File size: 40,107 Bytes
7fa25f7
efb47b3
 
4d9b5c3
 
 
a74a30d
 
a566db2
 
84e165d
a2d2271
efb47b3
a566db2
 
 
 
efb47b3
a566db2
a2d2271
 
16ed767
 
84e165d
efb47b3
1ca7717
57cb1ac
 
 
eb8c873
 
 
 
 
57cb1ac
efb47b3
 
e509f96
57cb1ac
e509f96
 
 
 
 
 
 
efb47b3
07d18a8
efb47b3
57cb1ac
a2d2271
 
373b768
 
 
 
 
 
a2d2271
 
16ed767
 
 
 
 
 
 
a2d2271
 
16ed767
 
 
 
efb47b3
 
57cb1ac
611f47d
 
 
 
 
84e165d
 
 
 
 
 
 
 
 
57cb1ac
eb8c873
a566db2
 
 
 
 
eb8c873
 
 
a566db2
 
a2d2271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
eb8c873
 
 
 
 
 
57cb1ac
eb8c873
 
efb47b3
a2d2271
eb8c873
a566db2
 
 
 
 
 
 
eb8c873
 
a566db2
 
a2d2271
eb8c873
 
 
 
 
 
 
 
 
57cb1ac
eb8c873
a566db2
 
eb8c873
 
 
 
 
 
 
 
 
a2d2271
57cb1ac
a2d2271
57cb1ac
a2d2271
57cb1ac
a2d2271
57cb1ac
a2d2271
57cb1ac
a2d2271
57cb1ac
a2d2271
 
 
eb8c873
 
 
 
 
 
 
 
 
 
efb47b3
1ca7717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57cb1ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d2271
57cb1ac
 
 
a566db2
a2d2271
 
 
 
57cb1ac
a566db2
 
 
 
57cb1ac
 
a566db2
 
 
 
a2d2271
a566db2
 
 
 
 
 
 
4d9b5c3
 
 
 
 
a566db2
a2d2271
a566db2
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d2271
a566db2
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d2271
a566db2
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d2271
a566db2
a2d2271
 
57cb1ac
a566db2
 
 
 
 
 
 
 
 
e6b6548
 
 
57cb1ac
e6b6548
 
 
 
 
 
 
 
57cb1ac
e6b6548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d2271
eb8c873
 
 
373b768
eb8c873
373b768
eb8c873
373b768
 
eb8c873
7fa25f7
373b768
7fa25f7
373b768
7fa25f7
373b768
7fa25f7
373b768
7fa25f7
373b768
7fa25f7
373b768
 
a2d2271
57cb1ac
 
 
 
 
4d9b5c3
57cb1ac
 
 
 
 
 
 
 
 
 
 
 
 
15b9748
 
57cb1ac
 
 
 
 
 
 
a74a30d
 
 
 
 
57cb1ac
 
a74a30d
57cb1ac
1ca7717
 
 
57cb1ac
1ca7717
57cb1ac
1ca7717
57cb1ac
1ca7717
57cb1ac
 
 
4d9b5c3
 
 
 
57cb1ac
 
4d9b5c3
 
57cb1ac
 
 
 
4d9b5c3
57cb1ac
 
 
 
 
 
 
 
 
 
4d9b5c3
 
 
 
 
 
15b9748
e6b6548
 
 
57cb1ac
 
e6b6548
57cb1ac
 
 
 
 
 
 
84e165d
57cb1ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84e165d
57cb1ac
 
1ca7717
57cb1ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
611f47d
57cb1ac
16ed767
57cb1ac
 
 
 
 
 
 
 
16ed767
 
57cb1ac
 
 
 
 
 
 
 
 
 
 
 
 
 
16ed767
57cb1ac
 
 
16ed767
84e165d
57cb1ac
84e165d
 
 
 
 
57cb1ac
84e165d
 
 
 
 
57cb1ac
16ed767
84e165d
 
57cb1ac
84e165d
 
57cb1ac
 
84e165d
16ed767
57cb1ac
 
 
16ed767
84e165d
 
 
57cb1ac
 
84e165d
57cb1ac
1ca7717
 
57cb1ac
 
e6b6548
57cb1ac
a2d2271
 
a566db2
912d5b8
 
 
 
 
 
 
57cb1ac
16ed767
 
 
1ca7717
57cb1ac
912d5b8
 
 
 
 
a2d2271
 
a566db2
a2d2271
a566db2
 
 
912d5b8
e28f12c
 
57cb1ac
912d5b8
 
 
 
 
 
 
 
 
 
 
 
57cb1ac
912d5b8
 
 
 
 
 
 
 
 
 
 
 
57cb1ac
912d5b8
 
 
 
 
 
 
 
09a0f4d
912d5b8
 
 
 
57cb1ac
a566db2
1f46770
912d5b8
cec7aa7
57cb1ac
fcd1f06
b7a2a27
15b9748
bb0d660
fcd1f06
912d5b8
 
