euler314's picture
Update app.py
a566db2 verified
raw
history blame
21.6 kB
import gradio as gr
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
import tropycal.tracks as tracks
import pickle
import requests
import os
import argparse
from datetime import datetime
import statsmodels.api as sm
import shutil
import tempfile
import csv
from collections import defaultdict
import filecmp
# Command-line argument parsing
parser = argparse.ArgumentParser(description='Typhoon Analysis Dashboard')
parser.add_argument('--data_path', type=str, default=os.getcwd(), help='Path to the data directory')
args = parser.parse_args()
DATA_PATH = args.data_path
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
LOCAL_iBtrace_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv')
iBtrace_uri = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/ibtracs.WP.list.v04r01.csv'
CACHE_FILE = 'ibtracs_cache.pkl'
CACHE_EXPIRY_DAYS = 1
# Color map for typhoon categories
color_map = {
'C5 Super Typhoon': 'rgb(255, 0, 0)',
'C4 Very Strong Typhoon': 'rgb(255, 63, 0)',
'C3 Strong Typhoon': 'rgb(255, 127, 0)',
'C2 Typhoon': 'rgb(255, 191, 0)',
'C1 Typhoon': 'rgb(255, 255, 0)',
'Tropical Storm': 'rgb(0, 255, 255)',
'Tropical Depression': 'rgb(173, 216, 230)'
}
# Classification standards
atlantic_standard = {
'C5 Super Typhoon': {'wind_speed': 137, 'color': 'rgb(255, 0, 0)'},
'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'rgb(255, 63, 0)'},
'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'rgb(255, 127, 0)'},
'C2 Typhoon': {'wind_speed': 83, 'color': 'rgb(255, 191, 0)'},
'C1 Typhoon': {'wind_speed': 64, 'color': 'rgb(255, 255, 0)'},
'Tropical Storm': {'wind_speed': 34, 'color': 'rgb(0, 255, 255)'},
'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'}
}
taiwan_standard = {
'Strong Typhoon': {'wind_speed': 51.0, 'color': 'rgb(255, 0, 0)'},
'Medium Typhoon': {'wind_speed': 33.7, 'color': 'rgb(255, 127, 0)'},
'Mild Typhoon': {'wind_speed': 17.2, 'color': 'rgb(255, 255, 0)'},
'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'}
}
# Data loading and preprocessing functions
def download_oni_file(url, filename):
response = requests.get(url)
response.raise_for_status()
with open(filename, 'wb') as f:
f.write(response.content)
return True
def convert_oni_ascii_to_csv(input_file, output_file):
data = defaultdict(lambda: [''] * 12)
season_to_month = {'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5,
'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11}
with open(input_file, 'r') as f:
lines = f.readlines()[1:]
for line in lines:
parts = line.split()
if len(parts) >= 4:
season, year, anom = parts[0], parts[1], parts[-1]
if season in season_to_month:
month = season_to_month[season]
if season == 'DJF':
year = str(int(year) - 1)
data[year][month-1] = anom
with open(output_file, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
for year in sorted(data.keys()):
writer.writerow([year] + data[year])
def update_oni_data():
url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
output_file = ONI_DATA_PATH
if download_oni_file(url, temp_file):
if not os.path.exists(input_file) or not filecmp.cmp(temp_file, input_file):
os.replace(temp_file, input_file)
convert_oni_ascii_to_csv(input_file, output_file)
else:
os.remove(temp_file)
def load_ibtracs_data():
if os.path.exists(CACHE_FILE) and (datetime.now() - datetime.fromtimestamp(os.path.getmtime(CACHE_FILE))).days < CACHE_EXPIRY_DAYS:
with open(CACHE_FILE, 'rb') as f:
return pickle.load(f)
if os.path.exists(LOCAL_iBtrace_PATH):
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
else:
response = requests.get(iBtrace_uri)
response.raise_for_status()
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv') as temp_file:
temp_file.write(response.text)
shutil.move(temp_file.name, LOCAL_iBtrace_PATH)
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
with open(CACHE_FILE, 'wb') as f:
pickle.dump(ibtracs, f)
return ibtracs
def convert_typhoondata(input_file, output_file):
with open(input_file, 'r') as infile:
next(infile); next(infile) # Skip header lines
reader = csv.reader(infile)
