Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.animation as animation | |
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas | |
import cartopy.crs as ccrs | |
import cartopy.feature as cfeature | |
import plotly.graph_objects as go | |
import plotly.express as px | |
from plotly.subplots import make_subplots | |
import pickle | |
import requests | |
import os | |
import argparse | |
from datetime import datetime | |
import statsmodels.api as sm | |
import shutil | |
import tempfile | |
import csv | |
from collections import defaultdict | |
from sklearn.manifold import TSNE | |
from sklearn.cluster import DBSCAN | |
from scipy.interpolate import interp1d | |
# Import tropycal for IBTrACS processing (for typhoon options) | |
import tropycal.tracks as tracks | |
# ------------------ Argument Parsing ------------------ | |
parser = argparse.ArgumentParser(description='Typhoon Analysis Dashboard') | |
parser.add_argument('--data_path', type=str, default=os.getcwd(), help='Path to the data directory') | |
args = parser.parse_args() | |
DATA_PATH = args.data_path | |
# ------------------ File Paths ------------------ | |
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv') | |
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv') | |
# ------------------ IBTrACS Files (for typhoon options) ------------------ | |
BASIN_FILES = { | |
'EP': 'ibtracs.EP.list.v04r01.csv', | |
'NA': 'ibtracs.NA.list.v04r01.csv', | |
'WP': 'ibtracs.WP.list.v04r01.csv' | |
} | |
IBTRACS_BASE_URL = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/' | |
CACHE_FILE = 'ibtracs_cache.pkl' | |
CACHE_EXPIRY_DAYS = 0 # Force refresh for testing | |
# ------------------ Color Maps and Standards ------------------ | |
color_map = { | |
'C5 Super Typhoon': 'rgb(255, 0, 0)', | |
'C4 Very Strong Typhoon': 'rgb(255, 165, 0)', | |
'C3 Strong Typhoon': 'rgb(255, 255, 0)', | |
'C2 Typhoon': 'rgb(0, 255, 0)', | |
'C1 Typhoon': 'rgb(0, 255, 255)', | |
'Tropical Storm': 'rgb(0, 0, 255)', | |
'Tropical Depression': 'rgb(128, 128, 128)' | |
} | |
atlantic_standard = { | |
'C5 Super Typhoon': {'wind_speed': 137, 'color': 'Red', 'hex': '#FF0000'}, | |
'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'Orange', 'hex': '#FFA500'}, | |
'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'Yellow', 'hex': '#FFFF00'}, | |
'C2 Typhoon': {'wind_speed': 83, 'color': 'Green', 'hex': '#00FF00'}, | |
'C1 Typhoon': {'wind_speed': 64, 'color': 'Cyan', 'hex': '#00FFFF'}, | |
'Tropical Storm': {'wind_speed': 34, 'color': 'Blue', 'hex': '#0000FF'}, | |
'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'} | |
} | |
taiwan_standard = { | |
'Strong Typhoon': {'wind_speed': 51.0, 'color': 'Red', 'hex': '#FF0000'}, | |
'Medium Typhoon': {'wind_speed': 33.7, 'color': 'Orange', 'hex': '#FFA500'}, | |
'Mild Typhoon': {'wind_speed': 17.2, 'color': 'Yellow', 'hex': '#FFFF00'}, | |
'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'} | |
} | |
# ------------------ Season and Regions ------------------ | |
season_months = { | |
'all': list(range(1, 13)), | |
'summer': [6, 7, 8], | |
'winter': [12, 1, 2] | |
} | |
regions = { | |
"Taiwan Land": {"lat_min": 21.8, "lat_max": 25.3, "lon_min": 119.5, "lon_max": 122.1}, | |
"Taiwan Sea": {"lat_min": 19, "lat_max": 28, "lon_min": 117, "lon_max": 125}, | |
"Japan": {"lat_min": 20, "lat_max": 45, "lon_min": 120, "lon_max": 150}, | |
"China": {"lat_min": 18, "lat_max": 53, "lon_min": 73, "lon_max": 135}, | |
"Hong Kong": {"lat_min": 21.5, "lat_max": 23, "lon_min": 113, "lon_max": 115}, | |
"Philippines": {"lat_min": 5, "lat_max": 21, "lon_min": 115, "lon_max": 130} | |
} | |
# ------------------ ONI and Typhoon Data Functions ------------------ | |
def download_oni_file(url, filename): | |
response = requests.get(url) | |
response.raise_for_status() | |
with open(filename, 'wb') as f: | |
f.write(response.content) | |
return True | |
def convert_oni_ascii_to_csv(input_file, output_file): | |
data = defaultdict(lambda: [''] * 12) | |
season_to_month = {'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5, | |
'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11} | |
with open(input_file, 'r') as f: | |
lines = f.readlines()[1:] | |
for line in lines: | |
parts = line.split() | |
if len(parts) >= 4: | |
season, year, anom = parts[0], parts[1], parts[-1] | |
if season in season_to_month: | |
month = season_to_month[season] | |
if season == 'DJF': | |
year = str(int(year) - 1) | |
