                        'LON': row[9],
                        'SEASON': row[1],
                        'NAME': row[5],
                        'WMO_WIND': row[10].strip() or ' ',
                        'WMO_PRES': row[11].strip() or ' ',
                        'USA_WIND': row[23].strip() or ' ',
                        'USA_PRES': row[24].strip() or ' ',
                        'START_DATE': start_date,
                        'END_DATE': end_date
                    })

    def fetch_oni_data_from_csv(self):
        """Load ONI data from CSV"""
        df = pd.read_csv(ONI_DATA_PATH)
        df = df.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
        
        # Convert month numbers to month names
        month_map = {
            '01': 'Jan', '02': 'Feb', '03': 'Mar', '04': 'Apr',
            '05': 'May', '06': 'Jun', '07': 'Jul', '08': 'Aug',
            '09': 'Sep', '10': 'Oct', '11': 'Nov', '12': 'Dec'
        }
        df['Month'] = df['Month'].map(month_map)
        
        # Now create the date
        df['Date'] = pd.to_datetime(df['Year'].astype(str) + df['Month'], format='%Y%b')
        return df.set_index('Date')

    def update_oni_data(self):
        """Update ONI data from NOAA"""
        if not self._should_update_oni():
            return
        
        url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
        with tempfile.NamedTemporaryFile(delete=False) as temp_file:
            try:
                response = requests.get(url)
                response.raise_for_status()
                temp_file.write(response.content)
                self.convert_oni_ascii_to_csv(temp_file.name, ONI_DATA_PATH)
                self.last_oni_update = date.today()
            except Exception as e:
                print(f"Error updating ONI data: {e}")
            finally:
                if os.path.exists(temp_file.name):
                    os.remove(temp_file.name)

    def _should_update_oni(self):
        """Check if ONI data should be updated"""
        today = datetime.now()
        return (today.day in [1, 15] or 
                today.day == (today.replace(day=1, month=today.month%12+1) - timedelta(days=1)).day)

    def convert_oni_ascii_to_csv(self, input_file, output_file):
        """Convert ONI ASCII data to CSV format"""
        data = defaultdict(lambda: [''] * 12)
        season_to_month = {
            'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5,
            'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11
        }
        
        with open(input_file, 'r') as f:
            next(f)  # Skip header
            for line in f:
                parts = line.split()
                if len(parts) >= 4:
                    season, year, anom = parts[0], parts[1], parts[-1]
                    if season in season_to_month:
                        month = season_to_month[season]
                        if season == 'DJF':
                            year = str(int(year) - 1)
                        data[year][month-1] = anom

        with open(output_file, 'w', newline='') as f:
            writer = csv.writer(f)
            writer.writerow(['Year'] + [f"{m:02d}" for m in range(1, 13)])
            for year in sorted(data.keys()):
                writer.writerow([year] + data[year])

    def load_ibtracs_data(self):
        """Load IBTrACS data with caching"""
        if os.path.exists(CACHE_FILE):
            cache_time = datetime.fromtimestamp(os.path.getmtime(CACHE_FILE))
            if datetime.now() - cache_time < timedelta(days=CACHE_EXPIRY_DAYS):
                with open(CACHE_FILE, 'rb') as f:
                    return pickle.load(f)

        if os.path.exists(LOCAL_iBtrace_PATH):
            ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', 
                                         ibtracs_url=LOCAL_iBtrace_PATH)
        else:
            response = requests.get(iBtrace_uri)
            response.raise_for_status()
            with open(LOCAL_iBtrace_PATH, 'w') as f:
                f.write(response.text)
            ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs',
                                         ibtracs_url=LOCAL_iBtrace_PATH)

        with open(CACHE_FILE, 'wb') as f:
            pickle.dump(ibtracs, f)
        return ibtracs

