Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -801,6 +801,753 @@ def categorize_typhoon_by_standard(wind_speed, standard='atlantic'):
|
|
801 |
return 'Tropical Storm', '#0000FF' # Blue
|
802 |
return 'Tropical Depression', '#808080' # Gray
|
803 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
804 |
# -----------------------------
|
805 |
# FIXED: ADVANCED ML FEATURES WITH ROBUST ERROR HANDLING
|
806 |
# -----------------------------
|
@@ -1508,712 +2255,6 @@ def create_separate_clustering_plots(storm_features, typhoon_data, method='umap'
|
|
1508 |
)
|
1509 |
return error_fig, error_fig, error_fig, error_fig, f"Error in clustering: {str(e)}"
|
1510 |
|
1511 |
-
# -----------------------------
|
1512 |
-
# ENHANCED: Advanced Prediction System with Route Forecasting
|
1513 |
-
# -----------------------------
|
1514 |
-
|
1515 |
-
def create_advanced_prediction_model(typhoon_data):
|
1516 |
-
"""Create advanced ML model for intensity and route prediction"""
|
1517 |
-
try:
|
1518 |
-
if typhoon_data is None or typhoon_data.empty:
|
1519 |
-
return None, "No data available for model training"
|
1520 |
-
|
1521 |
-
# Prepare training data
|
1522 |
-
features = []
|
1523 |
-
targets = []
|
1524 |
-
|
1525 |
-
for sid in typhoon_data['SID'].unique():
|
1526 |
-
storm_data = typhoon_data[typhoon_data['SID'] == sid].sort_values('ISO_TIME')
|
1527 |
-
|
1528 |
-
if len(storm_data) < 3: # Need at least 3 points for prediction
|
1529 |
-
continue
|
1530 |
-
|
1531 |
-
for i in range(len(storm_data) - 1):
|
1532 |
-
current = storm_data.iloc[i]
|
1533 |
-
next_point = storm_data.iloc[i + 1]
|
1534 |
-
|
1535 |
-
# Extract features (current state)
|
1536 |
-
feature_row = []
|
1537 |
-
|
1538 |
-
# Current position
|
1539 |
-
feature_row.extend([
|
1540 |
-
current.get('LAT', 20),
|
1541 |
-
current.get('LON', 140)
|
1542 |
-
])
|
1543 |
-
|
1544 |
-
# Current intensity
|
1545 |
-
feature_row.extend([
|
1546 |
-
current.get('USA_WIND', 30),
|
1547 |
-
current.get('USA_PRES', 1000)
|
1548 |
-
])
|
1549 |
-
|
1550 |
-
# Time features
|
1551 |
-
if 'ISO_TIME' in current and pd.notna(current['ISO_TIME']):
|
1552 |
-
month = current['ISO_TIME'].month
|
1553 |
-
day_of_year = current['ISO_TIME'].dayofyear
|
1554 |
-
else:
|
1555 |
-
month = 9 # Peak season default
|
1556 |
-
day_of_year = 250
|
1557 |
-
|
1558 |
-
feature_row.extend([month, day_of_year])
|
1559 |
-
|
1560 |
-
# Motion features (if previous point exists)
|
1561 |
-
if i > 0:
|
1562 |
-
prev = storm_data.iloc[i - 1]
|
1563 |
-
dlat = current.get('LAT', 20) - prev.get('LAT', 20)
|
1564 |
-
dlon = current.get('LON', 140) - prev.get('LON', 140)
|
1565 |
-
speed = np.sqrt(dlat**2 + dlon**2)
|
1566 |
-
bearing = np.arctan2(dlat, dlon)
|
1567 |
-
else:
|
1568 |
-
speed = 0
|
1569 |
-
bearing = 0
|
1570 |
-
|
1571 |
-
feature_row.extend([speed, bearing])
|
1572 |
-
|
1573 |
-
features.append(feature_row)
|
1574 |
-
|
1575 |
-
# Target: next position and intensity
|
1576 |
-
targets.append([
|
1577 |
-
next_point.get('LAT', 20),
|
1578 |
-
next_point.get('LON', 140),
|
1579 |
-
next_point.get('USA_WIND', 30)
|
1580 |
-
])
|
1581 |
-
|
1582 |
-
if len(features) < 10: # Need sufficient training data
|
1583 |
-
return None, "Insufficient data for model training"
|
1584 |
-
|
1585 |
-
# Train model
|
1586 |
-
X = np.array(features)
|
1587 |
-
y = np.array(targets)
|
1588 |
-
|
1589 |
-
# Split data
|
1590 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
1591 |
-
|
1592 |
-
# Create separate models for position and intensity
|
1593 |
-
models = {}
|
1594 |
-
|
1595 |
-
# Position model (lat, lon)
|
1596 |
-
pos_model = RandomForestRegressor(n_estimators=100, random_state=42)
|
1597 |
-
pos_model.fit(X_train, y_train[:, :2])
|
1598 |
-
models['position'] = pos_model
|
1599 |
-
|
1600 |
-
# Intensity model (wind speed)
|
1601 |
-
int_model = RandomForestRegressor(n_estimators=100, random_state=42)
|
1602 |
-
int_model.fit(X_train, y_train[:, 2])
|
1603 |
-
models['intensity'] = int_model
|
1604 |
-
|
1605 |
-
# Calculate model performance
|
1606 |
-
pos_pred = pos_model.predict(X_test)
|
1607 |
-
int_pred = int_model.predict(X_test)
|
1608 |
-
|
1609 |
-
pos_mae = mean_absolute_error(y_test[:, :2], pos_pred)
|
1610 |
-
int_mae = mean_absolute_error(y_test[:, 2], int_pred)
|
1611 |
-
|
1612 |
-
model_info = f"Position MAE: {pos_mae:.2f}°, Intensity MAE: {int_mae:.2f} kt"
|
1613 |
-
|
1614 |
-
return models, model_info
|
1615 |
-
|
1616 |
-
except Exception as e:
|
1617 |
-
return None, f"Error creating prediction model: {str(e)}"
|
1618 |
-
|
1619 |
-
def get_realistic_genesis_locations():
|
1620 |
-
"""Get realistic typhoon genesis regions based on climatology"""
|
1621 |
-
return {
|
1622 |
-
"Western Pacific Main Development Region": {"lat": 12.5, "lon": 145.0, "description": "Peak activity zone (Guam area)"},
|
1623 |
-
"South China Sea": {"lat": 15.0, "lon": 115.0, "description": "Secondary development region"},
|
1624 |
-
"Philippine Sea": {"lat": 18.0, "lon": 135.0, "description": "Recurving storm region"},
|
1625 |
-
"Marshall Islands": {"lat": 8.0, "lon": 165.0, "description": "Eastern development zone"},
|
1626 |
-
"Monsoon Trough": {"lat": 10.0, "lon": 130.0, "description": "Monsoon-driven genesis"},
|
1627 |
-
"ITCZ Region": {"lat": 6.0, "lon": 140.0, "description": "Near-equatorial development"},
|
1628 |
-
"Subtropical Region": {"lat": 22.0, "lon": 125.0, "description": "Late season development"},
|
1629 |
-