data[year][month-1] = anom | |
with open(output_file, 'w', newline='') as f: | |
writer = csv.writer(f) | |
writer.writerow(['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']) | |
for year in sorted(data.keys()): | |
writer.writerow([year] + data[year]) | |
def update_oni_data(): | |
url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt" | |
temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt") | |
input_file = os.path.join(DATA_PATH, "oni.ascii.txt") | |
output_file = ONI_DATA_PATH | |
if download_oni_file(url, temp_file): | |
if not os.path.exists(input_file) or not os.path.exists(output_file): | |
os.replace(temp_file, input_file) | |
convert_oni_ascii_to_csv(input_file, output_file) | |
else: | |
os.remove(temp_file) | |
def load_data(oni_path, typhoon_path): | |
oni_data = pd.read_csv(oni_path) | |
typhoon_data = pd.read_csv(typhoon_path, low_memory=False) | |
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce') | |
typhoon_data = typhoon_data.dropna(subset=['ISO_TIME']) | |
return oni_data, typhoon_data | |
def process_oni_data(oni_data): | |
oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI') | |
month_map = {'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', 'May': '05', 'Jun': '06', | |
'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12'} | |
oni_long['Month'] = oni_long['Month'].map(month_map) | |
oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str) + '-' + oni_long['Month'] + '-01') | |
oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce') | |
return oni_long | |
def process_typhoon_data(typhoon_data): | |
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce') | |
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce') | |
typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce') | |
typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce') | |
print(f"Unique basins in typhoon_data: {typhoon_data['SID'].str[:2].unique()}") | |
typhoon_max = typhoon_data.groupby('SID').agg({ | |
'USA_WIND': 'max', 'USA_PRES': 'min', 'ISO_TIME': 'first', 'SEASON': 'first', 'NAME': 'first', | |
'LAT': 'first', 'LON': 'first' | |
}).reset_index() | |
typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m') | |
typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year | |
typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon) | |
return typhoon_max | |
def merge_data(oni_long, typhoon_max): | |
return pd.merge(typhoon_max, oni_long, on=['Year', 'Month']) | |
def categorize_typhoon(wind_speed): | |
if wind_speed >= 137: | |
return 'C5 Super Typhoon' | |
elif wind_speed >= 113: | |
return 'C4 Very Strong Typhoon' | |
elif wind_speed >= 96: | |
return 'C3 Strong Typhoon' | |
elif wind_speed >= 83: | |
return 'C2 Typhoon' | |
elif wind_speed >= 64: | |
return 'C1 Typhoon' | |
elif wind_speed >= 34: | |
return 'Tropical Storm' | |
else: | |
return 'Tropical Depression' | |
def classify_enso_phases(oni_value): | |
if isinstance(oni_value, pd.Series): | |
oni_value = oni_value.iloc[0] | |
if oni_value >= 0.5: | |
return 'El Nino' | |
elif oni_value <= -0.5: | |
return 'La Nina' | |
else: | |
return 'Neutral' | |
# ------------------ Regression Functions ------------------ | |
def perform_wind_regression(start_year, start_month, end_year, end_month): | |
start_date = datetime(start_year, start_month, 1) | |
end_date = datetime(end_year, end_month, 28) | |
data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['USA_WIND', 'ONI']) | |
data['severe_typhoon'] = (data['USA_WIND'] >= 64).astype(int) | |
X = sm.add_constant(data['ONI']) | |
y = data['severe_typhoon'] | |
model = sm.Logit(y, X).fit(disp=0) | |
beta_1 = model.params['ONI'] | |
exp_beta_1 = np.exp(beta_1) | |
p_value = model.pvalues['ONI'] | |
return f"Wind Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}" | |
def perform_pressure_regression(start_year, start_month, end_year, end_month): | |
start_date = datetime(start_year, start_month, 1) | |
end_date = datetime(end_year, end_month, 28) | |
data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['USA_PRES', 'ONI']) | |
data['intense_typhoon'] = (data['USA_PRES'] <= 950).astype(int) | |
X = sm.add_constant(data['ONI']) | |
y = data['intense_typhoon'] | |
model = sm.Logit(y, X).fit(disp=0) | |
beta_1 = model.params['ONI'] | |
exp_beta_1 = np.exp(beta_1) | |
p_value = model.pvalues['ONI'] | |
return f"Pressure Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}" | |
def perform_longitude_regression(start_year, start_month, end_year, end_month): | |
