File size: 19,634 Bytes
7fa25f7
efb47b3
 
7fa25f7
efb47b3
 
 
 
 
 
 
 
 
7fa25f7
efb47b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fa25f7
 
efb47b3
7fa25f7
 
efb47b3
 
7fa25f7
 
efb47b3
 
 
7fa25f7
 
 
 
 
 
 
 
 
efb47b3
 
7fa25f7
 
 
 
efb47b3
7fa25f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
7fa25f7
 
efb47b3
7fa25f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
 
7fa25f7
 
efb47b3
 
7fa25f7
efb47b3
 
 
 
 
 
 
 
7fa25f7
efb47b3
7fa25f7
efb47b3
7fa25f7
 
 
 
 
 
efb47b3
7fa25f7
 
 
efb47b3
 
 
7fa25f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
7fa25f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
7fa25f7
 
efb47b3
7fa25f7
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
7fa25f7
efb47b3
7fa25f7
 
 
efb47b3
7fa25f7
 
 
 
efb47b3
7fa25f7
 
 
 
 
 
efb47b3
7fa25f7
 
 
 
 
 
 
 
 
 
efb47b3
7fa25f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
7fa25f7
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
 
7fa25f7
 
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
 
7fa25f7
 
 
 
 
 
 
 
efb47b3
7fa25f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
7fa25f7
 
efb47b3
7fa25f7
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
7fa25f7
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
7fa25f7
 
efb47b3
7fa25f7
 
 
 
 
efb47b3
7fa25f7
 
efb47b3
7fa25f7
 
 
 
 
 
 
 
 
efb47b3
7fa25f7
 
 
 
 
 
 
 
 
 
efb47b3
7fa25f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
7fa25f7
 
 
 
 
 
 
 
 
 
efb47b3
7fa25f7
 
 
 
 
efb47b3
7fa25f7
efb47b3
7fa25f7
 
 
 
 
 
 
 
 
 
efb47b3
7fa25f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
7fa25f7
 
 
 
 
efb47b3
7fa25f7
 
 
efb47b3
7fa25f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
7fa25f7
 
 
 
 
efb47b3
7fa25f7
efb47b3
 
7fa25f7
 
 
 
 
63be654
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
import gradio as gr
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import pickle
import tropycal.tracks as tracks
import pandas as pd
import numpy as np
import cachetools
import functools
import hashlib
import os
from datetime import datetime, timedelta
from datetime import date
from scipy import stats
from scipy.optimize import minimize, curve_fit
from sklearn.linear_model import LinearRegression
from sklearn.cluster import KMeans
from scipy.interpolate import interp1d
from fractions import Fraction
import statsmodels.api as sm
import time
import threading
import requests
from io import StringIO   
import tempfile
import csv  
from collections import defaultdict
import shutil
import filecmp
import warnings
warnings.filterwarnings('ignore')

# Constants
DATA_PATH = os.getcwd()
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
LOCAL_iBtrace_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r00.csv')
iBtrace_uri = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r00/access/csv/ibtracs.WP.list.v04r00.csv'
CACHE_FILE = 'ibtracs_cache.pkl'
CACHE_EXPIRY_DAYS = 1

# Color mappings
COLOR_MAP = {
    'C5 Super Typhoon': 'rgb(255, 0, 0)',
    'C4 Very Strong Typhoon': 'rgb(255, 63, 0)', 
    'C3 Strong Typhoon': 'rgb(255, 127, 0)',
    'C2 Typhoon': 'rgb(255, 191, 0)',
    'C1 Typhoon': 'rgb(255, 255, 0)',
    'Tropical Storm': 'rgb(0, 255, 255)',
    'Tropical Depression': 'rgb(173, 216, 230)'
}

class TyphoonAnalyzer:
    def __init__(self):
        self.last_oni_update = None
        self.load_initial_data()
        
    def load_initial_data(self):
        print("Loading initial data...")
        self.update_oni_data()
        self.oni_df = self.fetch_oni_data_from_csv()
        self.ibtracs = self.load_ibtracs_data()
        self.update_typhoon_data()
        self.oni_data, self.typhoon_data = self.load_data()
        self.oni_long = self.process_oni_data(self.oni_data)
        self.typhoon_max = self.process_typhoon_data(self.typhoon_data)
        self.merged_data = self.merge_data()
        print("Initial data loading complete")