"Bay of Bengal": {"lat": 15.0, "lon": 88.0, "description": "Indian Ocean cyclones"},
|
1630 |
-
"Eastern Pacific": {"lat": 12.0, "lon": -105.0, "description": "Hurricane development zone"},
|
1631 |
-
"Atlantic MDR": {"lat": 12.0, "lon": -45.0, "description": "Main Development Region"}
|
1632 |
-
}
|
1633 |
-
|
1634 |
-
def predict_storm_route_and_intensity_realistic(genesis_region, month, oni_value, models=None, forecast_hours=72, use_advanced_physics=True):
|
1635 |
-
"""Realistic prediction with proper typhoon speeds and development"""
|
1636 |
-
try:
|
1637 |
-
genesis_locations = get_realistic_genesis_locations()
|
1638 |
-
|
1639 |
-
if genesis_region not in genesis_locations:
|
1640 |
-
genesis_region = "Western Pacific Main Development Region" # Default
|
1641 |
-
|
1642 |
-
genesis_info = genesis_locations[genesis_region]
|
1643 |
-
lat = genesis_info["lat"]
|
1644 |
-
lon = genesis_info["lon"]
|
1645 |
-
|
1646 |
-
results = {
|
1647 |
-
'current_prediction': {},
|
1648 |
-
'route_forecast': [],
|
1649 |
-
'confidence_scores': {},
|
1650 |
-
'model_info': 'Realistic Genesis Model',
|
1651 |
-
'genesis_info': genesis_info
|
1652 |
-
}
|
1653 |
-
|
1654 |
-
# REALISTIC starting intensity - Tropical Depression level
|
1655 |
-
base_intensity = 30 # Start at TD level (25-35 kt)
|
1656 |
-
|
1657 |
-
# Environmental factors for genesis
|
1658 |
-
if oni_value > 1.0: # Strong El Niño - suppressed development
|
1659 |
-
intensity_modifier = -6
|
1660 |
-
elif oni_value > 0.5: # Moderate El Niño
|
1661 |
-
intensity_modifier = -3
|
1662 |
-
elif oni_value < -1.0: # Strong La Niña - enhanced development
|
1663 |
-
intensity_modifier = +8
|
1664 |
-
elif oni_value < -0.5: # Moderate La Niña
|
1665 |
-
intensity_modifier = +5
|
1666 |
-
else: # Neutral
|
1667 |
-
intensity_modifier = oni_value * 2
|
1668 |
-
|
1669 |
-
# Seasonal genesis effects
|
1670 |
-
seasonal_factors = {
|
1671 |
-
1: -8, 2: -6, 3: -4, 4: -2, 5: 2, 6: 6,
|
1672 |
-
7: 10, 8: 12, 9: 15, 10: 10, 11: 4, 12: -5
|
1673 |
-
}
|
1674 |
-
seasonal_modifier = seasonal_factors.get(month, 0)
|
1675 |
-
|
1676 |
-
# Genesis region favorability
|
1677 |
-
region_factors = {
|
1678 |
-
"Western Pacific Main Development Region": 8,
|
1679 |
-
"South China Sea": 4,
|
1680 |
-
"Philippine Sea": 5,
|
1681 |
-
"Marshall Islands": 7,
|
1682 |
-
"Monsoon Trough": 6,
|
1683 |
-
"ITCZ Region": 3,
|
1684 |
-
"Subtropical Region": 2,
|
1685 |
-
"Bay of Bengal": 4,
|
1686 |
-
"Eastern Pacific": 6,
|
1687 |
-
"Atlantic MDR": 5
|
1688 |
-
}
|
1689 |
-
region_modifier = region_factors.get(genesis_region, 0)
|
1690 |
-
|
1691 |
-
# Calculate realistic starting intensity (TD level)
|
1692 |
-
predicted_intensity = base_intensity + intensity_modifier + seasonal_modifier + region_modifier
|
1693 |
-
predicted_intensity = max(25, min(40, predicted_intensity)) # Keep in TD-weak TS range
|
1694 |
-
|
1695 |
-
# Add realistic uncertainty for genesis
|
1696 |
-
intensity_uncertainty = np.random.normal(0, 2)
|
1697 |
-
predicted_intensity += intensity_uncertainty
|
1698 |
-
predicted_intensity = max(25, min(38, predicted_intensity)) # TD range
|
1699 |
-
|
1700 |
-
results['current_prediction'] = {
|
1701 |
-
'intensity_kt': predicted_intensity,
|
1702 |
-
'pressure_hpa': 1008 - (predicted_intensity - 25) * 0.6, # Realistic TD pressure
|
1703 |
-
'category': categorize_typhoon_enhanced(predicted_intensity),
|
1704 |
-
'genesis_region': genesis_region
|
1705 |
-
}
|
1706 |
-
|
1707 |
-
# REALISTIC route prediction with proper typhoon speeds
|
1708 |
-
current_lat = lat
|
1709 |
-
current_lon = lon
|
1710 |
-
current_intensity = predicted_intensity
|
1711 |
-
|
1712 |
-
route_points = []
|
1713 |
-
|
1714 |
-
# Track storm development over time with REALISTIC SPEEDS
|
1715 |
-
for hour in range(0, forecast_hours + 6, 6):
|
1716 |
-
|
1717 |
-
# REALISTIC typhoon motion - much faster speeds
|
1718 |
-
# Typical typhoon forward speed: 15-25 km/h (0.14-0.23°/hour)
|
1719 |
-
|
1720 |
-
# Base forward speed depends on latitude and storm intensity
|
1721 |
-
if current_lat < 20: # Low latitude - slower
|
1722 |
-
base_speed = 0.12 # ~13 km/h
|
1723 |
-
elif current_lat < 30: # Mid latitude - moderate
|
1724 |
-
base_speed = 0.18 # ~20 km/h
|
1725 |
-
else: # High latitude - faster
|
1726 |
-
base_speed = 0.25 # ~28 km/h
|
1727 |
-
|
1728 |
-
# Intensity affects speed (stronger storms can move faster)
|
1729 |
-
intensity_speed_factor = 1.0 + (current_intensity - 50) / 200
|
1730 |
-
base_speed *= max(0.8, min(1.4, intensity_speed_factor))
|
1731 |
-
|
1732 |
-
# Beta drift (Coriolis effect) - realistic values
|
1733 |
-
beta_drift_lat = 0.02 * np.sin(np.radians(current_lat))
|
1734 |
-
beta_drift_lon = -0.05 * np.cos(np.radians(current_lat))
|
1735 |
-
|
1736 |
-
# Seasonal steering patterns with realistic speeds
|
1737 |
-
if month in [6, 7, 8, 9]: # Peak season
|
1738 |
-
ridge_strength = 1.2
|
1739 |
-
ridge_position = 32 + 4 * np.sin(2 * np.pi * (month - 6) / 4)
|
1740 |
-
else: # Off season
|
1741 |
-
ridge_strength = 0.9
|
1742 |
-
ridge_position = 28
|
1743 |
-
|
1744 |
-
# REALISTIC motion based on position relative to subtropical ridge
|
1745 |
-
if current_lat < ridge_position - 10: # Well south of ridge - westward movement
|
1746 |
-
lat_tendency = base_speed * 0.3 + beta_drift_lat # Slight poleward
|
1747 |
-
lon_tendency = -base_speed * 0.9 + beta_drift_lon # Strong westward
|
1748 |
-
elif current_lat > ridge_position - 3: # Near ridge - recurvature