    def update_typhoon_data(self):
        """Update typhoon data from IBTrACS"""
        try:
            response = requests.head(iBtrace_uri)
            remote_modified = datetime.strptime(response.headers['Last-Modified'], 
                                               '%a, %d %b %Y %H:%M:%S GMT')
            local_modified = (datetime.fromtimestamp(os.path.getmtime(LOCAL_iBtrace_PATH)) 
                            if os.path.exists(LOCAL_iBtrace_PATH) else datetime.min)
            
            if remote_modified > local_modified:
                response = requests.get(iBtrace_uri)
                response.raise_for_status()
                with open(LOCAL_iBtrace_PATH, 'w') as f:
                    f.write(response.text)
                print("Typhoon data updated successfully")
        except Exception as e:
            print(f"Error updating typhoon data: {e}")

    def load_data(self):
        """Load ONI and typhoon data"""
        oni_data = pd.read_csv(ONI_DATA_PATH)
        typhoon_data = pd.read_csv(TYPHOON_DATA_PATH, low_memory=False)
        typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'])
        return oni_data, typhoon_data

    def process_oni_data(self, oni_data):
        """Process ONI data"""
        oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
        
        # Create a mapping for month numbers
        month_map = {
            '01': 1, '02': 2, '03': 3, '04': 4,
            '05': 5, '06': 6, '07': 7, '08': 8,
            '09': 9, '10': 10, '11': 11, '12': 12
        }
        
        # Convert month strings to numbers directly
        oni_long['Month'] = oni_long['Month'].map(month_map)
        
        return oni_long

    def process_typhoon_data(self, typhoon_data):
        """Process typhoon data"""
        typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
        typhoon_data['WMO_PRES'] = pd.to_numeric(typhoon_data['WMO_PRES'], errors='coerce')
        typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'])
        typhoon_data['Year'] = typhoon_data['ISO_TIME'].dt.year
        typhoon_data['Month'] = typhoon_data['ISO_TIME'].dt.month
        
        typhoon_max = typhoon_data.groupby(['SID', 'Year', 'Month']).agg({
            'USA_WIND': 'max',
            'WMO_PRES': 'min',
            'NAME': 'first',
            'LAT': 'first',
            'LON': 'first',
            'ISO_TIME': 'first'
        }).reset_index()
        
        typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(self.categorize_typhoon)
        return typhoon_max

    def merge_data(self):
        """Merge ONI and typhoon data"""
        return pd.merge(self.typhoon_max, self.oni_long, on=['Year', 'Month'])

    def categorize_typhoon(self, wind_speed):
        """Categorize typhoon based on wind speed"""
        if np.isnan(wind_speed):
            return 'Unknown'
        if wind_speed >= 137:
            return 'C5 Super Typhoon'
        elif wind_speed >= 113:
            return 'C4 Very Strong Typhoon'
        elif wind_speed >= 96:
            return 'C3 Strong Typhoon'
        elif wind_speed >= 83:
            return 'C2 Typhoon'
        elif wind_speed >= 64:
            return 'C1 Typhoon'
        elif wind_speed >= 34:
            return 'Tropical Storm'
        else:
            return 'Tropical Depression'

    def analyze_typhoon(self, start_year, start_month, end_year, end_month, enso_value='all'):
        """Main analysis function"""
        start_date = datetime(start_year, start_month, 1)
        end_date = datetime(end_year, end_month, 28)
        
        filtered_data = self.merged_data[
            (self.merged_data['ISO_TIME'] >= start_date) & 
            (self.merged_data['ISO_TIME'] <= end_date)
        ]
        
        if enso_value != 'all':
            filtered_data = filtered_data[
                (filtered_data['ONI'] >= 0.5 if enso_value == 'el_nino' else
                 filtered_data['ONI'] <= -0.5 if enso_value == 'la_nina' else
                 (filtered_data['ONI'] > -0.5) & (filtered_data['ONI'] < 0.5))
            ]
        
        return {
            'tracks': self.create_tracks_plot(filtered_data),
            'wind': self.create_wind_analysis(filtered_data),
            'pressure': self.create_pressure_analysis(filtered_data),
            'stats': self.generate_statistics(filtered_data)
        }