start_date = datetime(start_year, start_month, 1) | |
end_date = datetime(end_year, end_month, 28) | |
data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['LON', 'ONI']) | |
data['western_typhoon'] = (data['LON'] <= 140).astype(int) | |
X = sm.add_constant(data['ONI']) | |
y = data['western_typhoon'] | |
model = sm.Logit(y, X).fit(disp=0) | |
beta_1 = model.params['ONI'] | |
exp_beta_1 = np.exp(beta_1) | |
p_value = model.pvalues['ONI'] | |
return f"Longitude Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}" | |
# ------------------ IBTrACS Data Loading (for typhoon options) ------------------ | |
def load_ibtracs_data(): | |
ibtracs_data = {} | |
for basin, filename in BASIN_FILES.items(): | |
local_path = os.path.join(DATA_PATH, filename) | |
if not os.path.exists(local_path): | |
print(f"Downloading {basin} basin file...") | |
response = requests.get(IBTRACS_BASE_URL + filename) | |
response.raise_for_status() | |
with open(local_path, 'wb') as f: | |
f.write(response.content) | |
print(f"Downloaded {basin} basin file.") | |
try: | |
print(f"--> Starting to read in IBTrACS data for basin {basin}") | |
ds = tracks.TrackDataset(source='ibtracs', ibtracs_url=local_path) | |
print(f"--> Completed reading in IBTrACS data for basin {basin}") | |
ibtracs_data[basin] = ds | |
except ValueError as e: | |
print(f"Warning: Skipping basin {basin} due to error: {e}") | |
ibtracs_data[basin] = None | |
return ibtracs_data | |
ibtracs = load_ibtracs_data() | |
# ------------------ Load and Process Data ------------------ | |
update_oni_data() | |
oni_data, typhoon_data = load_data(ONI_DATA_PATH, TYPHOON_DATA_PATH) | |
oni_long = process_oni_data(oni_data) | |
typhoon_max = process_typhoon_data(typhoon_data) | |
merged_data = merge_data(oni_long, typhoon_max) | |
# ------------------ Visualization Functions ------------------ | |
def generate_typhoon_tracks(filtered_data, typhoon_search): | |
fig = go.Figure() | |
for sid in filtered_data['SID'].unique(): | |
storm_data = filtered_data[filtered_data['SID'] == sid] | |
phase = storm_data['ENSO_Phase'].iloc[0] | |
color = {'El Nino': 'red', 'La Nina': 'blue', 'Neutral': 'green'}.get(phase, 'black') | |
fig.add_trace(go.Scattergeo( | |
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines', | |
name=storm_data['NAME'].iloc[0], line=dict(width=2, color=color) | |
)) | |
if typhoon_search: | |
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False) | |
if mask.any(): | |
storm_data = filtered_data[mask] | |
fig.add_trace(go.Scattergeo( | |
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines', | |
name=f'Matched: {typhoon_search}', line=dict(width=5, color='yellow') | |
)) | |
fig.update_layout( | |
title='Typhoon Tracks', | |
geo=dict(projection_type='natural earth', showland=True), | |
height=700 | |
) | |
return fig | |
def generate_wind_oni_scatter(filtered_data, typhoon_search): | |
fig = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category', hover_data=['NAME', 'Year', 'Category'], | |
title='Wind Speed vs ONI', labels={'ONI': 'ONI Value', 'USA_WIND': 'Max Wind Speed (knots)'}, | |
color_discrete_map=color_map) | |
if typhoon_search: | |
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False) | |
if mask.any(): | |
fig.add_trace(go.Scatter( | |
x=filtered_data.loc[mask, 'ONI'], y=filtered_data.loc[mask, 'USA_WIND'], | |
mode='markers', marker=dict(size=10, color='red', symbol='star'), | |
name=f'Matched: {typhoon_search}', | |
text=filtered_data.loc[mask, 'NAME'] + ' (' + filtered_data.loc[mask, 'Year'].astype(str) + ')' | |
)) | |
return fig | |
def generate_pressure_oni_scatter(filtered_data, typhoon_search): | |
fig = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category', hover_data=['NAME', 'Year', 'Category'], | |
title='Pressure vs ONI', labels={'ONI': 'ONI Value', 'USA_PRES': 'Min Pressure (hPa)'}, | |
color_discrete_map=color_map) | |
if typhoon_search: | |
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False) | |
if mask.any(): | |
fig.add_trace(go.Scatter( | |
x=filtered_data.loc[mask, 'ONI'], y=filtered_data.loc[mask, 'USA_PRES'], | |
mode='markers', marker=dict(size=10, color='red', symbol='star'), | |
name=f'Matched: {typhoon_search}', | |
text=filtered_data.loc[mask, 'NAME'] + ' (' + filtered_data.loc[mask, 'Year'].astype(str) + ')' | |
)) | |
return fig | |
def generate_regression_analysis(filtered_data): | |
fig = px.scatter(filtered_data, x='LON', y='ONI', hover_data=['NAME'], | |
