File size: 21,631 Bytes
7fa25f7
efb47b3
 
a566db2
 
a2d2271
 
efb47b3
a566db2
 
 
 
efb47b3
a566db2
a2d2271
 
a566db2
efb47b3
a2d2271
eb8c873
 
 
 
 
efb47b3
 
a2d2271
eb8c873
efb47b3
 
 
a566db2
a2d2271
 
 
 
 
 
 
 
 
eb8c873
a2d2271
 
 
 
 
 
 
 
 
 
eb8c873
a2d2271
 
 
 
 
efb47b3
 
a566db2
eb8c873
a566db2
 
 
 
 
eb8c873
 
 
a566db2
 
a2d2271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
eb8c873
 
 
 
 
 
a566db2
eb8c873
 
efb47b3
a2d2271
eb8c873
 
a2d2271
 
 
eb8c873
 
 
 
 
 
 
a566db2
eb8c873
a2d2271
 
 
eb8c873
a566db2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8c873
 
a566db2
 
a2d2271
eb8c873
 
 
 
 
 
 
 
 
 
a566db2
 
eb8c873
 
 
 
 
 
 
 
 
a2d2271
a566db2
 
a2d2271
a566db2
a2d2271
a566db2
a2d2271
a566db2
a2d2271
a566db2
a2d2271
a566db2
a2d2271
 
 
eb8c873
 
 
 
 
 
 
 
 
 
efb47b3
a2d2271
 
 
 
a566db2
a2d2271
 
 
 
a566db2
 
 
 
 
 
 
 
 
 
a2d2271
a566db2
 
 
 
 
 
 
 
 
a2d2271
a566db2
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d2271
a566db2
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d2271
a566db2
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d2271
a566db2
a2d2271
 
a566db2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d2271
a566db2
 
 
 
 
 
 
 
 
 
a2d2271
a566db2
 
 
 
 
 
a2d2271
 
 
eb8c873
 
 
 
 
 
 
 
a566db2
eb8c873
7fa25f7
eb8c873
7fa25f7
eb8c873
7fa25f7
eb8c873
7fa25f7
eb8c873
7fa25f7
eb8c873
7fa25f7
eb8c873
a566db2
a2d2271
a566db2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d2271
 
a566db2
a2d2271
 
 
a566db2
a2d2271
a566db2
 
 
 
a2d2271
a566db2
 
 
 
 
 
 
 
 
 
 
a2d2271
a566db2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d2271
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import gradio as gr
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
import tropycal.tracks as tracks
import pickle
import requests
import os
import argparse
from datetime import datetime
import statsmodels.api as sm
import shutil
import tempfile
import csv
from collections import defaultdict
import filecmp

# Command-line argument parsing
parser = argparse.ArgumentParser(description='Typhoon Analysis Dashboard')
parser.add_argument('--data_path', type=str, default=os.getcwd(), help='Path to the data directory')
args = parser.parse_args()
DATA_PATH = args.data_path

ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
LOCAL_iBtrace_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv')
iBtrace_uri = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/ibtracs.WP.list.v04r01.csv'
CACHE_FILE = 'ibtracs_cache.pkl'
CACHE_EXPIRY_DAYS = 1

# Color map for typhoon categories
color_map = {
    'C5 Super Typhoon': 'rgb(255, 0, 0)',
    'C4 Very Strong Typhoon': 'rgb(255, 63, 0)',
    'C3 Strong Typhoon': 'rgb(255, 127, 0)',
    'C2 Typhoon': 'rgb(255, 191, 0)',
    'C1 Typhoon': 'rgb(255, 255, 0)',
    'Tropical Storm': 'rgb(0, 255, 255)',
    'Tropical Depression': 'rgb(173, 216, 230)'
}

# Classification standards
atlantic_standard = {
    'C5 Super Typhoon': {'wind_speed': 137, 'color': 'rgb(255, 0, 0)'},
    'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'rgb(255, 63, 0)'},
    'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'rgb(255, 127, 0)'},
    'C2 Typhoon': {'wind_speed': 83, 'color': 'rgb(255, 191, 0)'},
    'C1 Typhoon': {'wind_speed': 64, 'color': 'rgb(255, 255, 0)'},
    'Tropical Storm': {'wind_speed': 34, 'color': 'rgb(0, 255, 255)'},
    'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'}
}

taiwan_standard = {
    'Strong Typhoon': {'wind_speed': 51.0, 'color': 'rgb(255, 0, 0)'},
    'Medium Typhoon': {'wind_speed': 33.7, 'color': 'rgb(255, 127, 0)'},
    'Mild Typhoon': {'wind_speed': 17.2, 'color': 'rgb(255, 255, 0)'},
    'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'}
}