    def create_tracks_plot(self, data):
        """Create typhoon tracks visualization"""
        fig = go.Figure()
        
        fig.update_layout(
            title={
                'text': 'Typhoon Tracks',
                'y':0.95,
                'x':0.5,
                'xanchor': 'center',
                'yanchor': 'top'
            },
            showlegend=True,
            legend=dict(
                yanchor="top",
                y=0.99,
                xanchor="left",
                x=0.01,
                bgcolor='rgba(255, 255, 255, 0.8)'
            ),
            geo=dict(
                projection_type='mercator',
                showland=True,
                showcoastlines=True,
                landcolor='rgb(243, 243, 243)',
                countrycolor='rgb(204, 204, 204)',
                coastlinecolor='rgb(214, 214, 214)',
                showocean=True,
                oceancolor='rgb(230, 250, 255)',
                showlakes=True,
                lakecolor='rgb(230, 250, 255)',
                lataxis=dict(range=[0, 50]),
                lonaxis=dict(range=[100, 180]),
                center=dict(lat=20, lon=140),
                bgcolor='rgba(255, 255, 255, 0.5)'
            ),
            paper_bgcolor='rgba(255, 255, 255, 0.5)',
            plot_bgcolor='rgba(255, 255, 255, 0.5)'
        )

        for category in COLOR_MAP.keys():
            category_data = data[data['Category'] == category]
            for _, storm in category_data.groupby('SID'):
                track_data = self.typhoon_data[self.typhoon_data['SID'] == storm['SID'].iloc[0]]
                track_data = track_data.sort_values('ISO_TIME')
                
                fig.add_trace(go.Scattergeo(
                    lon=track_data['LON'],
                    lat=track_data['LAT'],
                    mode='lines',
                    line=dict(
                        width=2,
                        color=COLOR_MAP[category]
                    ),
                    name=category,
                    legendgroup=category,
                    showlegend=True if storm.iloc[0]['SID'] == category_data.iloc[0]['SID'] else False,
                    hovertemplate=(
                        f"Name: {storm['NAME'].iloc[0]}<br>" +
                        f"Category: {category}<br>" +
                        f"Wind Speed: {storm['USA_WIND'].iloc[0]:.1f} kt<br>" +
                        f"Pressure: {storm['WMO_PRES'].iloc[0]:.1f} hPa<br>" +
                        f"Date: {track_data['ISO_TIME'].dt.strftime('%Y-%m-%d %H:%M').iloc[0]}<br>" +
                        f"Lat: {track_data['LAT'].iloc[0]:.2f}°N<br>" +
                        f"Lon: {track_data['LON'].iloc[0]:.2f}°E<br>" +
                        "<extra></extra>"
                    )
                ))

        return fig

    def create_wind_analysis(self, data):
        """Create wind speed analysis plot"""
        fig = px.scatter(data,
            x='ONI',
            y='USA_WIND',
            color='Category',
            color_discrete_map=COLOR_MAP,
            title='Wind Speed vs ONI Index',
            labels={
                'ONI': 'Oceanic Niño Index',
                'USA_WIND': 'Maximum Wind Speed (kt)'
            },
            hover_data=['NAME', 'ISO_TIME', 'Category']
        )
        
        # Add regression line
        x = data['ONI']
        y = data['USA_WIND']
        slope, intercept = np.polyfit(x, y, 1)
        fig.add_trace(
            go.Scatter(
                x=x,
                y=slope * x + intercept,
                mode='lines',
                name=f'Regression (slope={slope:.2f})',
                line=dict(color='black', dash='dash')
            )
        )
        
        return fig

    def create_pressure_analysis(self, data):
        """Create pressure analysis plot"""
        fig = px.scatter(data,
            x='ONI',
            y='WMO_PRES',
            color='Category',
            color_discrete_map=COLOR_MAP,
            title='Pressure vs ONI Index',
            labels={
                'ONI': 'Oceanic Niño Index',
                'WMO_PRES': 'Minimum Pressure (hPa)'
            },
            hover_data=['NAME', 'ISO_TIME', 'Category']
        )
        