title='Typhoon Generation Longitude vs ONI (All Years)') | |
if len(filtered_data) > 1: | |
X = np.array(filtered_data['LON']).reshape(-1, 1) | |
y = filtered_data['ONI'] | |
model = sm.OLS(y, sm.add_constant(X)).fit() | |
y_pred = model.predict(sm.add_constant(X)) | |
fig.add_trace(go.Scatter(x=filtered_data['LON'], y=y_pred, mode='lines', name='Regression Line')) | |
slope = model.params[1] | |
slopes_text = f"All Years Slope: {slope:.4f}" | |
else: | |
slopes_text = "Insufficient data for regression" | |
return fig, slopes_text | |
def generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search): | |
start_date = datetime(start_year, start_month, 1) | |
end_date = datetime(end_year, end_month, 28) | |
filtered_data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].copy() | |
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases) | |
if enso_phase != 'all': | |
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()] | |
tracks_fig = generate_typhoon_tracks(filtered_data, typhoon_search) | |
wind_scatter = generate_wind_oni_scatter(filtered_data, typhoon_search) | |
pressure_scatter = generate_pressure_oni_scatter(filtered_data, typhoon_search) | |
regression_fig, slopes_text = generate_regression_analysis(filtered_data) | |
return tracks_fig, wind_scatter, pressure_scatter, regression_fig, slopes_text | |
def get_full_tracks(start_year, start_month, end_year, end_month, enso_phase, typhoon_search): | |
start_date = datetime(start_year, start_month, 1) | |
end_date = datetime(end_year, end_month, 28) | |
filtered_data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].copy() | |
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases) | |
if enso_phase != 'all': | |
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()] | |
unique_storms = filtered_data['SID'].unique() | |
count = len(unique_storms) | |
fig = go.Figure() | |
for sid in unique_storms: | |
storm_data = typhoon_data[typhoon_data['SID'] == sid] | |
name = storm_data['NAME'].iloc[0] if pd.notnull(storm_data['NAME'].iloc[0]) else "Unnamed" | |
storm_oni = filtered_data[filtered_data['SID'] == sid]['ONI'].iloc[0] | |
color = 'red' if storm_oni >= 0.5 else ('blue' if storm_oni <= -0.5 else 'green') | |
fig.add_trace(go.Scattergeo( | |
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines', | |
name=f"{name} ({storm_data['SEASON'].iloc[0]})", | |
line=dict(width=1.5, color=color), | |
hoverinfo="name" | |
)) | |
if typhoon_search: | |
search_mask = typhoon_data['NAME'].str.contains(typhoon_search, case=False, na=False) | |
if search_mask.any(): | |
for sid in typhoon_data[search_mask]['SID'].unique(): | |
storm_data = typhoon_data[typhoon_data['SID'] == sid] | |
fig.add_trace(go.Scattergeo( | |
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines+markers', | |
name=f"MATCHED: {storm_data['NAME'].iloc[0]} ({storm_data['SEASON'].iloc[0]})", | |
line=dict(width=3, color='yellow'), | |
marker=dict(size=5), | |
hoverinfo="name" | |
)) | |
fig.update_layout( | |
title=f"Typhoon Tracks ({start_year}-{start_month} to {end_year}-{end_month})", | |
geo=dict( | |
projection_type='natural earth', | |
showland=True, | |
showcoastlines=True, | |
landcolor='rgb(243, 243, 243)', | |
countrycolor='rgb(204, 204, 204)', | |
coastlinecolor='rgb(204, 204, 204)', | |
center=dict(lon=140, lat=20), | |
projection_scale=3 | |
), | |
legend_title="Typhoons by ENSO Phase", | |
showlegend=True, | |
height=700 | |
) | |
fig.add_annotation( | |
x=0.02, y=0.98, xref="paper", yref="paper", | |
text="Red: El Niño, Blue: La Niña, Green: Neutral", | |
showarrow=False, align="left", | |
bgcolor="rgba(255,255,255,0.8)" | |
) | |
return fig, f"Total typhoons displayed: {count}" | |
def get_wind_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search): | |
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search) | |
regression = perform_wind_regression(start_year, start_month, end_year, end_month) | |
return results[1], regression | |
def get_pressure_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search): | |
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search) | |
regression = perform_pressure_regression(start_year, start_month, end_year, end_month) | |
return results[2], regression | |
def get_longitude_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search): | |
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search) | |
regression = perform_longitude_regression(start_year, start_month, end_year, end_month) | |