sid_data = defaultdict(list)
for row in reader:
if row:
sid = row[0]
sid_data[sid].append((row, row[6]))
with open(output_file, 'w', newline='') as outfile:
fieldnames = ['SID', 'ISO_TIME', 'LAT', 'LON', 'SEASON', 'NAME', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES', 'START_DATE', 'END_DATE']
writer = csv.DictWriter(outfile, fieldnames=fieldnames)
writer.writeheader()
for sid, data in sid_data.items():
start_date = min(data, key=lambda x: x[1])[1]
end_date = max(data, key=lambda x: x[1])[1]
for row, iso_time in data:
writer.writerow({
'SID': row[0], 'ISO_TIME': iso_time, 'LAT': row[8], 'LON': row[9], 'SEASON': row[1], 'NAME': row[5],
'WMO_WIND': row[10].strip() or ' ', 'WMO_PRES': row[11].strip() or ' ',
'USA_WIND': row[23].strip() or ' ', 'USA_PRES': row[24].strip() or ' ',
'START_DATE': start_date, 'END_DATE': end_date
})
def load_data(oni_path, typhoon_path):
oni_data = pd.read_csv(oni_path)
typhoon_data = pd.read_csv(typhoon_path, low_memory=False)
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data = typhoon_data.dropna(subset=['ISO_TIME'])
return oni_data, typhoon_data
def process_oni_data(oni_data):
oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
month_map = {'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', 'May': '05', 'Jun': '06',
'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12'}
oni_long['Month'] = oni_long['Month'].map(month_map)
oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str) + '-' + oni_long['Month'] + '-01')
oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
return oni_long
def process_typhoon_data(typhoon_data):
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
typhoon_max = typhoon_data.groupby('SID').agg({
'USA_WIND': 'max', 'USA_PRES': 'min', 'ISO_TIME': 'first', 'SEASON': 'first', 'NAME': 'first',
'LAT': 'first', 'LON': 'first'
}).reset_index()
typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon)
return typhoon_max
def merge_data(oni_long, typhoon_max):
return pd.merge(typhoon_max, oni_long, on=['Year', 'Month'])
def categorize_typhoon(wind_speed):
wind_speed_kt = wind_speed # Assuming input is already in knots
if wind_speed_kt >= 137:
return 'C5 Super Typhoon'
elif wind_speed_kt >= 113:
return 'C4 Very Strong Typhoon'
elif wind_speed_kt >= 96:
return 'C3 Strong Typhoon'
elif wind_speed_kt >= 83:
return 'C2 Typhoon'
elif wind_speed_kt >= 64:
return 'C1 Typhoon'
elif wind_speed_kt >= 34:
return 'Tropical Storm'
else:
return 'Tropical Depression'
def classify_enso_phases(oni_value):
if isinstance(oni_value, pd.Series):
oni_value = oni_value.iloc[0]
if oni_value >= 0.5:
return 'El Nino'
elif oni_value <= -0.5:
return 'La Nina'
else:
return 'Neutral'
# Load data globally
update_oni_data()
ibtracs = load_ibtracs_data()
convert_typhoondata(LOCAL_iBtrace_PATH, TYPHOON_DATA_PATH)
oni_data, typhoon_data = load_data(ONI_DATA_PATH, TYPHOON_DATA_PATH)
oni_long = process_oni_data(oni_data)
typhoon_max = process_typhoon_data(typhoon_data)
merged_data = merge_data(oni_long, typhoon_max)
# Main analysis functions
def generate_typhoon_tracks(filtered_data, typhoon_search):
fig = go.Figure()
for sid in filtered_data['SID'].unique():
storm_data = filtered_data[filtered_data['SID'] == sid]
color = {'El Nino': 'red', 'La Nina': 'blue', 'Neutral': 'green'}[storm_data['ENSO_Phase'].iloc[0]]
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
name=storm_data['NAME'].iloc[0], line=dict(width=2, color=color)
))
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
storm_data = filtered_data[mask]
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
name=f'Matched: {typhoon_search}', line=dict(width=5, color='yellow')
))
fig.update_layout(title='Typhoon Tracks', geo=dict(projection_type='natural earth', showland=True))
return fig
def generate_wind_oni_scatter(filtered_data, typhoon_search):
fig = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category', hover_data=['NAME', 'Year', 'Category'],
title='Wind Speed vs ONI', labels={'ONI': 'ONI Value', 'USA_WIND': 'Max Wind Speed (knots)'},
color_discrete_map=color_map)
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