# Data loading and preprocessing functions
def download_oni_file(url, filename):
    response = requests.get(url)
    response.raise_for_status()
    with open(filename, 'wb') as f:
        f.write(response.content)
    return True

def convert_oni_ascii_to_csv(input_file, output_file):
    data = defaultdict(lambda: [''] * 12)
    season_to_month = {'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5,
                       'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11}
    with open(input_file, 'r') as f:
        lines = f.readlines()[1:]
        for line in lines:
            parts = line.split()
            if len(parts) >= 4:
                season, year, anom = parts[0], parts[1], parts[-1]
                if season in season_to_month:
                    month = season_to_month[season]
                    if season == 'DJF':
                        year = str(int(year) - 1)
                    data[year][month-1] = anom
    with open(output_file, 'w', newline='') as f:
        writer = csv.writer(f)
        writer.writerow(['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
        for year in sorted(data.keys()):
            writer.writerow([year] + data[year])

def update_oni_data():
    url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
    temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
    input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
    output_file = ONI_DATA_PATH
    if download_oni_file(url, temp_file):
        if not os.path.exists(input_file) or not filecmp.cmp(temp_file, input_file):
            os.replace(temp_file, input_file)
            convert_oni_ascii_to_csv(input_file, output_file)
        else:
            os.remove(temp_file)

def load_ibtracs_data():
    if os.path.exists(CACHE_FILE) and (datetime.now() - datetime.fromtimestamp(os.path.getmtime(CACHE_FILE))).days < CACHE_EXPIRY_DAYS:
        with open(CACHE_FILE, 'rb') as f:
            return pickle.load(f)
    if os.path.exists(LOCAL_iBtrace_PATH):
        ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
    else:
        response = requests.get(iBtrace_uri)
        response.raise_for_status()
        with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv') as temp_file:
            temp_file.write(response.text)
            shutil.move(temp_file.name, LOCAL_iBtrace_PATH)
        ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
    with open(CACHE_FILE, 'wb') as f:
        pickle.dump(ibtracs, f)
    return ibtracs

def convert_typhoondata(input_file, output_file):
    with open(input_file, 'r') as infile:
        next(infile); next(infile)  # Skip header lines
        reader = csv.reader(infile)
        sid_data = defaultdict(list)
        for row in reader:
            if row:
                sid = row[0]
                sid_data[sid].append((row, row[6]))
    with open(output_file, 'w', newline='') as outfile:
        fieldnames = ['SID', 'ISO_TIME', 'LAT', 'LON', 'SEASON', 'NAME', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES', 'START_DATE', 'END_DATE']
        writer = csv.DictWriter(outfile, fieldnames=fieldnames)
        writer.writeheader()
        for sid, data in sid_data.items():
            start_date = min(data, key=lambda x: x[1])[1]
            end_date = max(data, key=lambda x: x[1])[1]
            for row, iso_time in data:
                writer.writerow({
                    'SID': row[0], 'ISO_TIME': iso_time, 'LAT': row[8], 'LON': row[9], 'SEASON': row[1], 'NAME': row[5],
                    'WMO_WIND': row[10].strip() or ' ', 'WMO_PRES': row[11].strip() or ' ',
                    'USA_WIND': row[23].strip() or ' ', 'USA_PRES': row[24].strip() or ' ',
                    'START_DATE': start_date, 'END_DATE': end_date
                })

def load_data(oni_path, typhoon_path):
    oni_data = pd.read_csv(oni_path)
    typhoon_data = pd.read_csv(typhoon_path, low_memory=False)
    typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
    typhoon_data = typhoon_data.dropna(subset=['ISO_TIME'])
    return oni_data, typhoon_data

def process_oni_data(oni_data):
    oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
    month_map = {'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', 'May': '05', 'Jun': '06',
                 'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12'}
    oni_long['Month'] = oni_long['Month'].map(month_map)
    oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str) + '-' + oni_long['Month'] + '-01')
    oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
    return oni_long