1ca7717
57cb1ac
 
 
1ca7717
912d5b8
57cb1ac
 
 
16ed767
 
 
 
 
 
 
 
 
 
 
84e165d
16ed767
 
57cb1ac
a2d2271
57cb1ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import pickle
import requests
import os
import argparse
from datetime import datetime
import statsmodels.api as sm
import shutil
import tempfile
import csv
from collections import defaultdict
from sklearn.manifold import TSNE
from sklearn.cluster import DBSCAN
from scipy.interpolate import interp1d

# Import tropycal for IBTrACS processing (for typhoon options)
import tropycal.tracks as tracks

# ------------------ Argument Parsing ------------------
parser = argparse.ArgumentParser(description='Typhoon Analysis Dashboard')
parser.add_argument('--data_path', type=str, default=os.getcwd(), help='Path to the data directory')
args = parser.parse_args()
DATA_PATH = args.data_path

# ------------------ File Paths ------------------
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')

# ------------------ IBTrACS Files (for typhoon options) ------------------
BASIN_FILES = {
    'EP': 'ibtracs.EP.list.v04r01.csv',
    'NA': 'ibtracs.NA.list.v04r01.csv',
    'WP': 'ibtracs.WP.list.v04r01.csv'
}
IBTRACS_BASE_URL = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/'

CACHE_FILE = 'ibtracs_cache.pkl'
CACHE_EXPIRY_DAYS = 0  # Force refresh for testing

# ------------------ Color Maps and Standards ------------------
color_map = {
    'C5 Super Typhoon': 'rgb(255, 0, 0)',
    'C4 Very Strong Typhoon': 'rgb(255, 165, 0)',
    'C3 Strong Typhoon': 'rgb(255, 255, 0)',
    'C2 Typhoon': 'rgb(0, 255, 0)',
    'C1 Typhoon': 'rgb(0, 255, 255)',
    'Tropical Storm': 'rgb(0, 0, 255)',
    'Tropical Depression': 'rgb(128, 128, 128)'
}
atlantic_standard = {
    'C5 Super Typhoon': {'wind_speed': 137, 'color': 'Red', 'hex': '#FF0000'},
    'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'Orange', 'hex': '#FFA500'},
    'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'Yellow', 'hex': '#FFFF00'},
    'C2 Typhoon': {'wind_speed': 83, 'color': 'Green', 'hex': '#00FF00'},
    'C1 Typhoon': {'wind_speed': 64, 'color': 'Cyan', 'hex': '#00FFFF'},
    'Tropical Storm': {'wind_speed': 34, 'color': 'Blue', 'hex': '#0000FF'},
    'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'}
}
taiwan_standard = {
    'Strong Typhoon': {'wind_speed': 51.0, 'color': 'Red', 'hex': '#FF0000'},
    'Medium Typhoon': {'wind_speed': 33.7, 'color': 'Orange', 'hex': '#FFA500'},
    'Mild Typhoon': {'wind_speed': 17.2, 'color': 'Yellow', 'hex': '#FFFF00'},
    'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'}
}

# ------------------ Season and Regions ------------------
season_months = {
    'all': list(range(1, 13)),
    'summer': [6, 7, 8],
    'winter': [12, 1, 2]
}
regions = {
    "Taiwan Land": {"lat_min": 21.8, "lat_max": 25.3, "lon_min": 119.5, "lon_max": 122.1},
    "Taiwan Sea": {"lat_min": 19, "lat_max": 28, "lon_min": 117, "lon_max": 125},
    "Japan": {"lat_min": 20, "lat_max": 45, "lon_min": 120, "lon_max": 150},
    "China": {"lat_min": 18, "lat_max": 53, "lon_min": 73, "lon_max": 135},
    "Hong Kong": {"lat_min": 21.5, "lat_max": 23, "lon_min": 113, "lon_max": 115},
    "Philippines": {"lat_min": 5, "lat_max": 21, "lon_min": 115, "lon_max": 130}
}

# ------------------ ONI and Typhoon Data Functions ------------------
def download_oni_file(url, filename):
    response = requests.get(url)
    response.raise_for_status()
    with open(filename, 'wb') as f:
        f.write(response.content)
    return True

def convert_oni_ascii_to_csv(input_file, output_file):
    data = defaultdict(lambda: [''] * 12)
    season_to_month = {'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5,
                       'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11}
    with open(input_file, 'r') as f:
        lines = f.readlines()[1:]
        for line in lines:
            parts = line.split()
            if len(parts) >= 4:
                season, year, anom = parts[0], parts[1], parts[-1]
                if season in season_to_month:
                    month = season_to_month[season]
                    if season == 'DJF':
                        year = str(int(year) - 1)
                    data[year][month-1] = anom
    with open(output_file, 'w', newline='') as f:
        writer = csv.writer(f)
        writer.writerow(['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
        for year in sorted(data.keys()):
            writer.writerow([year] + data[year])