|
1749 |
-
lat_tendency = base_speed * 0.8 + beta_drift_lat # Strong poleward
|
1750 |
-
lon_tendency = base_speed * 0.4 + beta_drift_lon # Eastward
|
1751 |
-
else: # In between - normal WNW motion
|
1752 |
-
lat_tendency = base_speed * 0.4 + beta_drift_lat # Moderate poleward
|
1753 |
-
lon_tendency = -base_speed * 0.7 + beta_drift_lon # Moderate westward
|
1754 |
-
|
1755 |
-
# ENSO steering modulation (realistic effects)
|
1756 |
-
if oni_value > 0.5: # El Niño - more eastward/poleward motion
|
1757 |
-
lon_tendency += 0.05
|
1758 |
-
lat_tendency += 0.02
|
1759 |
-
elif oni_value < -0.5: # La Niña - more westward motion
|
1760 |
-
lon_tendency -= 0.08
|
1761 |
-
lat_tendency -= 0.01
|
1762 |
-
|
1763 |
-
# Add motion uncertainty that grows with time (realistic error growth)
|
1764 |
-
motion_uncertainty = 0.02 + (hour / 120) * 0.04
|
1765 |
-
lat_noise = np.random.normal(0, motion_uncertainty)
|
1766 |
-
lon_noise = np.random.normal(0, motion_uncertainty)
|
1767 |
-
|
1768 |
-
# Update position with realistic speeds
|
1769 |
-
current_lat += lat_tendency + lat_noise
|
1770 |
-
current_lon += lon_tendency + lon_noise
|
1771 |
-
|
1772 |
-
# REALISTIC intensity evolution with proper development cycles
|
1773 |
-
|
1774 |
-
# Development phase (first 48-72 hours) - realistic intensification
|
1775 |
-
if hour <= 48:
|
1776 |
-
if current_intensity < 50: # Still weak - rapid development possible
|
1777 |
-
if 10 <= current_lat <= 25 and 115 <= current_lon <= 165: # Favorable environment
|
1778 |
-
intensity_tendency = 4.5 if current_intensity < 35 else 3.0
|
1779 |
-
elif 120 <= current_lon <= 155 and 15 <= current_lat <= 20: # Best environment
|
1780 |
-
intensity_tendency = 6.0 if current_intensity < 40 else 4.0
|
1781 |
-
else:
|
1782 |
-
intensity_tendency = 2.0
|
1783 |
-
elif current_intensity < 80: # Moderate intensity
|
1784 |
-
intensity_tendency = 2.5 if (120 <= current_lon <= 155 and 10 <= current_lat <= 25) else 1.0
|
1785 |
-
else: # Already strong
|
1786 |
-
intensity_tendency = 1.0
|
1787 |
-
|
1788 |
-
# Mature phase (48-120 hours) - peak intensity maintenance
|
1789 |
-
elif hour <= 120:
|
1790 |
-
if current_lat < 25 and current_lon > 120: # Still in favorable waters
|
1791 |
-
if current_intensity < 120:
|
1792 |
-
intensity_tendency = 1.5
|
1793 |
-
else:
|
1794 |
-
intensity_tendency = 0.0 # Maintain intensity
|
1795 |
-
else:
|
1796 |
-
intensity_tendency = -1.5
|
1797 |
-
|
1798 |
-
# Extended phase (120+ hours) - gradual weakening
|
1799 |
-
else:
|
1800 |
-
if current_lat < 30 and current_lon > 115:
|
1801 |
-
intensity_tendency = -2.0 # Slow weakening
|
1802 |
-
else:
|
1803 |
-
intensity_tendency = -3.5 # Faster weakening
|
1804 |
-
|
1805 |
-
# Environmental modulation (realistic effects)
|
1806 |
-
if current_lat > 35: # High latitude - rapid weakening
|
1807 |
-
intensity_tendency -= 12
|
1808 |
-
elif current_lat > 30: # Moderate latitude
|
1809 |
-
intensity_tendency -= 5
|
1810 |
-
elif current_lon < 110: # Land interaction
|
1811 |
-
intensity_tendency -= 15
|
1812 |
-
elif 125 <= current_lon <= 155 and 10 <= current_lat <= 25: # Warm pool
|
1813 |
-
intensity_tendency += 2
|
1814 |
-
elif 160 <= current_lon <= 180 and 15 <= current_lat <= 30: # Still warm
|
1815 |
-
intensity_tendency += 1
|
1816 |
-
|
1817 |
-
# SST effects (realistic temperature impact)
|
1818 |
-
if current_lat < 8: # Very warm but weak Coriolis
|
1819 |
-
intensity_tendency += 0.5
|
1820 |
-
elif 8 <= current_lat <= 20: # Sweet spot for development
|
1821 |
-
intensity_tendency += 2.0
|
1822 |
-
elif 20 < current_lat <= 30: # Marginal
|
1823 |
-
intensity_tendency -= 1.0
|
1824 |
-
elif current_lat > 30: # Cool waters
|
1825 |
-
intensity_tendency -= 4.0
|
1826 |
-
|
1827 |
-
# Shear effects (simplified but realistic)
|
1828 |
-
if month in [12, 1, 2, 3]: # High shear season
|
1829 |
-
intensity_tendency -= 2.0
|
1830 |
-
elif month in [7, 8, 9]: # Low shear season
|
1831 |
-
intensity_tendency += 1.0
|
1832 |
-
|
1833 |
-
# Update intensity with realistic bounds and variability
|
1834 |
-
intensity_noise = np.random.normal(0, 1.5) # Small random fluctuations
|
1835 |
-
current_intensity += intensity_tendency + intensity_noise
|
1836 |
-
current_intensity = max(20, min(185, current_intensity)) # Realistic range
|
1837 |
-
|
1838 |
-
# Calculate confidence based on forecast time and environment
|
1839 |
-
base_confidence = 0.92
|
1840 |
-
time_penalty = (hour / 120) * 0.45
|
1841 |
-
environment_penalty = 0.15 if current_lat > 30 or current_lon < 115 else 0
|
1842 |
-
confidence = max(0.25, base_confidence - time_penalty - environment_penalty)
|
1843 |
-
|
1844 |
-
# Determine development stage
|
1845 |
-
if hour <= 24:
|
1846 |
-
stage = 'Genesis'
|
1847 |
-
elif hour <= 72:
|
1848 |
-
stage = 'Development'
|
1849 |
-
elif hour <= 120:
|
1850 |
-
stage = 'Mature'
|
1851 |
-
elif hour <= 240:
|
1852 |
-
stage = 'Extended'
|
1853 |
-
else:
|
1854 |
-
stage = 'Long-term'
|
1855 |
-
|
1856 |
-
route_points.append({
|
1857 |
-
'hour': hour,
|
1858 |
-
'lat': current_lat,
|
1859 |
-
'lon': current_lon,
|
1860 |
-
'intensity_kt': current_intensity,
|
1861 |
-
'category': categorize_typhoon_enhanced(current_intensity),
|
1862 |
-
'confidence': confidence,
|
1863 |
-
'development_stage': stage,
|
1864 |
-
'forward_speed_kmh': base_speed * 111, # Convert to km/h
|
1865 |
-
'pressure_hpa': max(900, 1013 - (current_intensity - 25) * 0.9)
|
1866 |
-
})
|
1867 |
-
|
1868 |
-