return results[3], results[4], regression | |
def categorize_typhoon_by_standard(wind_speed, standard): | |
if standard == 'taiwan': | |
wind_speed_ms = wind_speed * 0.514444 | |
if wind_speed_ms >= 51.0: | |
return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['hex'] | |
elif wind_speed_ms >= 33.7: | |
return 'Medium Typhoon', taiwan_standard['Medium Typhoon']['hex'] | |
elif wind_speed_ms >= 17.2: | |
return 'Mild Typhoon', taiwan_standard['Mild Typhoon']['hex'] | |
return 'Tropical Depression', taiwan_standard['Tropical Depression']['hex'] | |
else: | |
if wind_speed >= 137: | |
return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['hex'] | |
elif wind_speed >= 113: | |
return 'C4 Very Strong Typhoon', atlantic_standard['C4 Very Strong Typhoon']['hex'] | |
elif wind_speed >= 96: | |
return 'C3 Strong Typhoon', atlantic_standard['C3 Strong Typhoon']['hex'] | |
elif wind_speed >= 83: | |
return 'C2 Typhoon', atlantic_standard['C2 Typhoon']['hex'] | |
elif wind_speed >= 64: | |
return 'C1 Typhoon', atlantic_standard['C1 Typhoon']['hex'] | |
elif wind_speed >= 34: | |
return 'Tropical Storm', atlantic_standard['Tropical Storm']['hex'] | |
return 'Tropical Depression', atlantic_standard['Tropical Depression']['hex'] | |
# ------------------ Animation Functions Using Processed CSV ------------------ | |
def generate_track_video_from_csv(year, storm_id, standard): | |
storm_df = typhoon_data[typhoon_data['SID'] == storm_id].copy() | |
if storm_df.empty: | |
print("No data found for storm:", storm_id) | |
return None | |
storm_df = storm_df.sort_values('ISO_TIME') | |
lats = storm_df['LAT'].astype(float).values | |
lons = storm_df['LON'].astype(float).values | |
times = pd.to_datetime(storm_df['ISO_TIME']).values | |
if 'USA_WIND' in storm_df.columns: | |
winds = pd.to_numeric(storm_df['USA_WIND'], errors='coerce').values | |
else: | |
winds = np.full(len(lats), np.nan) | |
storm_name = storm_df['NAME'].iloc[0] | |
season = storm_df['SEASON'].iloc[0] | |
min_lat, max_lat = np.min(lats), np.max(lats) | |
min_lon, max_lon = np.min(lons), np.max(lons) | |
lat_padding = max((max_lat - min_lat) * 0.3, 5) | |
lon_padding = max((max_lon - min_lon) * 0.3, 5) | |
fig = plt.figure(figsize=(12, 9), dpi=100) | |
ax = plt.axes([0.05, 0.05, 0.60, 0.90], | |
projection=ccrs.PlateCarree(central_longitude=-25)) | |
ax.set_extent([min_lon - lon_padding, max_lon + lon_padding, min_lat - lat_padding, max_lat + lat_padding], | |
crs=ccrs.PlateCarree()) | |
ax.add_feature(cfeature.LAND, facecolor='lightgray') | |
ax.add_feature(cfeature.OCEAN, facecolor='lightblue') | |
ax.add_feature(cfeature.COASTLINE, edgecolor='black') | |
ax.add_feature(cfeature.BORDERS, linestyle=':', edgecolor='gray') | |
ax.gridlines(draw_labels=True, linestyle='--', color='gray', alpha=0.5) | |
ax.set_title(f"{year} {storm_name} - {season}", fontsize=16) | |
line, = ax.plot([], [], 'b-', linewidth=2, transform=ccrs.PlateCarree()) | |
point, = ax.plot([], [], 'o', markersize=10, transform=ccrs.PlateCarree()) | |
date_text = ax.text(0.02, 0.02, '', transform=ax.transAxes, fontsize=12, | |
bbox=dict(facecolor='white', alpha=0.8)) | |
# Dynamic state display at right side | |
state_text = fig.text(0.70, 0.60, '', fontsize=14, verticalalignment='top', | |
bbox=dict(facecolor='white', alpha=0.8, boxstyle='round,pad=0.5')) | |
# Persistent legend for category colors | |
legend_elements = [plt.Line2D([0], [0], marker='o', color='w', label=f"{cat}", | |
markerfacecolor=details['hex'], markersize=10) | |
for cat, details in (atlantic_standard if standard=='atlantic' else taiwan_standard).items()] | |
ax.legend(handles=legend_elements, title="Storm Categories", loc='upper right', fontsize=10) | |
def init(): | |
line.set_data([], []) | |
point.set_data([], []) | |
date_text.set_text('') | |
state_text.set_text('') | |
return line, point, date_text, state_text | |
def update(frame): | |
line.set_data(lons[:frame+1], lats[:frame+1]) | |
point.set_data([lons[frame]], [lats[frame]]) | |
wind_speed = winds[frame] if frame < len(winds) else np.nan | |
category, color = categorize_typhoon_by_standard(wind_speed, standard) | |
point.set_color(color) | |
dt_str = pd.to_datetime(times[frame]).strftime('%Y-%m-%d %H:%M') | |
date_text.set_text(dt_str) | |
state_info = (f"Name: {storm_name}\n" | |
f"Date: {dt_str}\n" | |
f"Wind: {wind_speed:.1f} kt\n" | |
f"Category: {category}") | |
state_text.set_text(state_info) | |