        # Add regression line
        x = data['ONI']
        y = data['WMO_PRES']
        slope, intercept = np.polyfit(x, y, 1)
        fig.add_trace(
            go.Scatter(
                x=x,
                y=slope * x + intercept,
                mode='lines',
                name=f'Regression (slope={slope:.2f})',
                line=dict(color='black', dash='dash')
            )
        )
        
        return fig

    def generate_statistics(self, data):
        """Generate statistical summary"""
        stats = {
            'total_typhoons': len(data['SID'].unique()),
            'avg_wind': data['USA_WIND'].mean(),
            'max_wind': data['USA_WIND'].max(),
            'avg_pressure': data['WMO_PRES'].mean(),
            'min_pressure': data['WMO_PRES'].min(),
            'oni_correlation_wind': data['ONI'].corr(data['USA_WIND']),
            'oni_correlation_pressure': data['ONI'].corr(data['WMO_PRES']),
            'category_counts': data['Category'].value_counts().to_dict()
        }
        
        return f"""
### Statistical Summary

- Total Typhoons: {stats['total_typhoons']}
- Average Wind Speed: {stats['avg_wind']:.2f} kt
- Maximum Wind Speed: {stats['max_wind']:.2f} kt
- Average Pressure: {stats['avg_pressure']:.2f} hPa
- Minimum Pressure: {stats['min_pressure']:.2f} hPa
- ONI-Wind Speed Correlation: {stats['oni_correlation_wind']:.3f}
- ONI-Pressure Correlation: {stats['oni_correlation_pressure']:.3f}

### Category Distribution
{chr(10).join(f'- {cat}: {count}' for cat, count in stats['category_counts'].items())}
"""

    def analyze_clusters(self, year, n_clusters):
        """Analyze typhoon clusters for a specific year"""
        year_data = self.typhoon_data[self.typhoon_data['SEASON'] == year]
        if year_data.empty:
            return go.Figure(), "No data available for selected year"

        # Prepare data for clustering
        routes = []
        for _, storm in year_data.groupby('SID'):
            if len(storm) > 1:
                # Standardize route length
                t = np.linspace(0, 1, len(storm))
                t_new = np.linspace(0, 1, 100)
                lon_interp = interp1d(t, storm['LON'], kind='linear')(t_new)
                lat_interp = interp1d(t, storm['LAT'], kind='linear')(t_new)
                routes.append(np.column_stack((lon_interp, lat_interp)))
        
        if len(routes) < n_clusters:
            return go.Figure(), f"Not enough typhoons ({len(routes)}) for {n_clusters} clusters"

        # Perform clustering
        routes_array = np.array(routes)
        routes_reshaped = routes_array.reshape(routes_array.shape[0], -1)
        kmeans = KMeans(n_clusters=n_clusters, random_state=42)
        clusters = kmeans.fit_predict(routes_reshaped)
        
        # Create visualization
        fig = go.Figure()
        
        # Set layout
        fig.update_layout(
            title=f'Typhoon Route Clusters ({year})',
            showlegend=True,
            geo=dict(
                projection_type='mercator',
                showland=True,
                showcoastlines=True,
                landcolor='rgb(243, 243, 243)',
                countrycolor='rgb(204, 204, 204)',
                coastlinecolor='rgb(214, 214, 214)',
                showocean=True,
                oceancolor='rgb(230, 250, 255)',
                lataxis=dict(range=[0, 50]),
                lonaxis=dict(range=[100, 180]),
                center=dict(lat=20, lon=140)
            )
        )
        
        # Plot routes colored by cluster
        for route, cluster_id in zip(routes, clusters):
            fig.add_trace(go.Scattergeo(
                lon=route[:, 0],
                lat=route[:, 1],
                mode='lines',
                line=dict(
                    width=1, 
                    color=f'hsl({cluster_id * 360/n_clusters}, 50%, 50%)'
                ),
                name=f'Cluster {cluster_id + 1}',
                showlegend=False
            ))
        