results['route_forecast'] = route_points
|
1869 |
-
|
1870 |
-
# Realistic confidence scores
|
1871 |
-
results['confidence_scores'] = {
|
1872 |
-
'genesis': 0.88,
|
1873 |
-
'early_development': 0.82,
|
1874 |
-
'position_24h': 0.85,
|
1875 |
-
'position_48h': 0.78,
|
1876 |
-
'position_72h': 0.68,
|
1877 |
-
'intensity_24h': 0.75,
|
1878 |
-
'intensity_48h': 0.65,
|
1879 |
-
'intensity_72h': 0.55,
|
1880 |
-
'long_term': max(0.3, 0.8 - (forecast_hours / 240) * 0.5)
|
1881 |
-
}
|
1882 |
-
|
1883 |
-
# Model information
|
1884 |
-
results['model_info'] = f"Enhanced Realistic Model - {genesis_region}"
|
1885 |
-
|
1886 |
-
return results
|
1887 |
-
|
1888 |
-
except Exception as e:
|
1889 |
-
logging.error(f"Realistic prediction error: {str(e)}")
|
1890 |
-
return {
|
1891 |
-
'error': f"Prediction error: {str(e)}",
|
1892 |
-
'current_prediction': {'intensity_kt': 30, 'category': 'Tropical Depression'},
|
1893 |
-
'route_forecast': [],
|
1894 |
-
'confidence_scores': {},
|
1895 |
-
'model_info': 'Error in prediction'
|
1896 |
-
}
|
1897 |
-
|
1898 |
-
# -----------------------------
|
1899 |
-
# NEW: SIMPLIFIED MULTI-ROUTE PREDICTION FUNCTIONS
|
1900 |
-
# -----------------------------
|
1901 |
-
|
1902 |
-
def generate_multiple_route_predictions(month, oni_value, num_routes=5):
|
1903 |
-
"""Generate multiple realistic route predictions for animation"""
|
1904 |
-
|
1905 |
-
# Realistic genesis regions for variety
|
1906 |
-
genesis_regions = [
|
1907 |
-
"Western Pacific Main Development Region",
|
1908 |
-
"South China Sea",
|
1909 |
-
"Philippine Sea",
|
1910 |
-
"Marshall Islands",
|
1911 |
-
"Monsoon Trough"
|
1912 |
-
]
|
1913 |
-
|
1914 |
-
all_predictions = []
|
1915 |
-
|
1916 |
-
for i in range(num_routes):
|
1917 |
-
# Use different genesis regions and slight ONI variations for diversity
|
1918 |
-
region = genesis_regions[i % len(genesis_regions)]
|
1919 |
-
|
1920 |
-
# Add small random variation to ONI for route diversity
|
1921 |
-
oni_variation = oni_value + np.random.normal(0, 0.2)
|
1922 |
-
|
1923 |
-
# Generate prediction for this route
|
1924 |
-
prediction = predict_storm_route_and_intensity_realistic(
|
1925 |
-
region,
|
1926 |
-
month,
|
1927 |
-
oni_variation,
|
1928 |
-
forecast_hours=120, # 5 day forecast
|
1929 |
-
use_advanced_physics=True
|
1930 |
-
)
|
1931 |
-
|
1932 |
-
prediction['route_id'] = i + 1
|
1933 |
-
prediction['genesis_region'] = region
|
1934 |
-
prediction['oni_used'] = oni_variation
|
1935 |
-
all_predictions.append(prediction)
|
1936 |
-
|
1937 |
-
return all_predictions
|
1938 |
-
|
1939 |
-
def create_multi_route_animation(all_predictions, enable_animation=True):
|
1940 |
-
"""Create animated visualization showing multiple predicted routes"""
|
1941 |
-
|
1942 |
-
# Route colors for multiple predictions
|
1943 |
-
route_colors = ['#FF0066', '#00FF66', '#6600FF', '#FF6600', '#0066FF']
|
1944 |
-
|
1945 |
-
if not all_predictions or not any(pred.get('route_forecast') for pred in all_predictions):
|
1946 |
-
# Return error plot if no valid predictions
|
1947 |
-
fig = go.Figure()
|
1948 |
-
fig.add_annotation(
|
1949 |
-
text="No valid route predictions generated",
|
1950 |
-
xref="paper", yref="paper",
|
1951 |
-
x=0.5, y=0.5, xanchor='center', yanchor='middle',
|
1952 |
-
showarrow=False, font_size=16
|
1953 |
-
)
|
1954 |
-
return fig
|
1955 |
-
|
1956 |
-
fig = go.Figure()
|
1957 |
-
|
1958 |
-
if enable_animation:
|
1959 |
-
# Find max forecast length for consistent animation
|
1960 |
-
max_hours = max(len(pred['route_forecast']) for pred in all_predictions if pred.get('route_forecast'))
|
1961 |
-
|
1962 |
-
# Add genesis points for all routes (static background)
|
1963 |
-
for i, prediction in enumerate(all_predictions):
|
1964 |
-
if prediction.get('route_forecast'):
|
1965 |
-
first_point = prediction['route_forecast'][0]
|
1966 |
-
color = route_colors[i % len(route_colors)]
|
1967 |
-
|
1968 |
-
fig.add_trace(
|
1969 |
-
go.Scattergeo(
|
1970 |
-
lon=[first_point['lon']],
|
1971 |
-
lat=[first_point['lat']],
|
1972 |
-
mode='markers',
|
1973 |
-
marker=dict(
|
1974 |
-
size=20,
|
1975 |
-
color=color,
|
1976 |
-
symbol='star',
|
1977 |
-
line=dict(width=2, color='white')
|
1978 |
-
),
|
1979 |
-
name=f'Route {prediction["route_id"]} Genesis',
|
1980 |
-
showlegend=True,
|
1981 |
-
hovertemplate=(
|
1982 |
-
f"<b>Route {prediction['route_id']} Genesis</b><br>"
|
1983 |
-
f"Region: {prediction['genesis_region']}<br>"
|
1984 |
-
f"ONI: {prediction['oni_used']:.2f}<br>"
|
1985 |
-
"<extra></extra>"
|
1986 |
-
)
|
1987 |
-
)
|
1988 |
-
)
|
1989 |
-
|
1990 |
-
# Create animation frames
|
1991 |
-
frames = []
|
1992 |
-
|
1993 |
-
for frame_idx in range(max_hours):
|
1994 |
-
frame_data = []
|
1995 |
-
|
1996 |
-
for i, prediction in enumerate(all_predictions):
|
1997 |
-
route_data = prediction.get('route_forecast', [])
|
1998 |
-
color = route_colors[i % len(route_colors)]
|
1999 |
-
|
2000 |
-
if frame_idx < len(route_data):
|
2001 |
-
# Get route points up to current frame
|
2002 |
-
current_points = route_data[:frame_idx + 1]
|
2003 |
-
|
2004 |
-
if current_points:
|
2005 |
-
lats = [p['lat'] for p in current_points]
|
2006 |
-
lons = [p['lon'] for p in current_points]
|
2007 |
-
intensities = [p['intensity_kt'] for p in current_points]
|
2008 |
-
|
2009 |
-
# Add route line
|
2010 |
-
frame_data.append(
|
2011 |
-
go.Scattergeo(
|
2012 |
-
lon=lons,
|
2013 |
-
lat=lats,
|
2014 |
-
mode='lines+markers',
|
2015 |
-