def update_oni_data():
    url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
    temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
    input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
    output_file = ONI_DATA_PATH
    if download_oni_file(url, temp_file):
        if not os.path.exists(input_file) or not os.path.exists(output_file):
            os.replace(temp_file, input_file)
            convert_oni_ascii_to_csv(input_file, output_file)
        else:
            os.remove(temp_file)

def load_data(oni_path, typhoon_path):
    oni_data = pd.read_csv(oni_path)
    typhoon_data = pd.read_csv(typhoon_path, low_memory=False)
    typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
    typhoon_data = typhoon_data.dropna(subset=['ISO_TIME'])
    return oni_data, typhoon_data

def process_oni_data(oni_data):
    oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
    month_map = {'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', 'May': '05', 'Jun': '06',
                 'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12'}
    oni_long['Month'] = oni_long['Month'].map(month_map)
    oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str) + '-' + oni_long['Month'] + '-01')
    oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
    return oni_long

def process_typhoon_data(typhoon_data):
    typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
    typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
    typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
    typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
    print(f"Unique basins in typhoon_data: {typhoon_data['SID'].str[:2].unique()}")
    typhoon_max = typhoon_data.groupby('SID').agg({
        'USA_WIND': 'max', 'USA_PRES': 'min', 'ISO_TIME': 'first', 'SEASON': 'first', 'NAME': 'first',
        'LAT': 'first', 'LON': 'first'
    }).reset_index()
    typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
    typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
    typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon)
    return typhoon_max

def merge_data(oni_long, typhoon_max):
    return pd.merge(typhoon_max, oni_long, on=['Year', 'Month'])

def categorize_typhoon(wind_speed):
    if wind_speed >= 137:
        return 'C5 Super Typhoon'
    elif wind_speed >= 113:
        return 'C4 Very Strong Typhoon'
    elif wind_speed >= 96:
        return 'C3 Strong Typhoon'
    elif wind_speed >= 83:
        return 'C2 Typhoon'
    elif wind_speed >= 64:
        return 'C1 Typhoon'
    elif wind_speed >= 34:
        return 'Tropical Storm'
    else:
        return 'Tropical Depression'

def classify_enso_phases(oni_value):
    if isinstance(oni_value, pd.Series):
        oni_value = oni_value.iloc[0]
    if oni_value >= 0.5:
        return 'El Nino'
    elif oni_value <= -0.5:
        return 'La Nina'
    else:
        return 'Neutral'

# ------------------ Regression Functions ------------------
def perform_wind_regression(start_year, start_month, end_year, end_month):
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['USA_WIND', 'ONI'])
    data['severe_typhoon'] = (data['USA_WIND'] >= 64).astype(int)
    X = sm.add_constant(data['ONI'])
    y = data['severe_typhoon']
    model = sm.Logit(y, X).fit(disp=0)
    beta_1 = model.params['ONI']
    exp_beta_1 = np.exp(beta_1)
    p_value = model.pvalues['ONI']
    return f"Wind Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"

def perform_pressure_regression(start_year, start_month, end_year, end_month):
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['USA_PRES', 'ONI'])
    data['intense_typhoon'] = (data['USA_PRES'] <= 950).astype(int)
    X = sm.add_constant(data['ONI'])
    y = data['intense_typhoon']
    model = sm.Logit(y, X).fit(disp=0)
    beta_1 = model.params['ONI']
    exp_beta_1 = np.exp(beta_1)
    p_value = model.pvalues['ONI']
    return f"Pressure Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"

def perform_longitude_regression(start_year, start_month, end_year, end_month):
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['LON', 'ONI'])
    data['western_typhoon'] = (data['LON'] <= 140).astype(int)
    X = sm.add_constant(data['ONI'])
    y = data['western_typhoon']
    model = sm.Logit(y, X).fit(disp=0)
    beta_1 = model.params['ONI']
    exp_beta_1 = np.exp(beta_1)
    p_value = model.pvalues['ONI']
    return f"Longitude Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"

# ------------------ IBTrACS Data Loading (for typhoon options) ------------------
def load_ibtracs_data():
    ibtracs_data = {}
    for basin, filename in BASIN_FILES.items():
        local_path = os.path.join(DATA_PATH, filename)
        if not os.path.exists(local_path):
            print(f"Downloading {basin} basin file...")
            response = requests.get(IBTRACS_BASE_URL + filename)
            response.raise_for_status()
            with open(local_path, 'wb') as f:
                f.write(response.content)
            print(f"Downloaded {basin} basin file.")
        try:
            print(f"--> Starting to read in IBTrACS data for basin {basin}")
            ds = tracks.TrackDataset(source='ibtracs', ibtracs_url=local_path)
            print(f"--> Completed reading in IBTrACS data for basin {basin}")
            ibtracs_data[basin] = ds
        except ValueError as e:
            print(f"Warning: Skipping basin {basin} due to error: {e}")
            ibtracs_data[basin] = None
    return ibtracs_data

ibtracs = load_ibtracs_data()