    def fetch_oni_data_from_csv(self):
        df = pd.read_csv(ONI_DATA_PATH)
        df = df.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
        df['Date'] = pd.to_datetime(df['Year'].astype(str) + df['Month'], format='%Y%b')
        return df.set_index('Date')

    def should_update_oni(self):
        today = datetime.now()
        return (today.day == 1 or today.day == 15 or 
                today.day == (today.replace(day=1, month=today.month%12+1) - timedelta(days=1)).day)

    def update_oni_data(self):
        if not self.should_update_oni():
            return

        url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
        temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
        
        try:
            response = requests.get(url)
            response.raise_for_status()
            with open(temp_file, 'wb') as f:
                f.write(response.content)
            self.convert_oni_ascii_to_csv(temp_file, ONI_DATA_PATH)
            self.last_oni_update = date.today()
        except Exception as e:
            print(f"Error updating ONI data: {e}")
        finally:
            if os.path.exists(temp_file):
                os.remove(temp_file)

    def convert_oni_ascii_to_csv(self, input_file, output_file):
        data = defaultdict(lambda: [''] * 12)
        season_to_month = {
            'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5,
            'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11
        }

        with open(input_file, 'r') as f:
            next(f)  # Skip header
            for line in f:
                parts = line.split()
                if len(parts) >= 4:
                    season, year, anom = parts[0], parts[1], parts[-1]
                    if season in season_to_month:
                        month = season_to_month[season]
                        if season == 'DJF':
                            year = str(int(year) - 1)
                        data[year][month-1] = anom

        with open(output_file, 'w', newline='') as f:
            writer = csv.writer(f)
            writer.writerow(['Year'] + [f"{m:02d}" for m in range(1, 13)])
            for year in sorted(data.keys()):
                writer.writerow([year] + data[year])

    def load_ibtracs_data(self):
        if os.path.exists(CACHE_FILE):
            cache_time = datetime.fromtimestamp(os.path.getmtime(CACHE_FILE))
            if datetime.now() - cache_time < timedelta(days=CACHE_EXPIRY_DAYS):
                with open(CACHE_FILE, 'rb') as f:
                    return pickle.load(f)

        if os.path.exists(LOCAL_iBtrace_PATH):
            ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', 
                                        ibtracs_url=LOCAL_iBtrace_PATH)
        else:
            response = requests.get(iBtrace_uri)
            response.raise_for_status()
            with open(LOCAL_iBtrace_PATH, 'w') as f:
                f.write(response.text)
            ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs',
                                        ibtracs_url=LOCAL_iBtrace_PATH)

        with open(CACHE_FILE, 'wb') as f:
            pickle.dump(ibtracs, f)
        return ibtracs

    def update_typhoon_data(self):
        try:
            response = requests.head(iBtrace_uri)
            remote_modified = datetime.strptime(response.headers['Last-Modified'], 
                                              '%a, %d %b %Y %H:%M:%S GMT')
            local_modified = (datetime.fromtimestamp(os.path.getmtime(LOCAL_iBtrace_PATH)) 
                            if os.path.exists(LOCAL_iBtrace_PATH) else datetime.min)
            
            if remote_modified > local_modified:
                response = requests.get(iBtrace_uri)
                response.raise_for_status()
                with open(LOCAL_iBtrace_PATH, 'w') as f:
                    f.write(response.text)
        except Exception as e:
            print(f"Error updating typhoon data: {e}")

    def load_data(self):
        oni_data = pd.read_csv(ONI_DATA_PATH)
        typhoon_data = pd.read_csv(TYPHOON_DATA_PATH, low_memory=False)
        typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'])
        return oni_data, typhoon_data

    def process_oni_data(self, oni_data):
        oni_long = pd.melt(oni_data, id_vars=['Year'], var_name='Month', value_name='ONI')
        oni_long['Month'] = oni_long['Month'].map(lambda x: pd.to_datetime(x, format='%b').month)
        return oni_long