line=dict(color=color, width=3),
|
2016 |
-
marker=dict(
|
2017 |
-
size=[6 + max(0, int/15) for int in intensities],
|
2018 |
-
color=color,
|
2019 |
-
opacity=0.8
|
2020 |
-
),
|
2021 |
-
name=f'Route {prediction["route_id"]}',
|
2022 |
-
showlegend=False,
|
2023 |
-
hovertemplate=(
|
2024 |
-
f"<b>Route {prediction['route_id']}</b><br>"
|
2025 |
-
f"Hour {current_points[-1]['hour']}<br>"
|
2026 |
-
f"Intensity: {current_points[-1]['intensity_kt']:.0f} kt<br>"
|
2027 |
-
f"Category: {current_points[-1]['category']}<br>"
|
2028 |
-
"<extra></extra>"
|
2029 |
-
)
|
2030 |
-
)
|
2031 |
-
)
|
2032 |
-
|
2033 |
-
frames.append(go.Frame(
|
2034 |
-
data=frame_data,
|
2035 |
-
name=str(frame_idx),
|
2036 |
-
layout=go.Layout(
|
2037 |
-
title=f"Multi-Route Storm Development Animation - Hour {frame_idx * 6}"
|
2038 |
-
)
|
2039 |
-
))
|
2040 |
-
|
2041 |
-
fig.frames = frames
|
2042 |
-
|
2043 |
-
# Add animation controls
|
2044 |
-
fig.update_layout(
|
2045 |
-
updatemenus=[{
|
2046 |
-
"buttons": [
|
2047 |
-
{
|
2048 |
-
"args": [None, {"frame": {"duration": 800, "redraw": True},
|
2049 |
-
"fromcurrent": True, "transition": {"duration": 300}}],
|
2050 |
-
"label": "▶️ Play",
|
2051 |
-
"method": "animate"
|
2052 |
-
},
|
2053 |
-
{
|
2054 |
-
"args": [[None], {"frame": {"duration": 0, "redraw": True},
|
2055 |
-
"mode": "immediate", "transition": {"duration": 0}}],
|
2056 |
-
"label": "⏸️ Pause",
|
2057 |
-
"method": "animate"
|
2058 |
-
}
|
2059 |
-
],
|
2060 |
-
"direction": "left",
|
2061 |
-
"pad": {"r": 10, "t": 87},
|
2062 |
-
"showactive": False,
|
2063 |
-
"type": "buttons",
|
2064 |
-
"x": 0.1,
|
2065 |
-
"xanchor": "right",
|
2066 |
-
"y": 0,
|
2067 |
-
"yanchor": "top"
|
2068 |
-
}],
|
2069 |
-
sliders=[{
|
2070 |
-
"active": 0,
|
2071 |
-
"yanchor": "top",
|
2072 |
-
"xanchor": "left",
|
2073 |
-
"currentvalue": {
|
2074 |
-
"font": {"size": 16},
|
2075 |
-
"prefix": "Hour: ",
|
2076 |
-
"visible": True,
|
2077 |
-
"xanchor": "right"
|
2078 |
-
},
|
2079 |
-
"transition": {"duration": 300, "easing": "cubic-in-out"},
|
2080 |
-
"pad": {"b": 10, "t": 50},
|
2081 |
-
"len": 0.9,
|
2082 |
-
"x": 0.1,
|
2083 |
-
"y": 0,
|
2084 |
-
"steps": [
|
2085 |
-
{
|
2086 |
-
"args": [[str(i)], {"frame": {"duration": 300, "redraw": True},
|
2087 |
-
"mode": "immediate", "transition": {"duration": 300}}],
|
2088 |
-
"label": f"H{i*6}",
|
2089 |
-
"method": "animate"
|
2090 |
-
}
|
2091 |
-
for i in range(0, max_hours, max(1, max_hours//20))
|
2092 |
-
]
|
2093 |
-
}]
|
2094 |
-
)
|
2095 |
-
|
2096 |
-
else:
|
2097 |
-
# Static version showing all complete routes
|
2098 |
-
for i, prediction in enumerate(all_predictions):
|
2099 |
-
route_data = prediction.get('route_forecast', [])
|
2100 |
-
color = route_colors[i % len(route_colors)]
|
2101 |
-
|
2102 |
-
if route_data:
|
2103 |
-
lats = [p['lat'] for p in route_data]
|
2104 |
-
lons = [p['lon'] for p in route_data]
|
2105 |
-
intensities = [p['intensity_kt'] for p in route_data]
|
2106 |
-
|
2107 |
-
# Add complete route
|
2108 |
-
fig.add_trace(
|
2109 |
-
go.Scattergeo(
|
2110 |
-
lon=lons,
|
2111 |
-
lat=lats,
|
2112 |
-
mode='lines+markers',
|
2113 |
-
line=dict(color=color, width=3),
|
2114 |
-
marker=dict(
|
2115 |
-
size=[6 + max(0, int/15) for int in intensities],
|
2116 |
-
color=color,
|
2117 |
-
opacity=0.8
|
2118 |
-
),
|
2119 |
-
name=f'Route {prediction["route_id"]} - {prediction["genesis_region"][:20]}...',
|
2120 |
-
hovertemplate=(
|
2121 |
-
f"<b>Route {prediction['route_id']}</b><br>"
|
2122 |
-
f"Region: {prediction['genesis_region']}<br>"
|
2123 |
-
f"ONI: {prediction['oni_used']:.2f}<br>"
|
2124 |
-
"<extra></extra>"
|
2125 |
-
)
|
2126 |
-
)
|
2127 |
-
)
|
2128 |
-
|
2129 |
-
# Add genesis marker
|
2130 |
-
fig.add_trace(
|
2131 |
-
go.Scattergeo(
|
2132 |
-
lon=[lons[0]],
|
2133 |
-
lat=[lats[0]],
|
2134 |
-
mode='markers',
|
2135 |
-
marker=dict(
|
2136 |
-
size=20,
|
2137 |
-
color=color,
|
2138 |
-
symbol='star',
|
2139 |
-
line=dict(width=2, color='white')
|
2140 |
-
),
|
2141 |
-
name=f'Route {prediction["route_id"]} Genesis',
|
2142 |
-
showlegend=False
|
2143 |
-
)
|
2144 |
-
)
|
2145 |
-
|
2146 |
-
# Update layout
|
2147 |
-
fig.update_layout(
|
2148 |
-
title="Multiple Route Storm Predictions" + (" (Animated)" if enable_animation else " (Static)"),
|
2149 |
-
geo=dict(
|
2150 |
-
projection_type="natural earth",
|
2151 |
-
showland=True,
|
2152 |
-
landcolor="LightGray",
|
2153 |
-
showocean=True,
|
2154 |
-
oceancolor="LightBlue",
|
2155 |
-
showcoastlines=True,
|
2156 |
-
coastlinecolor="Gray",
|
2157 |
-
center=dict(lat=20, lon=140),
|
2158 |
-
projection_scale=2.0
|
2159 |
-
),
|
2160 |
-
height=800
|
2161 |
-
)
|
2162 |
-
|
2163 |
-
return fig
|
2164 |
-
|
2165 |
-
def create_intensity_comparison(all_predictions):
|
2166 |
-
"""Create intensity comparison plot for multiple routes"""
|
2167 |
-
fig = go.Figure()
|
2168 |
-
|
2169 |
-
route_colors = ['#FF0066', '#00FF66', '#6600FF', '#FF6600', '#0066FF']
|
2170 |
-
|
2171 |
-
for i, prediction in enumerate(all_predictions):
|
2172 |
-
route_data = prediction.get('route_forecast', [])
|
2173 |
-
if route_data:
|
2174 |
-
hours = [p['hour'] for p in route_data]
|
2175 |
-
intensities = [p['intensity_kt'] for p in route_data]
|
2176 |
-
color = route_colors[i % len(route_colors)]
|
2177 |
-
|
2178 |
-
fig.add_trace(
|
2179 |
-
go.Scatter(
|
2180 |
-
x=hours,
|
2181 |
-
y=intensities,
|
2182 |
-
mode='lines+markers',
|
2183 |
-
line=dict(color=color, width=3),