return line, point, date_text, state_text | |
ani = animation.FuncAnimation(fig, update, init_func=init, frames=len(times), | |
interval=200, blit=True, repeat=True) | |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') | |
writer = animation.FFMpegWriter(fps=5, bitrate=1800) | |
ani.save(temp_file.name, writer=writer) | |
plt.close(fig) | |
return temp_file.name | |
def simplified_track_video(year, basin, typhoon, standard): | |
if not typhoon: | |
return None | |
storm_id = typhoon.split('(')[-1].strip(')') | |
return generate_track_video_from_csv(year, storm_id, standard) | |
# ------------------ Typhoon Options Update Functions ------------------ | |
basin_to_prefix = { | |
"All Basins": "all", | |
"NA - North Atlantic": "NA", | |
"EP - Eastern North Pacific": "EP", | |
"WP - Western North Pacific": "WP" | |
} | |
def update_typhoon_options(year, basin): | |
try: | |
if basin == "All Basins": | |
summaries = [] | |
for data in ibtracs.values(): | |
if data is not None: | |
season_data = data.get_season(int(year)) | |
if season_data.summary().empty: | |
continue | |
summaries.append(season_data.summary()) | |
if len(summaries) == 0: | |
print("Error updating typhoon options: No storms identified for the given year and basin.") | |
return gr.update(choices=[], value=None) | |
combined_summary = pd.concat(summaries, ignore_index=True) | |
else: | |
prefix = basin_to_prefix.get(basin) | |
ds = ibtracs.get(prefix) | |
if ds is None: | |
print("Error updating typhoon options: Dataset not found for the given basin.") | |
return gr.update(choices=[], value=None) | |
season_data = ds.get_season(int(year)) | |
if season_data.summary().empty: | |
print("Error updating typhoon options: No storms identified for the given year and basin.") | |
return gr.update(choices=[], value=None) | |
combined_summary = season_data.summary() | |
options = [] | |
for i in range(len(combined_summary)): | |
try: | |
name = combined_summary['name'][i] if pd.notnull(combined_summary['name'][i]) else "Unnamed" | |
storm_id = combined_summary['id'][i] | |
options.append(f"{name} ({storm_id})") | |
except Exception: | |
continue | |
return gr.update(choices=options, value=options[0] if options else None) | |
except Exception as e: | |
print(f"Error updating typhoon options: {e}") | |
return gr.update(choices=[], value=None) | |
def update_typhoon_options_anim(year, basin): | |
try: | |
# For animation, use the processed CSV data (without filtering by a specific prefix) | |
data = typhoon_data.copy() | |
data['Year'] = pd.to_datetime(data['ISO_TIME']).dt.year | |
season_data = data[data['Year'] == int(year)] | |
if season_data.empty: | |
print("Error updating typhoon options (animation): No storms identified for the given year.") | |
return gr.update(choices=[], value=None) | |
summary = season_data.groupby('SID').first().reset_index() | |
options = [] | |
for idx, row in summary.iterrows(): | |
name = row['NAME'] if pd.notnull(row['NAME']) else "Unnamed" | |
options.append(f"{name} ({row['SID']})") | |
return gr.update(choices=options, value=options[0] if options else None) | |
except Exception as e: | |
print(f"Error updating typhoon options (animation): {e}") | |
return gr.update(choices=[], value=None) | |
# ------------------ TSNE Cluster Function ------------------ | |
def update_route_clusters(start_year, start_month, end_year, end_month, enso_value, season): | |
# Use only WP storms from processed CSV for clustering. | |
wp_data = typhoon_data[typhoon_data['SID'].str.startswith("WP")] | |
if wp_data.empty: | |
return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "No West Pacific storms found." | |
wp_data['Year'] = pd.to_datetime(wp_data['ISO_TIME']).dt.year | |
wp_season = wp_data[wp_data['Year'] == int(start_year)] | |
if wp_season.empty: | |
return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "No storms found for the given period in WP." | |
all_storms_data = [] | |
for sid, group in wp_data.groupby('SID'): | |
group = group.sort_values('ISO_TIME') | |
times = pd.to_datetime(group['ISO_TIME']).values | |
lats = group['LAT'].astype(float).values | |
lons = group['LON'].astype(float).values | |
if len(lons) < 2: | |
continue | |
if season != 'all': | |
month = pd.to_datetime(group['ISO_TIME']).iloc[0].month | |
if season == 'summer' and not (4 <= month <= 8): | |
continue | |
if season == 'winter' and not (9 <= month <= 12): | |
continue | |
all_storms_data.append((lons, lats, np.array(group['USA_WIND'].astype(float)), times, sid)) | |