fig.add_trace(go.Scatter(
x=filtered_data.loc[mask, 'ONI'], y=filtered_data.loc[mask, 'USA_WIND'],
mode='markers', marker=dict(size=10, color='red', symbol='star'),
name=f'Matched: {typhoon_search}',
text=filtered_data.loc[mask, 'NAME'] + ' (' + filtered_data.loc[mask, 'Year'].astype(str) + ')'
))
return fig
def generate_pressure_oni_scatter(filtered_data, typhoon_search):
fig = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category', hover_data=['NAME', 'Year', 'Category'],
title='Pressure vs ONI', labels={'ONI': 'ONI Value', 'USA_PRES': 'Min Pressure (hPa)'},
color_discrete_map=color_map)
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
fig.add_trace(go.Scatter(
x=filtered_data.loc[mask, 'ONI'], y=filtered_data.loc[mask, 'USA_PRES'],
mode='markers', marker=dict(size=10, color='red', symbol='star'),
name=f'Matched: {typhoon_search}',
text=filtered_data.loc[mask, 'NAME'] + ' (' + filtered_data.loc[mask, 'Year'].astype(str) + ')'
))
return fig
def generate_regression_analysis(filtered_data):
fig = px.scatter(filtered_data, x='LON', y='ONI', hover_data=['NAME'],
title='Typhoon Generation Longitude vs ONI (All Years)')
if len(filtered_data) > 1:
X = np.array(filtered_data['LON']).reshape(-1, 1)
y = filtered_data['ONI']
model = sm.OLS(y, sm.add_constant(X)).fit()
y_pred = model.predict(sm.add_constant(X))
fig.add_trace(go.Scatter(x=filtered_data['LON'], y=y_pred, mode='lines', name='Regression Line'))
slope = model.params[1]
slopes_text = f"All Years Slope: {slope:.4f}"
else:
slopes_text = "Insufficient data for regression"
return fig, slopes_text
def generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_data = merged_data[
(merged_data['ISO_TIME'] >= start_date) &
(merged_data['ISO_TIME'] <= end_date)
]
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
if enso_phase != 'all':
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
tracks_fig = generate_typhoon_tracks(filtered_data, typhoon_search)
wind_scatter = generate_wind_oni_scatter(filtered_data, typhoon_search)
pressure_scatter = generate_pressure_oni_scatter(filtered_data, typhoon_search)
regression_fig, slopes_text = generate_regression_analysis(filtered_data)
return tracks_fig, wind_scatter, pressure_scatter, regression_fig, slopes_text
# Path animation function
def generate_path_animation(year, typhoon, standard):
typhoon_id = typhoon.split('(')[-1].strip(')')
storm = ibtracs.get_storm(typhoon_id)
fig = go.Figure()
fig.add_trace(go.Scattergeo(lon=storm.lon, lat=storm.lat, mode='lines', line=dict(width=2, color='gray')))
fig.add_trace(go.Scattergeo(lon=[storm.lon[0]], lat=[storm.lat[0]], mode='markers',
marker=dict(size=10, color='green', symbol='star'), name='Start'))
frames = [
go.Frame(data=[
go.Scattergeo(lon=storm.lon[:i+1], lat=storm.lat[:i+1], mode='lines', line=dict(width=2, color='blue')),
go.Scattergeo(lon=[storm.lon[i]], lat=[storm.lat[i]], mode='markers',
marker=dict(size=10, color=categorize_typhoon_by_standard(storm.vmax[i], standard)[1]))
], name=f"frame{i}") for i in range(len(storm.time))
]
fig.frames = frames
fig.update_layout(
title=f"{year} {storm.name} Typhoon Path",
geo=dict(projection_type='natural earth', showland=True),
updatemenus=[{"buttons": [{"label": "Play", "method": "animate", "args": [None, {"frame": {"duration": 100}}]},
{"label": "Pause", "method": "animate", "args": [[None], {"mode": "immediate"}]}]}]
)
return fig
def categorize_typhoon_by_standard(wind_speed, standard):
if standard == 'taiwan':
wind_speed_ms = wind_speed * 0.514444
if wind_speed_ms >= 51.0:
return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['color']
elif wind_speed_ms >= 33.7:
return 'Medium Typhoon', taiwan_standard['Medium Typhoon']['color']
elif wind_speed_ms >= 17.2:
return 'Mild Typhoon', taiwan_standard['Mild Typhoon']['color']
return 'Tropical Depression', taiwan_standard['Tropical Depression']['color']
else:
if wind_speed >= 137:
return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['color']
elif wind_speed >= 113:
return 'C4 Very Strong Typhoon', atlantic_standard['C4 Very Strong Typhoon']['color']
elif wind_speed >= 96:
return 'C3 Strong Typhoon', atlantic_standard['C3 Strong Typhoon']['color']
elif wind_speed >= 83:
return 'C2 Typhoon', atlantic_standard['C2 Typhoon']['color']
elif wind_speed >= 64:
return 'C1 Typhoon', atlantic_standard['C1 Typhoon']['color']
elif wind_speed >= 34:
return 'Tropical Storm', atlantic_standard['Tropical Storm']['color']
return 'Tropical Depression', atlantic_standard['Tropical Depression']['color']
# Logistic regression functions
def perform_wind_regression(start_year, start_month, end_year, end_month):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['USA_WIND', 'ONI'])
data['severe_typhoon'] = (data['USA_WIND'] >= 64).astype(int)
X = sm.add_constant(data['ONI'])
y = data['severe_typhoon']
model = sm.Logit(y, X).fit()
beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
return f"Wind Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
def perform_pressure_regression(start_year, start_month, end_year, end_month):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['USA_PRES', 'ONI'])
data['intense_typhoon'] = (data['USA_PRES'] <= 950).astype(int)
X = sm.add_constant(data['ONI'])
y = data['intense_typhoon']
model = sm.Logit(y, X).fit()
beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
return f"Pressure Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
def perform_longitude_regression(start_year, start_month, end_year, end_month):
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['LON', 'ONI'])
data['western_typhoon'] = (data['LON'] <= 140).astype(int)
X = sm.add_constant(data['ONI'])
y = data['western_typhoon']
model = sm.Logit(y, X).fit()
beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
return f"Longitude Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
# Gradio interface
with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
gr.Markdown("# Typhoon Analysis Dashboard")
with gr.Tab("Main Analysis"):
with gr.Row():
start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
typhoon_search = gr.Textbox(label="Typhoon Search")
analyze_btn = gr.Button("Analyze")
with gr.Row():
tracks_plot = gr.Plot(label="Typhoon Tracks")
wind_scatter = gr.Plot(label="Wind Speed vs ONI")
pressure_scatter = gr.Plot(label="Pressure vs ONI")
regression_plot = gr.Plot(label="Regression Analysis")
slopes_text = gr.Textbox(label="Regression Slopes")
analyze_btn.click(
fn=generate_main_analysis,
inputs=[start_year, start_month, end_year, end_month, enso_phase, typhoon_search],
outputs=[tracks_plot, wind_scatter, pressure_scatter, regression_plot, slopes_text]
)
with gr.Tab("Typhoon Path Animation"):
year_dropdown = gr.Dropdown(label="Year", choices=[str(y) for y in range(1950, 2025)], value="2024")
typhoon_dropdown = gr.Dropdown(label="Typhoon")
standard_dropdown = gr.Dropdown(label="Classification Standard", choices=['atlantic', 'taiwan'], value='atlantic')
path_plot = gr.Plot(label="Typhoon Path Animation")
def update_typhoon_options(year):
season = ibtracs.get_season(int(year))
storm_summary = season.summary()
options = [f"{storm_summary['name'][i]} ({storm_summary['id'][i]})" for i in range(storm_summary['season_storms'])]
return gr.update(choices=options, value=options[0] if options else None)
year_dropdown.change(fn=update_typhoon_options, inputs=year_dropdown, outputs=typhoon_dropdown)
gr.Button("Generate Animation").click(
fn=generate_path_animation,
inputs=[year_dropdown, typhoon_dropdown, standard_dropdown],
outputs=path_plot
)
with gr.Tab("Logistic Regressions"):
with gr.Row():
wind_btn = gr.Button("Wind Speed Regression")
pressure_btn = gr.Button("Pressure Regression")
longitude_btn = gr.Button("Longitude Regression")
regression_results = gr.Textbox(label="Regression Results", lines=10)
wind_btn.click(fn=perform_wind_regression, inputs=[start_year, start_month, end_year, end_month], outputs=regression_results)
pressure_btn.click(fn=perform_pressure_regression, inputs=[start_year, start_month, end_year, end_month], outputs=regression_results)
longitude_btn.click(fn=perform_longitude_regression, inputs=[start_year, start_month, end_year, end_month], outputs=regression_results)
demo.launch()