# ------------------ Load and Process Data ------------------
update_oni_data()
oni_data, typhoon_data = load_data(ONI_DATA_PATH, TYPHOON_DATA_PATH)
oni_long = process_oni_data(oni_data)
typhoon_max = process_typhoon_data(typhoon_data)
merged_data = merge_data(oni_long, typhoon_max)

# ------------------ Visualization Functions ------------------
def generate_typhoon_tracks(filtered_data, typhoon_search):
    fig = go.Figure()
    for sid in filtered_data['SID'].unique():
        storm_data = filtered_data[filtered_data['SID'] == sid]
        phase = storm_data['ENSO_Phase'].iloc[0]
        color = {'El Nino': 'red', 'La Nina': 'blue', 'Neutral': 'green'}.get(phase, 'black')
        fig.add_trace(go.Scattergeo(
            lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
            name=storm_data['NAME'].iloc[0], line=dict(width=2, color=color)
        ))
    if typhoon_search:
        mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
        if mask.any():
            storm_data = filtered_data[mask]
            fig.add_trace(go.Scattergeo(
                lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
                name=f'Matched: {typhoon_search}', line=dict(width=5, color='yellow')
            ))
    fig.update_layout(
        title='Typhoon Tracks',
        geo=dict(projection_type='natural earth', showland=True),
        height=700
    )
    return fig

def generate_wind_oni_scatter(filtered_data, typhoon_search):
    fig = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category', hover_data=['NAME', 'Year', 'Category'],
                     title='Wind Speed vs ONI', labels={'ONI': 'ONI Value', 'USA_WIND': 'Max Wind Speed (knots)'},
                     color_discrete_map=color_map)
    if typhoon_search:
        mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
        if mask.any():
            fig.add_trace(go.Scatter(
                x=filtered_data.loc[mask, 'ONI'], y=filtered_data.loc[mask, 'USA_WIND'],
                mode='markers', marker=dict(size=10, color='red', symbol='star'),
                name=f'Matched: {typhoon_search}',
                text=filtered_data.loc[mask, 'NAME'] + ' (' + filtered_data.loc[mask, 'Year'].astype(str) + ')'
            ))
    return fig

def generate_pressure_oni_scatter(filtered_data, typhoon_search):
    fig = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category', hover_data=['NAME', 'Year', 'Category'],
                     title='Pressure vs ONI', labels={'ONI': 'ONI Value', 'USA_PRES': 'Min Pressure (hPa)'},
                     color_discrete_map=color_map)
    if typhoon_search:
        mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
        if mask.any():
            fig.add_trace(go.Scatter(
                x=filtered_data.loc[mask, 'ONI'], y=filtered_data.loc[mask, 'USA_PRES'],
                mode='markers', marker=dict(size=10, color='red', symbol='star'),
                name=f'Matched: {typhoon_search}',
                text=filtered_data.loc[mask, 'NAME'] + ' (' + filtered_data.loc[mask, 'Year'].astype(str) + ')'
            ))
    return fig

def generate_regression_analysis(filtered_data):
    fig = px.scatter(filtered_data, x='LON', y='ONI', hover_data=['NAME'],
                     title='Typhoon Generation Longitude vs ONI (All Years)')
    if len(filtered_data) > 1:
        X = np.array(filtered_data['LON']).reshape(-1, 1)
        y = filtered_data['ONI']
        model = sm.OLS(y, sm.add_constant(X)).fit()
        y_pred = model.predict(sm.add_constant(X))
        fig.add_trace(go.Scatter(x=filtered_data['LON'], y=y_pred, mode='lines', name='Regression Line'))
        slope = model.params[1]
        slopes_text = f"All Years Slope: {slope:.4f}"
    else:
        slopes_text = "Insufficient data for regression"
    return fig, slopes_text

def generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    filtered_data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].copy()
    filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
    if enso_phase != 'all':
        filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
    tracks_fig = generate_typhoon_tracks(filtered_data, typhoon_search)
    wind_scatter = generate_wind_oni_scatter(filtered_data, typhoon_search)
    pressure_scatter = generate_pressure_oni_scatter(filtered_data, typhoon_search)
    regression_fig, slopes_text = generate_regression_analysis(filtered_data)
    return tracks_fig, wind_scatter, pressure_scatter, regression_fig, slopes_text