        # Plot cluster centers
        for i in range(n_clusters):
            center = kmeans.cluster_centers_[i].reshape(-1, 2)
            fig.add_trace(go.Scattergeo(
                lon=center[:, 0],
                lat=center[:, 1],
                mode='lines',
                name=f'Cluster {i+1} Center',
                line=dict(
                    width=3,
                    color=f'hsl({i * 360/n_clusters}, 100%, 50%)'
                )
            ))
        
        # Generate statistics text
        stats_text = "### Clustering Results\n\n"
        cluster_counts = np.bincount(clusters)
        for i in range(n_clusters):
            stats_text += f"- Cluster {i+1}: {cluster_counts[i]} typhoons\n"
        
        return fig, stats_text

    def get_typhoons_for_year(self, year):
        """Get list of typhoons for a specific year"""
        try:
            season = self.ibtracs.get_season(year)
            storm_summary = season.summary()
            
            typhoon_options = []
            for i in range(storm_summary['season_storms']):
                storm_id = storm_summary['id'][i]
                storm_name = storm_summary['name'][i]
                typhoon_options.append({'label': f"{storm_name} ({storm_id})", 'value': storm_id})
            
            return typhoon_options
        except Exception as e:
            print(f"Error getting typhoons for year {year}: {str(e)}")
            return []

    def create_typhoon_animation(self, year, storm_id, standard='atlantic'):
        """Create animated visualization of typhoon path"""
        if not storm_id:
            return go.Figure(), "Please select a typhoon"
            
        storm = self.ibtracs.get_storm(storm_id)
        
        fig = go.Figure()

        # Base map setup with correct scaling
        fig.update_layout(
            title=f"{year} - {storm.name} Typhoon Path",
            geo=dict(
                projection_type='natural earth',
                showland=True,
                landcolor='rgb(243, 243, 243)',
                countrycolor='rgb(204, 204, 204)',
                coastlinecolor='rgb(100, 100, 100)',
                showocean=True,
                oceancolor='rgb(230, 250, 255)',
                lataxis=dict(range=[0, 50]),
                lonaxis=dict(range=[100, 180]),
                center=dict(lat=20, lon=140),
            ),
            updatemenus=[{
                "buttons": [
                    {
                        "args": [None, {"frame": {"duration": 100, "redraw": True},
                                        "fromcurrent": True,
                                        "transition": {"duration": 0}}],
                        "label": "Play",
                        "method": "animate"
                    },
                    {
                        "args": [[None], {"frame": {"duration": 0, "redraw": True},
                                          "mode": "immediate",
                                          "transition": {"duration": 0}}],
                        "label": "Pause",
                        "method": "animate"
                    }
                ],
                "direction": "left",
                "pad": {"r": 10, "t": 87},
                "showactive": False,
                "type": "buttons",
                "x": 0.1,
                "xanchor": "right",
                "y": 0,
                "yanchor": "top"
            }]
        )

        # Create animation frames
        frames = []
        for i in range(len(storm.time)):
            category, color = self.categorize_typhoon_by_standard(storm.vmax[i], standard)
            
            # Get extra radius data if available
            radius_info = ""
            if hasattr(storm, 'dict'):
                r34_ne = storm.dict.get('USA_R34_NE', [None])[i] if 'USA_R34_NE' in storm.dict else None
                r34_se = storm.dict.get('USA_R34_SE', [None])[i] if 'USA_R34_SE' in storm.dict else None
                r34_sw = storm.dict.get('USA_R34_SW', [None])[i] if 'USA_R34_SW' in storm.dict else None
                r34_nw = storm.dict.get('USA_R34_NW', [None])[i] if 'USA_R34_NW' in storm.dict else None
                rmw = storm.dict.get('USA_RMW', [None])[i] if 'USA_RMW' in storm.dict else None
                eye = storm.dict.get('USA_EYE', [None])[i] if 'USA_EYE' in storm.dict else None
                