def process_typhoon_data(typhoon_data):
    typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
    typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
    typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
    typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
    typhoon_max = typhoon_data.groupby('SID').agg({
        'USA_WIND': 'max', 'USA_PRES': 'min', 'ISO_TIME': 'first', 'SEASON': 'first', 'NAME': 'first',
        'LAT': 'first', 'LON': 'first'
    }).reset_index()
    typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
    typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
    typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon)
    return typhoon_max

def merge_data(oni_long, typhoon_max):
    return pd.merge(typhoon_max, oni_long, on=['Year', 'Month'])

def categorize_typhoon(wind_speed):
    wind_speed_kt = wind_speed  # Assuming input is already in knots
    if wind_speed_kt >= 137:
        return 'C5 Super Typhoon'
    elif wind_speed_kt >= 113:
        return 'C4 Very Strong Typhoon'
    elif wind_speed_kt >= 96:
        return 'C3 Strong Typhoon'
    elif wind_speed_kt >= 83:
        return 'C2 Typhoon'
    elif wind_speed_kt >= 64:
        return 'C1 Typhoon'
    elif wind_speed_kt >= 34:
        return 'Tropical Storm'
    else:
        return 'Tropical Depression'

def classify_enso_phases(oni_value):
    if isinstance(oni_value, pd.Series):
        oni_value = oni_value.iloc[0]
    if oni_value >= 0.5:
        return 'El Nino'
    elif oni_value <= -0.5:
        return 'La Nina'
    else:
        return 'Neutral'

# Load data globally
update_oni_data()
ibtracs = load_ibtracs_data()
convert_typhoondata(LOCAL_iBtrace_PATH, TYPHOON_DATA_PATH)
oni_data, typhoon_data = load_data(ONI_DATA_PATH, TYPHOON_DATA_PATH)
oni_long = process_oni_data(oni_data)
typhoon_max = process_typhoon_data(typhoon_data)
merged_data = merge_data(oni_long, typhoon_max)

# Main analysis functions
def generate_typhoon_tracks(filtered_data, typhoon_search):
    fig = go.Figure()
    for sid in filtered_data['SID'].unique():
        storm_data = filtered_data[filtered_data['SID'] == sid]
        color = {'El Nino': 'red', 'La Nina': 'blue', 'Neutral': 'green'}[storm_data['ENSO_Phase'].iloc[0]]
        fig.add_trace(go.Scattergeo(
            lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
            name=storm_data['NAME'].iloc[0], line=dict(width=2, color=color)
        ))
    if typhoon_search:
        mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
        if mask.any():
            storm_data = filtered_data[mask]
            fig.add_trace(go.Scattergeo(
                lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
                name=f'Matched: {typhoon_search}', line=dict(width=5, color='yellow')
            ))
    fig.update_layout(title='Typhoon Tracks', geo=dict(projection_type='natural earth', showland=True))
    return fig

def generate_wind_oni_scatter(filtered_data, typhoon_search):
    fig = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category', hover_data=['NAME', 'Year', 'Category'],
                     title='Wind Speed vs ONI', labels={'ONI': 'ONI Value', 'USA_WIND': 'Max Wind Speed (knots)'},
                     color_discrete_map=color_map)
    if typhoon_search:
        mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
        if mask.any():
            fig.add_trace(go.Scatter(
                x=filtered_data.loc[mask, 'ONI'], y=filtered_data.loc[mask, 'USA_WIND'],
                mode='markers', marker=dict(size=10, color='red', symbol='star'),
                name=f'Matched: {typhoon_search}',
                text=filtered_data.loc[mask, 'NAME'] + ' (' + filtered_data.loc[mask, 'Year'].astype(str) + ')'
            ))
    return fig

def generate_pressure_oni_scatter(filtered_data, typhoon_search):
    fig = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category', hover_data=['NAME', 'Year', 'Category'],
                     title='Pressure vs ONI', labels={'ONI': 'ONI Value', 'USA_PRES': 'Min Pressure (hPa)'},
                     color_discrete_map=color_map)
    if typhoon_search:
        mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
        if mask.any():
            fig.add_trace(go.Scatter(
                x=filtered_data.loc[mask, 'ONI'], y=filtered_data.loc[mask, 'USA_PRES'],
                mode='markers', marker=dict(size=10, color='red', symbol='star'),
                name=f'Matched: {typhoon_search}',
                text=filtered_data.loc[mask, 'NAME'] + ' (' + filtered_data.loc[mask, 'Year'].astype(str) + ')'
            ))
    return fig