    def process_typhoon_data(self, typhoon_data):
        typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
        typhoon_data['WMO_PRES'] = pd.to_numeric(typhoon_data['WMO_PRES'], errors='coerce')
        typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'])
        typhoon_data['Year'] = typhoon_data['ISO_TIME'].dt.year
        typhoon_data['Month'] = typhoon_data['ISO_TIME'].dt.month
        
        typhoon_max = typhoon_data.groupby(['SID', 'Year', 'Month']).agg({
            'USA_WIND': 'max',
            'WMO_PRES': 'min',
            'NAME': 'first',
            'LAT': 'first',
            'LON': 'first',
            'ISO_TIME': 'first'
        }).reset_index()
        
        typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(self.categorize_typhoon)
        return typhoon_max

    def merge_data(self):
        return pd.merge(self.typhoon_max, self.oni_long, on=['Year', 'Month'])

    def categorize_typhoon(self, wind_speed):
        if wind_speed >= 137:
            return 'C5 Super Typhoon'
        elif wind_speed >= 113:
            return 'C4 Very Strong Typhoon'
        elif wind_speed >= 96:
            return 'C3 Strong Typhoon'
        elif wind_speed >= 83:
            return 'C2 Typhoon'
        elif wind_speed >= 64:
            return 'C1 Typhoon'
        elif wind_speed >= 34:
            return 'Tropical Storm'
        else:
            return 'Tropical Depression'

    def analyze_typhoon(self, start_year, start_month, end_year, end_month, enso_value='all'):
        start_date = datetime(start_year, start_month, 1)
        end_date = datetime(end_year, end_month, 28)
        
        filtered_data = self.merged_data[
            (self.merged_data['ISO_TIME'] >= start_date) & 
            (self.merged_data['ISO_TIME'] <= end_date)
        ]
        
        if enso_value != 'all':
            filtered_data = filtered_data[
                (filtered_data['ONI'] >= 0.5 if enso_value == 'el_nino' else
                 filtered_data['ONI'] <= -0.5 if enso_value == 'la_nina' else
                 (filtered_data['ONI'] > -0.5) & (filtered_data['ONI'] < 0.5))
            ]
        
        return {
            'tracks': self.create_tracks_plot(filtered_data),
            'wind': self.create_wind_analysis(filtered_data),
            'pressure': self.create_pressure_analysis(filtered_data),
            'clusters': self.create_cluster_analysis(filtered_data, 5),
            'stats': self.generate_statistics(filtered_data)
        }

    def create_tracks_plot(self, data):
        fig = go.Figure()
        
        for _, storm in data.groupby('SID'):
            fig.add_trace(go.Scattergeo(
                lon=storm['LON'],
                lat=storm['LAT'],
                mode='lines',
                name=storm['NAME'].iloc[0],
                line=dict(
                    width=2,
                    color=COLOR_MAP[storm['Category'].iloc[0]]
                ),
                hovertemplate=(
                    f"Name: {storm['NAME'].iloc[0]}<br>"
                    f"Category: {storm['Category'].iloc[0]}<br>"
                    f"Wind Speed: {storm['USA_WIND'].iloc[0]:.1f} kt<br>"
                    f"Pressure: {storm['WMO_PRES'].iloc[0]:.1f} hPa<br>"
                    f"Date: {storm['ISO_TIME'].iloc[0]:%Y-%m-%d}"
                )
            ))
        
        fig.update_layout(
            title='Typhoon Tracks',
            showlegend=True,
            geo=dict(
                projection_type='mercator',
                showland=True,
                showcoastlines=True,
                landcolor='rgb(243, 243, 243)',
                countrycolor='rgb(204, 204, 204)',
                coastlinecolor='rgb(214, 214, 214)',
                lataxis=dict(range=[0, 50]),
                lonaxis=dict(range=[100, 180]),
            )
        )
        
        return fig

    def create_wind_analysis(self, data):
        fig = px.scatter(data,
            x='ONI',
            y='USA_WIND',
            color='Category',
            color_discrete_map=COLOR_MAP,
            title='Wind Speed vs ONI Index',
            labels={
                'ONI': 'Oceanic Niño Index',
                'USA_WIND': 'Maximum Wind Speed (kt)'
            },
            hover_data=['NAME', 'ISO_TIME']
        )
        