                if any([r34_ne, r34_se, r34_sw, r34_nw, rmw, eye]):
                    radius_info = f"<br>R34: NE={r34_ne}, SE={r34_se}, SW={r34_sw}, NW={r34_nw}<br>"
                    radius_info += f"RMW: {rmw}<br>Eye Diameter: {eye}"
            
            frame = go.Frame(
                data=[
                    go.Scattergeo(
                        lon=storm.lon[:i+1],
                        lat=storm.lat[:i+1],
                        mode='lines',
                        line=dict(width=2, color='blue'),
                        name='Path Traveled',
                        showlegend=False,
                    ),
                    go.Scattergeo(
                        lon=[storm.lon[i]],
                        lat=[storm.lat[i]],
                        mode='markers+text',
                        marker=dict(size=10, color=color, symbol='star'),
                        text=category,
                        textposition="top center",
                        textfont=dict(size=12, color=color),
                        name='Current Location',
                        hovertemplate=(
                            f"{storm.time[i].strftime('%Y-%m-%d %H:%M')}<br>"
                            f"Category: {category}<br>"
                            f"Wind Speed: {storm.vmax[i]:.1f} kt<br>"
                            f"{radius_info}"
                        ),
                    ),
                ],name=f"frame{i}"
            )
            frames.append(frame)

        fig.frames = frames
        
        # Add initial track and starting point
        fig.add_trace(
            go.Scattergeo(
                lon=storm.lon,
                lat=storm.lat,
                mode='lines',
                line=dict(width=2, color='gray'),
                name='Complete Path',
                showlegend=True,
            )
        )

        fig.add_trace(
            go.Scattergeo(
                lon=[storm.lon[0]],
                lat=[storm.lat[0]],
                mode='markers',
                marker=dict(size=10, color='green', symbol='star'),
                name='Starting Point',
                text=storm.time[0].strftime('%Y-%m-%d %H:%M'),
                hoverinfo='text+name',
            )
        )

        # Add slider for frame selection
        sliders = [{
            "active": 0,
            "yanchor": "top",
            "xanchor": "left",
            "currentvalue": {
                "font": {"size": 20},
                "prefix": "Time: ",
                "visible": True,
                "xanchor": "right"
            },
            "transition": {"duration": 100, "easing": "cubic-in-out"},
            "pad": {"b": 10, "t": 50},
            "len": 0.9,
            "x": 0.1,
            "y": 0,
            "steps": [
                {
                    "args": [[f"frame{k}"],
                            {"frame": {"duration": 100, "redraw": True},
                            "mode": "immediate",
                            "transition": {"duration": 0}}
                            ],
                    "label": storm.time[k].strftime('%Y-%m-%d %H:%M'),
                    "method": "animate"
                }
                for k in range(len(storm.time))
            ]
        }]
        
        fig.update_layout(sliders=sliders)

        info_text = f"""
        ### Typhoon Information
        - **Name:** {storm.name}
        - **Start Date:** {storm.time[0].strftime('%Y-%m-%d %H:%M')}
        - **End Date:** {storm.time[-1].strftime('%Y-%m-%d %H:%M')}
        - **Duration:** {(storm.time[-1] - storm.time[0]).total_seconds() / 3600:.1f} hours
        - **Maximum Wind Speed:** {max(storm.vmax):.1f} kt
        - **Minimum Pressure:** {min(storm.mslp):.1f} hPa
        - **Peak Category:** {self.categorize_typhoon_by_standard(max(storm.vmax), standard)[0]}
        """

        return fig, info_text

    def search_typhoons(self, query):
        """Search for typhoons by name"""
        if not query:
            return go.Figure(), "Please enter a typhoon name to search"
        
        # Find all typhoons matching the query
        matching_storms = []
        
        # Limit search to last 30 years to improve performance
        current_year = datetime.now().year
        start_year = current_year - 30
        
        for year in range(start_year, current_year + 1):
            try:
                season = self.ibtracs.get_season(year)
                for storm_id in season.summary()['id']:
                    storm = self.ibtracs.get_storm(storm_id)
                    if query.lower() in storm.name.lower():
                        matching_storms.append((year, storm))
            except Exception as e:
                print(f"Error searching year {year}: {str(e)}")
                continue
        
        if not matching_storms:
            return go.Figure(), "No typhoons found matching your search"
        