def get_full_tracks(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    filtered_data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].copy()
    filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
    if enso_phase != 'all':
        filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
    unique_storms = filtered_data['SID'].unique()
    count = len(unique_storms)
    fig = go.Figure()
    for sid in unique_storms:
        storm_data = typhoon_data[typhoon_data['SID'] == sid]
        name = storm_data['NAME'].iloc[0] if pd.notnull(storm_data['NAME'].iloc[0]) else "Unnamed"
        storm_oni = filtered_data[filtered_data['SID'] == sid]['ONI'].iloc[0]
        color = 'red' if storm_oni >= 0.5 else ('blue' if storm_oni <= -0.5 else 'green')
        fig.add_trace(go.Scattergeo(
            lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
            name=f"{name} ({storm_data['SEASON'].iloc[0]})",
            line=dict(width=1.5, color=color),
            hoverinfo="name"
        ))
    if typhoon_search:
        search_mask = typhoon_data['NAME'].str.contains(typhoon_search, case=False, na=False)
        if search_mask.any():
            for sid in typhoon_data[search_mask]['SID'].unique():
                storm_data = typhoon_data[typhoon_data['SID'] == sid]
                fig.add_trace(go.Scattergeo(
                    lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines+markers',
                    name=f"MATCHED: {storm_data['NAME'].iloc[0]} ({storm_data['SEASON'].iloc[0]})",
                    line=dict(width=3, color='yellow'),
                    marker=dict(size=5),
                    hoverinfo="name"
                ))
    fig.update_layout(
        title=f"Typhoon Tracks ({start_year}-{start_month} to {end_year}-{end_month})",
        geo=dict(
            projection_type='natural earth',
            showland=True,
            showcoastlines=True,
            landcolor='rgb(243, 243, 243)',
            countrycolor='rgb(204, 204, 204)',
            coastlinecolor='rgb(204, 204, 204)',
            center=dict(lon=140, lat=20),
            projection_scale=3
        ),
        legend_title="Typhoons by ENSO Phase",
        showlegend=True,
        height=700
    )
    fig.add_annotation(
        x=0.02, y=0.98, xref="paper", yref="paper",
        text="Red: El Niño, Blue: La Niña, Green: Neutral",
        showarrow=False, align="left",
        bgcolor="rgba(255,255,255,0.8)"
    )
    return fig, f"Total typhoons displayed: {count}"

def get_wind_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
    regression = perform_wind_regression(start_year, start_month, end_year, end_month)
    return results[1], regression

def get_pressure_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
    regression = perform_pressure_regression(start_year, start_month, end_year, end_month)
    return results[2], regression

def get_longitude_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
    regression = perform_longitude_regression(start_year, start_month, end_year, end_month)
    return results[3], results[4], regression

def categorize_typhoon_by_standard(wind_speed, standard):
    if standard == 'taiwan':
        wind_speed_ms = wind_speed * 0.514444
        if wind_speed_ms >= 51.0:
            return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['hex']
        elif wind_speed_ms >= 33.7:
            return 'Medium Typhoon', taiwan_standard['Medium Typhoon']['hex']
        elif wind_speed_ms >= 17.2:
            return 'Mild Typhoon', taiwan_standard['Mild Typhoon']['hex']
        return 'Tropical Depression', taiwan_standard['Tropical Depression']['hex']
    else:
        if wind_speed >= 137:
            return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['hex']
        elif wind_speed >= 113:
            return 'C4 Very Strong Typhoon', atlantic_standard['C4 Very Strong Typhoon']['hex']
        elif wind_speed >= 96:
            return 'C3 Strong Typhoon', atlantic_standard['C3 Strong Typhoon']['hex']
        elif wind_speed >= 83:
            return 'C2 Typhoon', atlantic_standard['C2 Typhoon']['hex']
        elif wind_speed >= 64:
            return 'C1 Typhoon', atlantic_standard['C1 Typhoon']['hex']
        elif wind_speed >= 34:
            return 'Tropical Storm', atlantic_standard['Tropical Storm']['hex']
        return 'Tropical Depression', atlantic_standard['Tropical Depression']['hex']

# ------------------ Animation Functions Using Processed CSV ------------------
def generate_track_video_from_csv(year, storm_id, standard):
    storm_df = typhoon_data[typhoon_data['SID'] == storm_id].copy()
    if storm_df.empty:
        print("No data found for storm:", storm_id)
        return None
    storm_df = storm_df.sort_values('ISO_TIME')
    lats = storm_df['LAT'].astype(float).values
    lons = storm_df['LON'].astype(float).values
    times = pd.to_datetime(storm_df['ISO_TIME']).values
    if 'USA_WIND' in storm_df.columns:
        winds = pd.to_numeric(storm_df['USA_WIND'], errors='coerce').values
    else:
        winds = np.full(len(lats), np.nan)
    storm_name = storm_df['NAME'].iloc[0]
    season = storm_df['SEASON'].iloc[0]
    
    min_lat, max_lat = np.min(lats), np.max(lats)
    min_lon, max_lon = np.min(lons), np.max(lons)
    lat_padding = max((max_lat - min_lat) * 0.3, 5)
    lon_padding = max((max_lon - min_lon) * 0.3, 5)
    
    fig = plt.figure(figsize=(12, 9), dpi=100)
    ax = plt.axes([0.05, 0.05, 0.60, 0.90],
                  projection=ccrs.PlateCarree(central_longitude=-25))
    ax.set_extent([min_lon - lon_padding, max_lon + lon_padding, min_lat - lat_padding, max_lat + lat_padding],
                  crs=ccrs.PlateCarree())
    