|
2184 |
-
marker=dict(size=6, color=color),
|
2185 |
-
name=f'Route {prediction["route_id"]}',
|
2186 |
-
hovertemplate=(
|
2187 |
-
f"<b>Route {prediction['route_id']}</b><br>"
|
2188 |
-
f"Hour: %{{x}}<br>"
|
2189 |
-
f"Intensity: %{{y:.0f}} kt<br>"
|
2190 |
-
"<extra></extra>"
|
2191 |
-
)
|
2192 |
-
)
|
2193 |
-
)
|
2194 |
-
|
2195 |
-
# Add category threshold lines
|
2196 |
-
thresholds = [34, 64, 83, 96, 113, 137]
|
2197 |
-
threshold_names = ['TS', 'C1', 'C2', 'C3', 'C4', 'C5']
|
2198 |
-
|
2199 |
-
for thresh, name in zip(thresholds, threshold_names):
|
2200 |
-
fig.add_hline(
|
2201 |
-
y=thresh,
|
2202 |
-
line_dash="dash",
|
2203 |
-
line_color="gray",
|
2204 |
-
annotation_text=name,
|
2205 |
-
annotation_position="right"
|
2206 |
-
)
|
2207 |
-
|
2208 |
-
fig.update_layout(
|
2209 |
-
title="Intensity Evolution Comparison - All Routes",
|
2210 |
-
xaxis_title="Forecast Hour",
|
2211 |
-
yaxis_title="Wind Speed (kt)",
|
2212 |
-
height=400
|
2213 |
-
)
|
2214 |
-
|
2215 |
-
return fig
|
2216 |
-
|
2217 |
# -----------------------------
|
2218 |
# Regression Functions (Original)
|
2219 |
# -----------------------------
|
@@ -2791,204 +2832,71 @@ def create_interface():
|
|
2791 |
"""
|
2792 |
gr.Markdown(overview_text)
|
2793 |
|
2794 |
-
with gr.Tab("
|
2795 |
-
gr.Markdown("##
|
2796 |
-
gr.Markdown("**Enter
|
2797 |
|
2798 |
with gr.Row():
|
2799 |
with gr.Column(scale=1):
|
2800 |
-
|
2801 |
1, 12,
|
2802 |
-
label="
|
2803 |
value=9,
|
2804 |
-
|
|
|
2805 |
)
|
2806 |
-
|
2807 |
label="ONI Value",
|
2808 |
value=0.0,
|
2809 |
info="El Niño (+) / La Niña (-) / Neutral (0)"
|
2810 |
)
|
2811 |
-
|
2812 |
label="Enable Animation",
|
2813 |
value=True,
|
2814 |
-
info="Watch
|
2815 |
)
|
2816 |
-
|
2817 |
|
2818 |
with gr.Column(scale=2):
|
2819 |
gr.Markdown("### 🌊 What You'll Get:")
|
2820 |
gr.Markdown("""
|
2821 |
-
- **
|
2822 |
-
- **
|
2823 |
-
- **
|
2824 |
-
- **
|
2825 |
-
- **
|
2826 |
-
- **
|
2827 |
""")
|
2828 |
|
2829 |
with gr.Row():
|
2830 |
-
|
2831 |
-
|
2832 |
-
with gr.Row():
|
2833 |
-
simple_intensity_comparison = gr.Plot(label="📊 Intensity Evolution Comparison")
|
2834 |
|
2835 |
with gr.Row():
|
2836 |
-
|
2837 |
|
2838 |
-
def
|
2839 |
try:
|
2840 |
-
# Generate
|
2841 |
-
|
2842 |
-
|
2843 |
-
# Create multi-route animation
|
2844 |
-
route_fig = create_multi_route_animation(all_predictions, animation)
|
2845 |
-
|
2846 |
-
# Create intensity comparison
|
2847 |
-
intensity_fig = create_intensity_comparison(all_predictions)
|
2848 |
-
|
2849 |
-
# Generate summary text with error analysis
|
2850 |
-
summary_text = f"""
|
2851 |
-
SIMPLIFIED MULTI-ROUTE PREDICTION SUMMARY WITH ERROR ANALYSIS
|
2852 |
-
{'='*65}
|
2853 |
-
|
2854 |
-
INPUT CONDITIONS:
|
2855 |
-
• Month: {month} {'(Peak Season)' if month in [7,8,9,10] else '(Off Season)'}
|
2856 |
-
• ONI Value: {oni:.2f} {'(El Niño)' if oni > 0.5 else '(La Niña)' if oni < -0.5 else '(Neutral)'}
|
2857 |
-
|
2858 |
-
ROUTE PREDICTIONS GENERATED: 5 scenarios
|
2859 |
-
|
2860 |
-
ROUTE BREAKDOWN:
|
2861 |
-
"""
|
2862 |
-
|
2863 |
-
all_max_intensities = []
|
2864 |
-
all_final_intensities = []
|
2865 |
-
genesis_regions = []
|
2866 |
|
2867 |
-
|
2868 |
-
|
2869 |
-
if route_data:
|
2870 |
-
max_intensity = max(p['intensity_kt'] for p in route_data)
|
2871 |
-
final_intensity = route_data[-1]['intensity_kt']
|
2872 |
-
max_category = max((categorize_typhoon_enhanced(p['intensity_kt']) for p in route_data),
|
2873 |
-
key=lambda x: ['Tropical Depression', 'Tropical Storm', 'C1 Typhoon', 'C2 Typhoon', 'C3 Strong Typhoon', 'C4 Very Strong Typhoon', 'C5 Super Typhoon'].index(x))
|
2874 |
-
|
2875 |
-
all_max_intensities.append(max_intensity)
|
2876 |
-
all_final_intensities.append(final_intensity)
|
2877 |
-
genesis_regions.append(pred['genesis_region'])
|
2878 |
-
|
2879 |
-
summary_text += f"""
|
2880 |
-
ROUTE {pred['route_id']}:
|
2881 |
-
• Genesis: {pred['genesis_region']}
|
2882 |
-
• ONI Used: {pred['oni_used']:.2f}
|
2883 |
-
• Peak Intensity: {max_intensity:.0f} kt ({max_category})
|
2884 |
-
• Final Intensity: {final_intensity:.0f} kt
|
2885 |
-
• Duration: {len(route_data)} time steps ({len(route_data)*6} hours)
|
2886 |
-
• Confidence: {pred.get('confidence_scores', {}).get('long_term', 0.5)*100:.0f}%
|
2887 |
-
"""
|
2888 |
|
2889 |
-
#
|
2890 |
-
|
2891 |
-
mean_max = np.mean(all_max_intensities)
|
2892 |
-
std_max = np.std(all_max_intensities)
|
2893 |
-
mean_final = np.mean(all_final_intensities)
|
2894 |
-
std_final = np.std(all_final_intensities)
|
2895 |
-
|
2896 |
-
# Calculate prediction uncertainty metrics
|
2897 |
-
intensity_range = max(all_max_intensities) - min(all_max_intensities)
|
2898 |
-
prediction_skill = max(0, 1 - (std_max / max(mean_max, 1)))
|
2899 |
-
|
2900 |
-
# Environmental predictability
|
2901 |
-
if month in [7, 8, 9]: # Peak season
|
2902 |
-
environmental_predictability = 0.8
|
2903 |
-
elif month in [10, 11, 6]: # Shoulder season
|
2904 |
-
environmental_predictability = 0.6
|
2905 |
-
else: # Off season
|
2906 |
-
environmental_predictability = 0.4
|
2907 |
-
|
2908 |
-
# ENSO influence on predictability
|
2909 |
-
enso_predictability = 0.7 + 0.2 * min(abs(oni), 2.0) / 2.0
|
2910 |
-
|
2911 |
-
# Overall prediction confidence
|
2912 |
-
overall_confidence = (prediction_skill * 0.4 +
|
2913 |
-
environmental_predictability * 0.3 +
|
2914 |
-
enso_predictability * 0.3)
|
2915 |
-
|
2916 |
-
summary_text += f"""
|
2917 |
-
|
2918 |
-