if not all_storms_data: | |
return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "No valid WP storms for clustering." | |
max_length = max(len(item[0]) for item in all_storms_data) | |
route_vectors = [] | |
filtered_storms = [] | |
for lons, lats, winds, times, sid in all_storms_data: | |
t = np.linspace(0, 1, len(lons)) | |
t_new = np.linspace(0, 1, max_length) | |
try: | |
lon_i = interp1d(t, lons, kind='linear', fill_value='extrapolate')(t_new) | |
lat_i = interp1d(t, lats, kind='linear', fill_value='extrapolate')(t_new) | |
except Exception: | |
continue | |
route_vector = np.column_stack((lon_i, lat_i)).flatten() | |
if np.isnan(route_vector).any(): | |
continue | |
route_vectors.append(route_vector) | |
filtered_storms.append((lon_i, lat_i, winds, times, sid)) | |
route_vectors = np.array(route_vectors) | |
if len(route_vectors) == 0: | |
return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "No valid storms after interpolation." | |
tsne = TSNE(n_components=2, random_state=42, verbose=1) | |
tsne_results = tsne.fit_transform(route_vectors) | |
dbscan = DBSCAN(eps=5, min_samples=3) | |
best_labels = dbscan.fit_predict(tsne_results) | |
unique_labels = sorted(set(best_labels) - {-1}) | |
fig_tsne = go.Figure() | |
colors = px.colors.qualitative.Safe | |
for i, label in enumerate(unique_labels): | |
indices = np.where(best_labels == label)[0] | |
fig_tsne.add_trace(go.Scatter( | |
x=tsne_results[indices, 0], | |
y=tsne_results[indices, 1], | |
mode='markers', | |
marker=dict(color=colors[i % len(colors)]), | |
name=f"Cluster {label}" | |
)) | |
fig_tsne.update_layout(title="t-SNE of WP Storm Routes") | |
fig_routes = go.Figure() # Placeholder | |
fig_stats = make_subplots(rows=2, cols=1) # Placeholder | |
info = "TSNE clustering complete." | |
return fig_tsne, fig_routes, fig_stats, info | |
# ------------------ Gradio Interface ------------------ | |
with gr.Blocks(title="Typhoon Analysis Dashboard") as demo: | |
gr.Markdown("# Typhoon Analysis Dashboard") | |
with gr.Tab("Overview"): | |
gr.Markdown(""" | |
## Welcome to the Typhoon Analysis Dashboard | |
This dashboard allows you to analyze typhoon data in relation to ENSO phases. | |
### Features: | |
- **Track Visualization**: View typhoon tracks by time period and ENSO phase (all basins available) | |
- **Wind Analysis**: Examine wind speed vs ONI relationships | |
- **Pressure Analysis**: Analyze pressure vs ONI relationships | |
- **Longitude Analysis**: Study typhoon generation longitude vs ONI | |
- **Path Animation**: Watch animated tropical cyclone paths with a dynamic state display and persistent legend (using processed CSV data) | |
- **TSNE Cluster**: Perform t-SNE clustering on WP storm routes with mean routes and region analysis | |
Select a tab above to begin your analysis. | |
""") | |
with gr.Tab("Track Visualization"): | |
with gr.Row(): | |
start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1) | |
start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1) | |
end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1) | |
end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6) | |
enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all') | |
typhoon_search = gr.Textbox(label="Typhoon Search") | |
analyze_btn = gr.Button("Generate Tracks") | |
tracks_plot = gr.Plot(label="Typhoon Tracks", elem_id="tracks_plot") | |
typhoon_count = gr.Textbox(label="Number of Typhoons Displayed") | |
analyze_btn.click(fn=get_full_tracks, inputs=[start_year, start_month, end_year, end_month, enso_phase, typhoon_search], outputs=[tracks_plot, typhoon_count]) | |
with gr.Tab("Wind Analysis"): | |
with gr.Row(): | |
wind_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1) | |
wind_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1) | |
wind_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1) | |
wind_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6) | |
wind_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all') | |
wind_typhoon_search = gr.Textbox(label="Typhoon Search") | |
wind_analyze_btn = gr.Button("Generate Wind Analysis") | |
wind_scatter = gr.Plot(label="Wind Speed vs ONI") | |
wind_regression_results = gr.Textbox(label="Wind Regression Results") | |
wind_analyze_btn.click(fn=get_wind_analysis, inputs=[wind_start_year, wind_start_month, wind_end_year, wind_end_month, wind_enso_phase, wind_typhoon_search], outputs=[wind_scatter, wind_regression_results]) | |