    ax.add_feature(cfeature.LAND, facecolor='lightgray')
    ax.add_feature(cfeature.OCEAN, facecolor='lightblue')
    ax.add_feature(cfeature.COASTLINE, edgecolor='black')
    ax.add_feature(cfeature.BORDERS, linestyle=':', edgecolor='gray')
    ax.gridlines(draw_labels=True, linestyle='--', color='gray', alpha=0.5)
    ax.set_title(f"{year} {storm_name} - {season}", fontsize=16)
    
    line, = ax.plot([], [], 'b-', linewidth=2, transform=ccrs.PlateCarree())
    point, = ax.plot([], [], 'o', markersize=10, transform=ccrs.PlateCarree())
    date_text = ax.text(0.02, 0.02, '', transform=ax.transAxes, fontsize=12,
                         bbox=dict(facecolor='white', alpha=0.8))
    # Dynamic state display at right side
    state_text = fig.text(0.70, 0.60, '', fontsize=14, verticalalignment='top',
                          bbox=dict(facecolor='white', alpha=0.8, boxstyle='round,pad=0.5'))
    
    # Persistent legend for category colors
    legend_elements = [plt.Line2D([0], [0], marker='o', color='w', label=f"{cat}",
                          markerfacecolor=details['hex'], markersize=10)
                       for cat, details in (atlantic_standard if standard=='atlantic' else taiwan_standard).items()]
    ax.legend(handles=legend_elements, title="Storm Categories", loc='upper right', fontsize=10)
    
    def init():
        line.set_data([], [])
        point.set_data([], [])
        date_text.set_text('')
        state_text.set_text('')
        return line, point, date_text, state_text

    def update(frame):
        line.set_data(lons[:frame+1], lats[:frame+1])
        point.set_data([lons[frame]], [lats[frame]])
        wind_speed = winds[frame] if frame < len(winds) else np.nan
        category, color = categorize_typhoon_by_standard(wind_speed, standard)
        point.set_color(color)
        dt_str = pd.to_datetime(times[frame]).strftime('%Y-%m-%d %H:%M')
        date_text.set_text(dt_str)
        state_info = (f"Name: {storm_name}\n"
                      f"Date: {dt_str}\n"
                      f"Wind: {wind_speed:.1f} kt\n"
                      f"Category: {category}")
        state_text.set_text(state_info)
        return line, point, date_text, state_text

    ani = animation.FuncAnimation(fig, update, init_func=init, frames=len(times),
                                  interval=200, blit=True, repeat=True)
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
    writer = animation.FFMpegWriter(fps=5, bitrate=1800)
    ani.save(temp_file.name, writer=writer)
    plt.close(fig)
    return temp_file.name

def simplified_track_video(year, basin, typhoon, standard):
    if not typhoon:
        return None
    storm_id = typhoon.split('(')[-1].strip(')')
    return generate_track_video_from_csv(year, storm_id, standard)

# ------------------ Typhoon Options Update Functions ------------------
basin_to_prefix = {
    "All Basins": "all",
    "NA - North Atlantic": "NA",
    "EP - Eastern North Pacific": "EP",
    "WP - Western North Pacific": "WP"
}

def update_typhoon_options(year, basin):
    try:
        if basin == "All Basins":
            summaries = []
            for data in ibtracs.values():
                if data is not None:
                    season_data = data.get_season(int(year))
                    if season_data.summary().empty:
                        continue
                    summaries.append(season_data.summary())
            if len(summaries) == 0:
                print("Error updating typhoon options: No storms identified for the given year and basin.")
                return gr.update(choices=[], value=None)
            combined_summary = pd.concat(summaries, ignore_index=True)
        else:
            prefix = basin_to_prefix.get(basin)
            ds = ibtracs.get(prefix)
            if ds is None:
                print("Error updating typhoon options: Dataset not found for the given basin.")
                return gr.update(choices=[], value=None)
            season_data = ds.get_season(int(year))
            if season_data.summary().empty:
                print("Error updating typhoon options: No storms identified for the given year and basin.")
                return gr.update(choices=[], value=None)
            combined_summary = season_data.summary()
        options = []
        for i in range(len(combined_summary)):
            try:
                name = combined_summary['name'][i] if pd.notnull(combined_summary['name'][i]) else "Unnamed"
                storm_id = combined_summary['id'][i]
                options.append(f"{name} ({storm_id})")
            except Exception:
                continue
        return gr.update(choices=options, value=options[0] if options else None)
    except Exception as e:
        print(f"Error updating typhoon options: {e}")
        return gr.update(choices=[], value=None)

def update_typhoon_options_anim(year, basin):
    try:
        # For animation, use the processed CSV data (without filtering by a specific prefix)
        data = typhoon_data.copy()
        data['Year'] = pd.to_datetime(data['ISO_TIME']).dt.year
        season_data = data[data['Year'] == int(year)]
        if season_data.empty:
            print("Error updating typhoon options (animation): No storms identified for the given year.")
            return gr.update(choices=[], value=None)
        summary = season_data.groupby('SID').first().reset_index()
        options = []
        for idx, row in summary.iterrows():
            name = row['NAME'] if pd.notnull(row['NAME']) else "Unnamed"
            options.append(f"{name} ({row['SID']})")
        return gr.update(choices=options, value=options[0] if options else None)
    except Exception as e:
        print(f"Error updating typhoon options (animation): {e}")
        return gr.update(choices=[], value=None)