        # Add regression line
        x = data['ONI']
        y = data['USA_WIND']
        slope, intercept = np.polyfit(x, y, 1)
        fig.add_trace(
            go.Scatter(
                x=x,
                y=slope * x + intercept,
                mode='lines',
                name=f'Regression (slope={slope:.2f})',
                line=dict(color='black', dash='dash')
            )
        )
        
        return fig

    def create_pressure_analysis(self, data):
        fig = px.scatter(data,
            x='ONI',
            y='WMO_PRES',
            color='Category',
            color_discrete_map=COLOR_MAP,
            title='Pressure vs ONI Index',
            labels={
                'ONI': 'Oceanic Niño Index',
                'WMO_PRES': 'Minimum Pressure (hPa)'
            },
            hover_data=['NAME', 'ISO_TIME']
        )
        
        # Add regression line
        x = data['ONI']
        y = data['WMO_PRES']
        slope, intercept = np.polyfit(x, y, 1)
        fig.add_trace(
            go.Scatter(
                x=x,
                y=slope * x + intercept,
                mode='lines',
                name=f'Regression (slope={slope:.2f})',
                line=dict(color='black', dash='dash')
            )
        )
        
        return fig

    def create_cluster_analysis(self, data, n_clusters=5):
        # Prepare data for clustering
        routes = []
        for _, storm in data.groupby('SID'):
            if len(storm) > 1:
                # Standardize route length
                t = np.linspace(0, 1, len(storm))
                t_new = np.linspace(0, 1, 100)
                lon_interp = interp1d(t, storm['LON'], kind='linear')(t_new)
                lat_interp = interp1d(t, storm['LAT'], kind='linear')(t_new)
                routes.append(np.column_stack((lon_interp, lat_interp)))
        
        if not routes:
            return go.Figure()

        # Perform clustering
        routes_array = np.array(routes)
        routes_reshaped = routes_array.reshape(routes_array.shape[0], -1)
        kmeans = KMeans(n_clusters=n_clusters, random_state=42)
        clusters = kmeans.fit_predict(routes_reshaped)

        # Create visualization
        fig = go.Figure()
        
        # Plot original routes colored by cluster
        for route, cluster_id in zip(routes, clusters):
            fig.add_trace(go.Scattergeo(
                lon=route[:, 0],
                lat=route[:, 1],
                mode='lines',
                line=dict(width=1, color=f'hsl({cluster_id * 360/n_clusters}, 50%, 50%)'),
                showlegend=False
            ))

        # Plot cluster centers
        for i in range(n_clusters):
            center = kmeans.cluster_centers_[i].reshape(-1, 2)
            fig.add_trace(go.Scattergeo(
                lon=center[:, 0],
                lat=center[:, 1],
                mode='lines',
                name=f'Cluster {i+1} Center',
                line=dict(width=3, color=f'hsl({i * 360/n_clusters}, 100%, 50%)')
            ))

        fig.update_layout(
            title='Typhoon Route Clusters',
            showlegend=True,
            geo=dict(
                projection_type='mercator',
                showland=True,
                showcoastlines=True,
                landcolor='rgb(243, 243, 243)',
                countrycolor='rgb(204, 204, 204)',
                coastlinecolor='rgb(214, 214, 214)',
                lataxis=dict(range=[0, 50]),
                lonaxis=dict(range=[100, 180]),
            )
        )
        
        return fig

    def generate_statistics(self, data):
        stats = {
            'total_typhoons': len(data['SID'].unique()),
            'avg_wind': data['USA_WIND'].mean(),
            'max_wind': data['USA_WIND'].max(),
            'avg_pressure': data['WMO_PRES'].mean(),
            'min_pressure': data['WMO_PRES'].min(),
            'oni_correlation_wind': data['ONI'].corr(data['USA_WIND']),
            'oni_correlation_pressure': data['ONI'].corr(data['WMO_PRES']),
            'category_counts': data['Category'].value_counts().to_dict()
        }
        