with gr.Tab("Pressure Analysis"): | |
with gr.Row(): | |
pressure_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1) | |
pressure_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1) | |
pressure_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1) | |
pressure_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6) | |
pressure_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all') | |
pressure_typhoon_search = gr.Textbox(label="Typhoon Search") | |
pressure_analyze_btn = gr.Button("Generate Pressure Analysis") | |
pressure_scatter = gr.Plot(label="Pressure vs ONI") | |
pressure_regression_results = gr.Textbox(label="Pressure Regression Results") | |
pressure_analyze_btn.click(fn=get_pressure_analysis, inputs=[pressure_start_year, pressure_start_month, pressure_end_year, pressure_end_month, pressure_enso_phase, pressure_typhoon_search], outputs=[pressure_scatter, pressure_regression_results]) | |
with gr.Tab("Longitude Analysis"): | |
with gr.Row(): | |
lon_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1) | |
lon_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1) | |
lon_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1) | |
lon_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6) | |
lon_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all') | |
lon_typhoon_search = gr.Textbox(label="Typhoon Search (Optional)") | |
lon_analyze_btn = gr.Button("Generate Longitude Analysis") | |
regression_plot = gr.Plot(label="Longitude vs ONI") | |
slopes_text = gr.Textbox(label="Regression Slopes") | |
lon_regression_results = gr.Textbox(label="Longitude Regression Results") | |
lon_analyze_btn.click(fn=get_longitude_analysis, inputs=[lon_start_year, lon_start_month, lon_end_year, lon_end_month, lon_enso_phase, lon_typhoon_search], outputs=[regression_plot, slopes_text, lon_regression_results]) | |
with gr.Tab("Tropical Cyclone Path Animation"): | |
with gr.Row(): | |
year_dropdown = gr.Dropdown(label="Year", choices=[str(y) for y in range(1950, 2025)], value="2000") | |
basin_dropdown = gr.Dropdown(label="Basin", choices=["NA - North Atlantic", "EP - Eastern North Pacific", "WP - Western North Pacific", "All Basins"], value="NA - North Atlantic") | |
with gr.Row(): | |
typhoon_dropdown = gr.Dropdown(label="Tropical Cyclone") | |
standard_dropdown = gr.Dropdown(label="Classification Standard", choices=['atlantic', 'taiwan'], value='atlantic') | |
animate_btn = gr.Button("Generate Animation") | |
path_video = gr.Video(label="Tropical Cyclone Path Animation", format="mp4", interactive=False, elem_id="path_video") | |
animation_info = gr.Markdown(""" | |
### Animation Instructions | |
1. Select a year and basin from the dropdowns. (This animation uses processed CSV data.) | |
2. Choose a tropical cyclone from the populated list. | |
3. Select a classification standard (Atlantic or Taiwan). | |
4. Click "Generate Animation". | |
5. The animation displays the storm track along with a dynamic sidebar that shows the current state (name, date, wind, category) and a persistent legend for colors. | |
""") | |
year_dropdown.change(fn=update_typhoon_options_anim, inputs=[year_dropdown, basin_dropdown], outputs=typhoon_dropdown) | |
basin_dropdown.change(fn=update_typhoon_options_anim, inputs=[year_dropdown, basin_dropdown], outputs=typhoon_dropdown) | |
animate_btn.click(fn=simplified_track_video, inputs=[year_dropdown, basin_dropdown, typhoon_dropdown, standard_dropdown], outputs=path_video) | |
with gr.Tab("TSNE Cluster"): | |
with gr.Row(): | |
tsne_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1) | |
tsne_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1) | |
tsne_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1) | |
tsne_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=12) | |
tsne_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all') | |
tsne_season = gr.Dropdown(label="Season", choices=['all', 'summer', 'winter'], value='all') | |
tsne_analyze_btn = gr.Button("Analyze") | |
tsne_plot = gr.Plot(label="t-SNE Clusters") | |
routes_plot = gr.Plot(label="Typhoon Routes with Mean Routes") | |
stats_plot = gr.Plot(label="Cluster Statistics") | |
cluster_info = gr.Textbox(label="Cluster Information", lines=10) | |
tsne_analyze_btn.click(fn=update_route_clusters, inputs=[tsne_start_year, tsne_start_month, tsne_end_year, tsne_end_month, tsne_enso_phase, tsne_season], outputs=[tsne_plot, routes_plot, stats_plot, cluster_info]) | |
demo.launch(share=True) | |