# ------------------ TSNE Cluster Function ------------------
def update_route_clusters(start_year, start_month, end_year, end_month, enso_value, season):
    # Use only WP storms from processed CSV for clustering.
    wp_data = typhoon_data[typhoon_data['SID'].str.startswith("WP")]
    if wp_data.empty:
        return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "No West Pacific storms found."
    wp_data['Year'] = pd.to_datetime(wp_data['ISO_TIME']).dt.year
    wp_season = wp_data[wp_data['Year'] == int(start_year)]
    if wp_season.empty:
        return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "No storms found for the given period in WP."
    
    all_storms_data = []
    for sid, group in wp_data.groupby('SID'):
        group = group.sort_values('ISO_TIME')
        times = pd.to_datetime(group['ISO_TIME']).values
        lats = group['LAT'].astype(float).values
        lons = group['LON'].astype(float).values
        if len(lons) < 2:
            continue
        if season != 'all':
            month = pd.to_datetime(group['ISO_TIME']).iloc[0].month
            if season == 'summer' and not (4 <= month <= 8):
                continue
            if season == 'winter' and not (9 <= month <= 12):
                continue
        all_storms_data.append((lons, lats, np.array(group['USA_WIND'].astype(float)), times, sid))
    if not all_storms_data:
        return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "No valid WP storms for clustering."
    
    max_length = max(len(item[0]) for item in all_storms_data)
    route_vectors = []
    filtered_storms = []
    for lons, lats, winds, times, sid in all_storms_data:
        t = np.linspace(0, 1, len(lons))
        t_new = np.linspace(0, 1, max_length)
        try:
            lon_i = interp1d(t, lons, kind='linear', fill_value='extrapolate')(t_new)
            lat_i = interp1d(t, lats, kind='linear', fill_value='extrapolate')(t_new)
        except Exception:
            continue
        route_vector = np.column_stack((lon_i, lat_i)).flatten()
        if np.isnan(route_vector).any():
            continue
        route_vectors.append(route_vector)
        filtered_storms.append((lon_i, lat_i, winds, times, sid))
    route_vectors = np.array(route_vectors)
    if len(route_vectors) == 0:
        return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "No valid storms after interpolation."
    
    tsne = TSNE(n_components=2, random_state=42, verbose=1)
    tsne_results = tsne.fit_transform(route_vectors)
    dbscan = DBSCAN(eps=5, min_samples=3)
    best_labels = dbscan.fit_predict(tsne_results)
    unique_labels = sorted(set(best_labels) - {-1})
    fig_tsne = go.Figure()
    colors = px.colors.qualitative.Safe
    for i, label in enumerate(unique_labels):
        indices = np.where(best_labels == label)[0]
        fig_tsne.add_trace(go.Scatter(
            x=tsne_results[indices, 0],
            y=tsne_results[indices, 1],
            mode='markers',
            marker=dict(color=colors[i % len(colors)]),
            name=f"Cluster {label}"
        ))
    fig_tsne.update_layout(title="t-SNE of WP Storm Routes")
    fig_routes = go.Figure()  # Placeholder
    fig_stats = make_subplots(rows=2, cols=1)  # Placeholder
    info = "TSNE clustering complete."
    return fig_tsne, fig_routes, fig_stats, info

# ------------------ Gradio Interface ------------------
with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
    gr.Markdown("# Typhoon Analysis Dashboard")
    
    with gr.Tab("Overview"):
        gr.Markdown("""
        ## Welcome to the Typhoon Analysis Dashboard
        
        This dashboard allows you to analyze typhoon data in relation to ENSO phases.
        
        ### Features:
        - **Track Visualization**: View typhoon tracks by time period and ENSO phase (all basins available)
        - **Wind Analysis**: Examine wind speed vs ONI relationships
        - **Pressure Analysis**: Analyze pressure vs ONI relationships
        - **Longitude Analysis**: Study typhoon generation longitude vs ONI
        - **Path Animation**: Watch animated tropical cyclone paths with a dynamic state display and persistent legend (using processed CSV data)
        - **TSNE Cluster**: Perform t-SNE clustering on WP storm routes with mean routes and region analysis
        