PREDICTION ERROR & UNCERTAINTY ANALYSIS:
|
2919 |
-
==========================================
|
2920 |
-
|
2921 |
-
INTENSITY STATISTICS:
|
2922 |
-
• Peak Intensity Range: {min(all_max_intensities):.0f} - {max(all_max_intensities):.0f} kt
|
2923 |
-
• Mean Peak Intensity: {mean_max:.0f} ± {std_max:.0f} kt
|
2924 |
-
• Final Intensity Range: {min(all_final_intensities):.0f} - {max(all_final_intensities):.0f} kt
|
2925 |
-
• Mean Final Intensity: {mean_final:.0f} ± {std_final:.0f} kt
|
2926 |
-
|
2927 |
-
PREDICTION UNCERTAINTY METRICS:
|
2928 |
-
• Intensity Spread: {intensity_range:.0f} kt (uncertainty range)
|
2929 |
-
• Prediction Skill: {prediction_skill:.2f} (0=poor, 1=excellent)
|
2930 |
-
• Environmental Predictability: {environmental_predictability:.2f}
|
2931 |
-
• ENSO Influence Factor: {enso_predictability:.2f}
|
2932 |
-
• Overall Confidence: {overall_confidence:.2f} ({overall_confidence*100:.0f}%)
|
2933 |
-
|
2934 |
-
ERROR SOURCES & LIMITATIONS:
|
2935 |
-
• Genesis Location Uncertainty: ±2-5° lat/lon
|
2936 |
-
• Steering Flow Variability: ±15-25% track speed
|
2937 |
-
• Intensity Development: ±20-40 kt at 72h forecast
|
2938 |
-
• Environmental Interaction: Variable SST/shear effects
|
2939 |
-
• Model Physics: Simplified compared to full NWP models
|
2940 |
-
|
2941 |
-
INTERPRETATION GUIDE:
|
2942 |
-
{"🔴 HIGH UNCERTAINTY" if overall_confidence < 0.5 else "🟡 MODERATE UNCERTAINTY" if overall_confidence < 0.7 else "🟢 GOOD CONFIDENCE"}
|
2943 |
-
• Spread > 40 kt: High uncertainty scenario
|
2944 |
-
• Spread 20-40 kt: Moderate uncertainty
|
2945 |
-
• Spread < 20 kt: Good agreement between scenarios
|
2946 |
-
|
2947 |
-
FORECAST SKILL BY TIME:
|
2948 |
-
• 0-24h: ~85% position accuracy, ~75% intensity
|
2949 |
-
• 24-48h: ~75% position accuracy, ~65% intensity
|
2950 |
-
• 48-72h: ~65% position accuracy, ~55% intensity
|
2951 |
-
• 72h+: ~50% position accuracy, ~45% intensity
|
2952 |
-
|
2953 |
-
GENESIS REGION DIVERSITY:
|
2954 |
-
• Primary Regions: {len(set(genesis_regions))} different zones
|
2955 |
-
• Most Active: {max(set(genesis_regions), key=genesis_regions.count)}
|
2956 |
-
• Least Represented: {min(set(genesis_regions), key=genesis_regions.count)}
|
2957 |
-
|
2958 |
-
SEASONAL CONTEXT:
|
2959 |
-
{"Peak season - higher confidence in development patterns" if month in [7,8,9,10] else "Off-season - increased uncertainty in storm behavior"}
|
2960 |
-
|
2961 |
-
ENSO INFLUENCE:
|
2962 |
-
{"Strong El Niño suppression expected" if oni > 1.0 else "Moderate El Niño effects" if oni > 0.5 else "Strong La Niña enhancement likely" if oni < -1.0 else "Moderate La Niña effects" if oni < -0.5 else "Neutral ENSO - average conditions"}
|
2963 |
-
|
2964 |
-
ANIMATION FEATURES:
|
2965 |
-
{"✅ Real-time development animation enabled" if animation else "📊 Static multi-route comparison"}
|
2966 |
-
✅ 5 simultaneous storm tracks with uncertainty
|
2967 |
-
✅ Color-coded intensity evolution
|
2968 |
-
✅ Realistic genesis locations and physics
|
2969 |
-
✅ Environmental coupling effects
|
2970 |
-
✅ Confidence-weighted predictions
|
2971 |
-
|
2972 |
-
⚠️ IMPORTANT DISCLAIMERS:
|
2973 |
-
• These are statistical predictions, not operational forecasts
|
2974 |
-
• Actual storms may behave differently due to unmodeled factors
|
2975 |
-
• Use for research/planning only, not for emergency decisions
|
2976 |
-
• Consult official meteorological services for real forecasts
|
2977 |
-
• Model simplified compared to operational NWP systems
|
2978 |
-
"""
|
2979 |
|
2980 |
-
return
|
2981 |
|
2982 |
except Exception as e:
|
2983 |
import traceback
|
2984 |
-
error_msg = f"
|
2985 |
logging.error(error_msg)
|
2986 |
-
return
|
2987 |
|
2988 |
-
|
2989 |
-
fn=
|
2990 |
-
inputs=[
|
2991 |
-
outputs=[
|
2992 |
)
|
2993 |
|
2994 |
with gr.Tab("🔬 Advanced ML Clustering"):
|
|
|
801 |
return 'Tropical Storm', '#0000FF' # Blue
|
802 |
return 'Tropical Depression', '#808080' # Gray
|
803 |
|
804 |
+
# -----------------------------
|
805 |
+
# FIXED: Genesis Potential Index (GPI) Based Prediction System
|
806 |
+
# -----------------------------
|
807 |
+
|
808 |
+
def calculate_genesis_potential_index(sst, rh, vorticity, wind_shear, lat, lon, month, oni_value):
|
809 |
+
"""
|
810 |
+
Calculate Genesis Potential Index based on environmental parameters
|
811 |
+
Following Emanuel and Nolan (2004) formulation with modifications for monthly predictions
|
812 |
+
"""
|
813 |
+
try:
|
814 |
+
# Base environmental parameters
|
815 |
+
|
816 |
+
# SST factor - optimal range 26-30°C
|
817 |
+
sst_factor = max(0, (sst - 26.5) / 4.0) if sst > 26.5 else 0
|
818 |
+
|
819 |
+
# Humidity factor - mid-level relative humidity (600 hPa)
|
820 |
+
rh_factor = max(0, (rh - 40) / 50.0) # Normalized 40-90%
|
821 |
+
|
822 |
+
# Vorticity factor - low-level absolute vorticity (850 hPa)
|
823 |
+
vort_factor = max(0, min(vorticity / 5e-5, 3.0)) # Cap at reasonable max
|
824 |
+
|
825 |
+
# Wind shear factor - vertical wind shear (inverse relationship)
|
826 |
+
shear_factor = max(0, (20 - wind_shear) / 15.0) if wind_shear < 20 else 0
|
827 |
+
|
828 |
+
# Coriolis factor - latitude dependency
|
829 |
+
coriolis_factor = max(0, min(abs(lat) / 20.0, 1.0)) if abs(lat) > 5 else 0
|
830 |
+
|
831 |
+
# Seasonal factor
|
832 |
+
seasonal_weights = {
|
833 |
+
1: 0.3, 2: 0.2, 3: 0.4, 4: 0.6, 5: 0.8, 6: 1.0,
|
834 |
+
7: 1.2, 8: 1.4, 9: 1.5, 10: 1.3, 11: 0.9, 12: 0.5
|
835 |
+
}
|
836 |
+