        return f"""
### Statistical Summary

- Total Typhoons: {stats['total_typhoons']}
- Average Wind Speed: {stats['avg_wind']:.2f} kt
- Maximum Wind Speed: {stats['max_wind']:.2f} kt
- Average Pressure: {stats['avg_pressure']:.2f} hPa
- Minimum Pressure: {stats['min_pressure']:.2f} hPa
- ONI-Wind Speed Correlation: {stats['oni_correlation_wind']:.3f}
- ONI-Pressure Correlation: {stats['oni_correlation_pressure']:.3f}

### Category Distribution
{chr(10).join(f'- {cat}: {count}' for cat, count in stats['category_counts'].items())}
"""

def create_interface():
    analyzer = TyphoonAnalyzer()

    with gr.Blocks(title="Typhoon Analysis Dashboard", theme=gr.themes.Base()) as demo:
        gr.Markdown("# Typhoon Analysis Dashboard")
        
        with gr.Tabs():
            # Main Analysis Tab
            with gr.Tab("Main Analysis"):
                with gr.Row():
                    with gr.Column():
                        start_year = gr.Slider(1900, 2024, 2000, label="Start Year")
                        start_month = gr.Slider(1, 12, 1, label="Start Month")
                    with gr.Column():
                        end_year = gr.Slider(1900, 2024, 2024, label="End Year")
                        end_month = gr.Slider(1, 12, 12, label="End Month")
                
                enso_dropdown = gr.Dropdown(
                    choices=["all", "el_nino", "la_nina", "neutral"],
                    value="all",
                    label="ENSO Phase"
                )
                
                analyze_btn = gr.Button("Analyze")
                
                plots_tabs = gr.Tabs()
                with plots_tabs:
                    with gr.Tab("Tracks"):
                        tracks_plot = gr.Plot()
                    with gr.Tab("Wind Analysis"):
                        wind_plot = gr.Plot()
                    with gr.Tab("Pressure Analysis"):
                        pressure_plot = gr.Plot()
                    with gr.Tab("Clusters"):
                        cluster_plot = gr.Plot()
                
                stats_text = gr.Markdown()

            # Search Tab
            with gr.Tab("Typhoon Search"):
                with gr.Row():
                    search_input = gr.Textbox(label="Search Typhoon Name")
                    search_btn = gr.Button("Search")
                search_results = gr.Plot()
                typhoon_info = gr.Markdown()

        def analyze_callback(start_y, start_m, end_y, end_m, enso):
            results = analyzer.analyze_typhoon(start_y, start_m, end_y, end_m, enso)
            return [
                results['tracks'],
                results['wind'],
                results['pressure'],
                results['clusters'],
                results['stats']
            ]

        analyze_btn.click(
            analyze_callback,
            inputs=[start_year, start_month, end_year, end_month, enso_dropdown],
            outputs=[tracks_plot, wind_plot, pressure_plot, cluster_plot, stats_text]
        )

        def search_callback(query):
            if not query:
                return None, "Please enter a typhoon name to search."
            
            matches = analyzer.merged_data[
                analyzer.merged_data['NAME'].str.contains(query, case=False, na=False)
            ]
            
            if matches.empty:
                return None, "No typhoons found matching your search."
            
            fig = analyzer.create_tracks_plot(matches)
            
            info = f"### Found {len(matches['SID'].unique())} matching typhoons:\n\n"
            for _, storm in matches.groupby('SID'):
                info += (f"- {storm['NAME'].iloc[0]} ({storm['ISO_TIME'].iloc[0]:%Y-%m-%d})\n"
                        f"  - Category: {storm['Category'].iloc[0]}\n"
                        f"  - Max Wind: {storm['USA_WIND'].iloc[0]:.1f} kt\n"
                        f"  - Min Pressure: {storm['WMO_PRES'].iloc[0]:.1f} hPa\n")
            
            return fig, info

        search_btn.click(
            search_callback,
            inputs=[search_input],
            outputs=[search_results, typhoon_info]
        )

    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True
    )