        Select a tab above to begin your analysis.
        """)
    
    with gr.Tab("Track Visualization"):
        with gr.Row():
            start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
            start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
            end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
            end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
            enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
            typhoon_search = gr.Textbox(label="Typhoon Search")
        analyze_btn = gr.Button("Generate Tracks")
        tracks_plot = gr.Plot(label="Typhoon Tracks", elem_id="tracks_plot")
        typhoon_count = gr.Textbox(label="Number of Typhoons Displayed")
        analyze_btn.click(fn=get_full_tracks, inputs=[start_year, start_month, end_year, end_month, enso_phase, typhoon_search], outputs=[tracks_plot, typhoon_count])
    
    with gr.Tab("Wind Analysis"):
        with gr.Row():
            wind_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
            wind_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
            wind_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
            wind_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
            wind_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
            wind_typhoon_search = gr.Textbox(label="Typhoon Search")
        wind_analyze_btn = gr.Button("Generate Wind Analysis")
        wind_scatter = gr.Plot(label="Wind Speed vs ONI")
        wind_regression_results = gr.Textbox(label="Wind Regression Results")
        wind_analyze_btn.click(fn=get_wind_analysis, inputs=[wind_start_year, wind_start_month, wind_end_year, wind_end_month, wind_enso_phase, wind_typhoon_search], outputs=[wind_scatter, wind_regression_results])
    
    with gr.Tab("Pressure Analysis"):
        with gr.Row():
            pressure_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
            pressure_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
            pressure_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
            pressure_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
            pressure_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
            pressure_typhoon_search = gr.Textbox(label="Typhoon Search")
        pressure_analyze_btn = gr.Button("Generate Pressure Analysis")
        pressure_scatter = gr.Plot(label="Pressure vs ONI")
        pressure_regression_results = gr.Textbox(label="Pressure Regression Results")
        pressure_analyze_btn.click(fn=get_pressure_analysis, inputs=[pressure_start_year, pressure_start_month, pressure_end_year, pressure_end_month, pressure_enso_phase, pressure_typhoon_search], outputs=[pressure_scatter, pressure_regression_results])
    
    with gr.Tab("Longitude Analysis"):
        with gr.Row():
            lon_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
            lon_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
            lon_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
            lon_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
            lon_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
            lon_typhoon_search = gr.Textbox(label="Typhoon Search (Optional)")
        lon_analyze_btn = gr.Button("Generate Longitude Analysis")
        regression_plot = gr.Plot(label="Longitude vs ONI")
        slopes_text = gr.Textbox(label="Regression Slopes")
        lon_regression_results = gr.Textbox(label="Longitude Regression Results")
        lon_analyze_btn.click(fn=get_longitude_analysis, inputs=[lon_start_year, lon_start_month, lon_end_year, lon_end_month, lon_enso_phase, lon_typhoon_search], outputs=[regression_plot, slopes_text, lon_regression_results])
    
    with gr.Tab("Tropical Cyclone Path Animation"):
        with gr.Row():
            year_dropdown = gr.Dropdown(label="Year", choices=[str(y) for y in range(1950, 2025)], value="2000")
            basin_dropdown = gr.Dropdown(label="Basin", choices=["NA - North Atlantic", "EP - Eastern North Pacific", "WP - Western North Pacific", "All Basins"], value="NA - North Atlantic")
        with gr.Row():
            typhoon_dropdown = gr.Dropdown(label="Tropical Cyclone")
            standard_dropdown = gr.Dropdown(label="Classification Standard", choices=['atlantic', 'taiwan'], value='atlantic')
        animate_btn = gr.Button("Generate Animation")
        path_video = gr.Video(label="Tropical Cyclone Path Animation", format="mp4", interactive=False, elem_id="path_video")
        animation_info = gr.Markdown("""
        ### Animation Instructions
        1. Select a year and basin from the dropdowns. (This animation uses processed CSV data.)
        2. Choose a tropical cyclone from the populated list.
        3. Select a classification standard (Atlantic or Taiwan).
        4. Click "Generate Animation".
        5. The animation displays the storm track along with a dynamic sidebar that shows the current state (name, date, wind, category) and a persistent legend for colors.
        """)
        year_dropdown.change(fn=update_typhoon_options_anim, inputs=[year_dropdown, basin_dropdown], outputs=typhoon_dropdown)
        basin_dropdown.change(fn=update_typhoon_options_anim, inputs=[year_dropdown, basin_dropdown], outputs=typhoon_dropdown)
        animate_btn.click(fn=simplified_track_video, inputs=[year_dropdown, basin_dropdown, typhoon_dropdown, standard_dropdown], outputs=path_video)
    
    with gr.Tab("TSNE Cluster"):
        with gr.Row():
            tsne_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
            tsne_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
            tsne_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
            tsne_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=12)
            tsne_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
            tsne_season = gr.Dropdown(label="Season", choices=['all', 'summer', 'winter'], value='all')
        tsne_analyze_btn = gr.Button("Analyze")
        tsne_plot = gr.Plot(label="t-SNE Clusters")
        routes_plot = gr.Plot(label="Typhoon Routes with Mean Routes")
        stats_plot = gr.Plot(label="Cluster Statistics")
        cluster_info = gr.Textbox(label="Cluster Information", lines=10)
        tsne_analyze_btn.click(fn=update_route_clusters, inputs=[tsne_start_year, tsne_start_month, tsne_end_year, tsne_end_month, tsne_enso_phase, tsne_season], outputs=[tsne_plot, routes_plot, stats_plot, cluster_info])

demo.launch(share=True)