def generate_regression_analysis(filtered_data):
    fig = px.scatter(filtered_data, x='LON', y='ONI', hover_data=['NAME'],
                     title='Typhoon Generation Longitude vs ONI (All Years)')
    if len(filtered_data) > 1:
        X = np.array(filtered_data['LON']).reshape(-1, 1)
        y = filtered_data['ONI']
        model = sm.OLS(y, sm.add_constant(X)).fit()
        y_pred = model.predict(sm.add_constant(X))
        fig.add_trace(go.Scatter(x=filtered_data['LON'], y=y_pred, mode='lines', name='Regression Line'))
        slope = model.params[1]
        slopes_text = f"All Years Slope: {slope:.4f}"
    else:
        slopes_text = "Insufficient data for regression"
    return fig, slopes_text

def generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    filtered_data = merged_data[
        (merged_data['ISO_TIME'] >= start_date) & 
        (merged_data['ISO_TIME'] <= end_date)
    ]
    filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
    if enso_phase != 'all':
        filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
    
    tracks_fig = generate_typhoon_tracks(filtered_data, typhoon_search)
    wind_scatter = generate_wind_oni_scatter(filtered_data, typhoon_search)
    pressure_scatter = generate_pressure_oni_scatter(filtered_data, typhoon_search)
    regression_fig, slopes_text = generate_regression_analysis(filtered_data)
    
    return tracks_fig, wind_scatter, pressure_scatter, regression_fig, slopes_text

# Path animation function
def generate_path_animation(year, typhoon, standard):
    typhoon_id = typhoon.split('(')[-1].strip(')')
    storm = ibtracs.get_storm(typhoon_id)
    fig = go.Figure()
    fig.add_trace(go.Scattergeo(lon=storm.lon, lat=storm.lat, mode='lines', line=dict(width=2, color='gray')))
    fig.add_trace(go.Scattergeo(lon=[storm.lon[0]], lat=[storm.lat[0]], mode='markers',
                                marker=dict(size=10, color='green', symbol='star'), name='Start'))
    frames = [
        go.Frame(data=[
            go.Scattergeo(lon=storm.lon[:i+1], lat=storm.lat[:i+1], mode='lines', line=dict(width=2, color='blue')),
            go.Scattergeo(lon=[storm.lon[i]], lat=[storm.lat[i]], mode='markers',
                          marker=dict(size=10, color=categorize_typhoon_by_standard(storm.vmax[i], standard)[1]))
        ], name=f"frame{i}") for i in range(len(storm.time))
    ]
    fig.frames = frames
    fig.update_layout(
        title=f"{year} {storm.name} Typhoon Path",
        geo=dict(projection_type='natural earth', showland=True),
        updatemenus=[{"buttons": [{"label": "Play", "method": "animate", "args": [None, {"frame": {"duration": 100}}]},
                                  {"label": "Pause", "method": "animate", "args": [[None], {"mode": "immediate"}]}]}]
    )
    return fig

def categorize_typhoon_by_standard(wind_speed, standard):
    if standard == 'taiwan':
        wind_speed_ms = wind_speed * 0.514444
        if wind_speed_ms >= 51.0:
            return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['color']
        elif wind_speed_ms >= 33.7:
            return 'Medium Typhoon', taiwan_standard['Medium Typhoon']['color']
        elif wind_speed_ms >= 17.2:
            return 'Mild Typhoon', taiwan_standard['Mild Typhoon']['color']
        return 'Tropical Depression', taiwan_standard['Tropical Depression']['color']
    else:
        if wind_speed >= 137:
            return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['color']
        elif wind_speed >= 113:
            return 'C4 Very Strong Typhoon', atlantic_standard['C4 Very Strong Typhoon']['color']
        elif wind_speed >= 96:
            return 'C3 Strong Typhoon', atlantic_standard['C3 Strong Typhoon']['color']
        elif wind_speed >= 83:
            return 'C2 Typhoon', atlantic_standard['C2 Typhoon']['color']
        elif wind_speed >= 64:
            return 'C1 Typhoon', atlantic_standard['C1 Typhoon']['color']
        elif wind_speed >= 34:
            return 'Tropical Storm', atlantic_standard['Tropical Storm']['color']
        return 'Tropical Depression', atlantic_standard['Tropical Depression']['color']