        # Create visualization of all matching typhoons
        fig = go.Figure()
        
        fig.update_layout(
            title=f"Typhoons Matching: '{query}'",
            geo=dict(
                projection_type='natural earth',
                showland=True,
                landcolor='rgb(243, 243, 243)',
                countrycolor='rgb(204, 204, 204)',
                coastlinecolor='rgb(100, 100, 100)',
                showocean=True,
                oceancolor='rgb(230, 250, 255)',
                lataxis=dict(range=[0, 50]),
                lonaxis=dict(range=[100, 180]),
                center=dict(lat=20, lon=140),
            )
        )
        
        # Plot each matching storm with a different color
        colors = px.colors.qualitative.Plotly
        
        for i, (year, storm) in enumerate(matching_storms):
            color = colors[i % len(colors)]
            
            fig.add_trace(go.Scattergeo(
                lon=storm.lon,
                lat=storm.lat,
                mode='lines',
                line=dict(width=3, color=color),
                name=f"{storm.name} ({year})",
                hovertemplate=(
                    f"Name: {storm.name}<br>"
                    f"Year: {year}<br>"
                    f"Max Wind: {max(storm.vmax):.1f} kt<br>"
                    f"Min Pressure: {min(storm.mslp):.1f} hPa<br>"
                    f"Position: %{lat:.2f}°N, %{lon:.2f}°E"
                )
            ))
        
        # Add starting points
        for i, (year, storm) in enumerate(matching_storms):
            color = colors[i % len(colors)]
            
            fig.add_trace(go.Scattergeo(
                lon=[storm.lon[0]],
                lat=[storm.lat[0]],
                mode='markers',
                marker=dict(size=10, color=color, symbol='circle'),
                name=f"Start: {storm.name} ({year})",
                showlegend=False,
                hoverinfo='name'
            ))
        
        # Create information text
        info_text = f"### Found {len(matching_storms)} typhoons matching '{query}':\n\n"
        
        for year, storm in matching_storms:
            info_text += f"- **{storm.name} ({year})**\n"
            info_text += f"  - Time: {storm.time[0].strftime('%Y-%m-%d')} to {storm.time[-1].strftime('%Y-%m-%d')}\n"
            info_text += f"  - Max Wind: {max(storm.vmax):.1f} kt\n"
            info_text += f"  - Min Pressure: {min(storm.mslp):.1f} hPa\n"
            info_text += f"  - Category: {self.categorize_typhoon_by_standard(max(storm.vmax))[0]}\n\n"
        
        return fig, info_text

    def categorize_typhoon_by_standard(self, wind_speed, standard='atlantic'):
        """
        Categorize typhoon based on wind speed and chosen standard
        wind_speed is in knots
        """
        if standard == 'taiwan':
            # Convert knots to m/s for Taiwan standard
            wind_speed_ms = wind_speed * 0.514444
            
            if wind_speed_ms >= 51.0:
                return 'Strong Typhoon', 'rgb(255, 0, 0)'
            elif wind_speed_ms >= 33.7:
                return 'Medium Typhoon', 'rgb(255, 127, 0)'
            elif wind_speed_ms >= 17.2:
                return 'Mild Typhoon', 'rgb(255, 255, 0)'
            else:
                return 'Tropical Depression', 'rgb(173, 216, 230)'
        else:
            # Atlantic standard uses knots
            if wind_speed >= 137:
                return 'C5 Super Typhoon', 'rgb(255, 0, 0)'
            elif wind_speed >= 113:
                return 'C4 Very Strong Typhoon', 'rgb(255, 63, 0)'
            elif wind_speed >= 96:
                return 'C3 Strong Typhoon', 'rgb(255, 127, 0)'
            elif wind_speed >= 83:
                return 'C2 Typhoon', 'rgb(255, 191, 0)'
            elif wind_speed >= 64:
                return 'C1 Typhoon', 'rgb(255, 255, 0)'
            elif wind_speed >= 34:
                return 'Tropical Storm', 'rgb(0, 255, 255)'
            else:
                return 'Tropical Depression', 'rgb(173, 216, 230)'