# Logistic regression functions
def perform_wind_regression(start_year, start_month, end_year, end_month):
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['USA_WIND', 'ONI'])
    data['severe_typhoon'] = (data['USA_WIND'] >= 64).astype(int)
    X = sm.add_constant(data['ONI'])
    y = data['severe_typhoon']
    model = sm.Logit(y, X).fit()
    beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
    return f"Wind Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"

def perform_pressure_regression(start_year, start_month, end_year, end_month):
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['USA_PRES', 'ONI'])
    data['intense_typhoon'] = (data['USA_PRES'] <= 950).astype(int)
    X = sm.add_constant(data['ONI'])
    y = data['intense_typhoon']
    model = sm.Logit(y, X).fit()
    beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
    return f"Pressure Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"

def perform_longitude_regression(start_year, start_month, end_year, end_month):
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)].dropna(subset=['LON', 'ONI'])
    data['western_typhoon'] = (data['LON'] <= 140).astype(int)
    X = sm.add_constant(data['ONI'])
    y = data['western_typhoon']
    model = sm.Logit(y, X).fit()
    beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
    return f"Longitude Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"

# Gradio interface
with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
    gr.Markdown("# Typhoon Analysis Dashboard")
    
    with gr.Tab("Main Analysis"):
        with gr.Row():
            start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
            start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
            end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
            end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
            enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
            typhoon_search = gr.Textbox(label="Typhoon Search")
        analyze_btn = gr.Button("Analyze")
        with gr.Row():
            tracks_plot = gr.Plot(label="Typhoon Tracks")
            wind_scatter = gr.Plot(label="Wind Speed vs ONI")
            pressure_scatter = gr.Plot(label="Pressure vs ONI")
            regression_plot = gr.Plot(label="Regression Analysis")
        slopes_text = gr.Textbox(label="Regression Slopes")
        analyze_btn.click(
            fn=generate_main_analysis,
            inputs=[start_year, start_month, end_year, end_month, enso_phase, typhoon_search],
            outputs=[tracks_plot, wind_scatter, pressure_scatter, regression_plot, slopes_text]
        )
    
    with gr.Tab("Typhoon Path Animation"):
        year_dropdown = gr.Dropdown(label="Year", choices=[str(y) for y in range(1950, 2025)], value="2024")
        typhoon_dropdown = gr.Dropdown(label="Typhoon")
        standard_dropdown = gr.Dropdown(label="Classification Standard", choices=['atlantic', 'taiwan'], value='atlantic')
        path_plot = gr.Plot(label="Typhoon Path Animation")
        
        def update_typhoon_options(year):
            season = ibtracs.get_season(int(year))
            storm_summary = season.summary()
            options = [f"{storm_summary['name'][i]} ({storm_summary['id'][i]})" for i in range(storm_summary['season_storms'])]
            return gr.update(choices=options, value=options[0] if options else None)
        
        year_dropdown.change(fn=update_typhoon_options, inputs=year_dropdown, outputs=typhoon_dropdown)
        gr.Button("Generate Animation").click(
            fn=generate_path_animation,
            inputs=[year_dropdown, typhoon_dropdown, standard_dropdown],
            outputs=path_plot
        )
    
    with gr.Tab("Logistic Regressions"):
        with gr.Row():
            wind_btn = gr.Button("Wind Speed Regression")
            pressure_btn = gr.Button("Pressure Regression")
            longitude_btn = gr.Button("Longitude Regression")
        regression_results = gr.Textbox(label="Regression Results", lines=10)
        wind_btn.click(fn=perform_wind_regression, inputs=[start_year, start_month, end_year, end_month], outputs=regression_results)
        pressure_btn.click(fn=perform_pressure_regression, inputs=[start_year, start_month, end_year, end_month], outputs=regression_results)
        longitude_btn.click(fn=perform_longitude_regression, inputs=[start_year, start_month, end_year, end_month], outputs=regression_results)

demo.launch()