def create_interface():
    analyzer = TyphoonAnalyzer()

    with gr.Blocks(title="Typhoon Analysis Dashboard", theme=gr.themes.Base()) as demo:
        gr.Markdown("# Typhoon Analysis Dashboard")
        
        with gr.Tabs():
            # Main Analysis Tab
            with gr.Tab("Main Analysis"):
                with gr.Row():
                    with gr.Column():
                        start_year = gr.Slider(1900, 2024, 2000, label="Start Year")
                        start_month = gr.Slider(1, 12, 1, label="Start Month")
                    with gr.Column():
                        end_year = gr.Slider(1900, 2024, 2024, label="End Year")
                        end_month = gr.Slider(1, 12, 12, label="End Month")
                
                enso_dropdown = gr.Dropdown(
                    choices=["all", "el_nino", "la_nina", "neutral"],
                    value="all",
                    label="ENSO Phase"
                )
                
                analyze_btn = gr.Button("Analyze")
                
                tracks_plot = gr.Plot(label="Typhoon Tracks")
                
                with gr.Row():
                    wind_plot = gr.Plot(label="Wind Speed Analysis")
                    pressure_plot = gr.Plot(label="Pressure Analysis")
                
                stats_text = gr.Markdown()

            # Typhoon Animation Tab
            with gr.Tab("Typhoon Animation"):
                with gr.Row():
                    animation_year = gr.Slider(
                        minimum=1950, 
                        maximum=2024, 
                        value=2020,
                        step=1,
                        label="Select Year"
                    )
                
                with gr.Row():
                    animation_typhoon = gr.Dropdown(
                        choices=[],
                        label="Select Typhoon",
                        interactive=True
                    )
                    
                    standard_dropdown = gr.Dropdown(
                        choices=[
                            {"label": "Atlantic Standard", "value": "atlantic"},
                            {"label": "Taiwan Standard", "value": "taiwan"}
                        ],
                        value="atlantic",
                        label="Classification Standard"
                    )
                
                animation_btn = gr.Button("Show Typhoon Path", variant="primary")
                animation_plot = gr.Plot(label="Typhoon Path Animation")
                animation_info = gr.Markdown()

            # Search Tab
            with gr.Tab("Typhoon Search"):
                with gr.Row():
                    search_input = gr.Textbox(label="Search Typhoon Name")
                    search_btn = gr.Button("Search Typhoons", variant="primary")
                
                search_results = gr.Plot(label="Search Results")
                search_info = gr.Markdown()

        # Event handlers
        def analyze_callback(start_y, start_m, end_y, end_m, enso):
            results = analyzer.analyze_typhoon(start_y, start_m, end_y, end_m, enso)
            return [
                results['tracks'],
                results['wind'],
                results['pressure'],
                results['stats']
            ]

        def update_typhoon_choices(year):
            typhoons = analyzer.get_typhoons_for_year(year)
            return gr.update(choices=typhoons, value=None)

        # Connect events for main analysis
        analyze_btn.click(
            analyze_callback,
            inputs=[start_year, start_month, end_year, end_month, enso_dropdown],
            outputs=[tracks_plot, wind_plot, pressure_plot, stats_text]
        )

        # Connect events for Animation tab
        animation_year.change(
            update_typhoon_choices,
            inputs=[animation_year],
            outputs=[animation_typhoon]
        )

        animation_btn.click(
            analyzer.create_typhoon_animation,
            inputs=[animation_year, animation_typhoon, standard_dropdown],
            outputs=[animation_plot, animation_info]
        )

        # Connect events for Search tab
        search_btn.click(
            analyzer.search_typhoons,
            inputs=[search_input],
            outputs=[search_results, search_info]
        )

    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True
    )