seasonal_factor = seasonal_weights.get(month, 1.0)
|
837 |
+
|
838 |
+
# ENSO modulation
|
839 |
+
if oni_value > 0.5: # El Niño
|
840 |
+
enso_factor = 0.6 if lon > 140 else 0.8 # Suppress in WP
|
841 |
+
elif oni_value < -0.5: # La Niña
|
842 |
+
enso_factor = 1.4 if lon > 140 else 1.1 # Enhance in WP
|
843 |
+
else: # Neutral
|
844 |
+
enso_factor = 1.0
|
845 |
+
|
846 |
+
# Regional modulation (Western Pacific specifics)
|
847 |
+
if 10 <= lat <= 25 and 120 <= lon <= 160: # Main Development Region
|
848 |
+
regional_factor = 1.3
|
849 |
+
elif 5 <= lat <= 15 and 130 <= lon <= 150: # Prime genesis zone
|
850 |
+
regional_factor = 1.5
|
851 |
+
else:
|
852 |
+
regional_factor = 0.8
|
853 |
+
|
854 |
+
# Calculate GPI
|
855 |
+
gpi = (sst_factor * rh_factor * vort_factor * shear_factor *
|
856 |
+
coriolis_factor * seasonal_factor * enso_factor * regional_factor)
|
857 |
+
|
858 |
+
return max(0, min(gpi, 5.0)) # Cap at reasonable maximum
|
859 |
+
|
860 |
+
except Exception as e:
|
861 |
+
logging.error(f"Error calculating GPI: {e}")
|
862 |
+
return 0.0
|
863 |
+
|
864 |
+
def get_environmental_conditions(lat, lon, month, oni_value):
|
865 |
+
"""
|
866 |
+
Get realistic environmental conditions for a given location and time
|
867 |
+
Based on climatological patterns and ENSO modulation
|
868 |
+
"""
|
869 |
+
try:
|
870 |
+
# Base SST calculation (climatological)
|
871 |
+
base_sst = 28.5 - 0.15 * abs(lat - 15) # Peak at 15°N
|
872 |
+
seasonal_sst_adj = 2.0 * np.cos(2 * np.pi * (month - 9) / 12) # Peak in Sep
|
873 |
+
enso_sst_adj = oni_value * 0.8 if lon > 140 else oni_value * 0.4
|
874 |
+
sst = base_sst + seasonal_sst_adj + enso_sst_adj
|
875 |
+
|
876 |
+
# Relative humidity (600 hPa)
|
877 |
+
base_rh = 75 - 0.5 * abs(lat - 12) # Peak around 12°N
|
878 |
+
seasonal_rh_adj = 10 * np.cos(2 * np.pi * (month - 8) / 12) # Peak in Aug
|
879 |
+
monsoon_effect = 5 if 100 <= lon <= 120 and month in [6,7,8,9] else 0
|
880 |
+
rh = max(40, min(90, base_rh + seasonal_rh_adj + monsoon_effect))
|
881 |
+
|
882 |
+
# Low-level vorticity (850 hPa)
|
883 |
+
base_vort = 2e-5 * (1 + 0.1 * np.sin(2 * np.pi * lat / 30))
|
884 |
+
seasonal_vort_adj = 1e-5 * np.cos(2 * np.pi * (month - 8) / 12)
|
885 |
+
itcz_effect = 1.5e-5 if 5 <= lat <= 15 else 0
|
886 |
+
vorticity = max(0, base_vort + seasonal_vort_adj + itcz_effect)
|
887 |
+
|
888 |
+
# Vertical wind shear (200-850 hPa)
|
889 |
+
base_shear = 8 + 0.3 * abs(lat - 20) # Lower near 20°N
|
890 |
+
seasonal_shear_adj = 4 * np.cos(2 * np.pi * (month - 2) / 12) # Low in Aug-Sep
|
891 |
+
enso_shear_adj = oni_value * 3 if lon > 140 else 0 # El Niño increases shear
|
892 |
+
wind_shear = max(2, base_shear + seasonal_shear_adj + enso_shear_adj)
|
893 |
+
|
894 |
+
return {
|
895 |
+
'sst': sst,
|
896 |
+
'relative_humidity': rh,
|
897 |
+
'vorticity': vorticity,
|
898 |
+
'wind_shear': wind_shear
|
899 |
+
}
|
900 |
+
|
901 |
+
except Exception as e:
|
902 |
+
logging.error(f"Error getting environmental conditions: {e}")
|
903 |
+
return {
|
904 |
+
'sst': 28.0,
|
905 |
+
'relative_humidity': 70.0,
|
906 |
+
'vorticity': 2e-5,
|
907 |
+
'wind_shear': 10.0
|
908 |
+
}
|
909 |
+
|
910 |
+
def generate_genesis_prediction_monthly(month, oni_value, year=2025):
|
911 |
+
"""
|
912 |
+
Generate realistic typhoon genesis prediction for a given month using GPI
|
913 |
+
Returns day-by-day genesis potential and storm development scenarios
|
914 |
+
"""
|
915 |
+
try:
|
916 |
+
logging.info(f"Generating GPI-based prediction for month {month}, ONI {oni_value}")
|
917 |
+
|
918 |
+
# Define the Western Pacific domain
|
919 |
+
lat_range = np.arange(5, 35, 2.5) # 5°N to 35°N
|
920 |
+
lon_range = np.arange(110, 180, 2.5) # 110°E to 180°E
|
921 |
+
|
922 |
+
# Number of days in the month
|
923 |
+
days_in_month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31][month - 1]
|
924 |
+
if month == 2 and year % 4 == 0: # Leap year
|
925 |
+
days_in_month = 29
|
926 |
+
|
927 |
+
# Daily GPI evolution
|
928 |
+
daily_gpi_maps = []
|
929 |
+
genesis_events = []
|
930 |
+
|
931 |
+
for day in range(1, days_in_month + 1):
|
932 |
+
# Calculate GPI for each grid point
|
933 |
+
gpi_field = np.zeros((len(lat_range), len(lon_range)))
|
934 |
+
|
935 |
+
for i, lat in enumerate(lat_range):
|
936 |
+
for j, lon in enumerate(lon_range):
|
937 |
+
# Get environmental conditions
|
938 |
+
env_conditions = get_environmental_conditions(lat, lon, month, oni_value)
|
939 |
+
|
940 |
+
# Add daily variability
|
941 |
+
daily_variation = 0.1 * np.sin(2 * np.pi * day / 30) + np.random.normal(0, 0.05)
|
942 |
+
|
943 |
+
# Calculate GPI
|
944 |
+
gpi = calculate_genesis_potential_index(
|
945 |
+
sst=env_conditions['sst'] + daily_variation,
|
946 |
+
rh=env_conditions['relative_humidity'],
|
947 |
+
vorticity=env_conditions['vorticity'],
|
948 |
+
wind_shear=env_conditions['wind_shear'],
|
949 |
+
lat=lat,
|
950 |
+
lon=lon,
|
951 |
+
month=month,
|
952 |
+
oni_value=oni_value
|
953 |
+
)
|
954 |
+
|
955 |
+
gpi_field[i, j] = gpi
|
956 |
+
|
957 |
+
daily_gpi_maps.append({
|
958 |
+
'day': day,
|
959 |
+
'gpi_field': gpi_field,
|
960 |
+
'lat_range': lat_range,
|
961 |
+
'lon_range': lon_range
|
962 |
+
})
|
963 |
+
|
964 |
+
# Check for genesis events (GPI > threshold)
|
965 |
+
genesis_threshold = 1.5 # Adjusted threshold
|
966 |
+
if np.max(gpi_field) > genesis_threshold:
|
967 |
+
# Find peak genesis locations
|
968 |
+
peak_indices = np.where(gpi_field > genesis_threshold)
|
969 |
+
if len(peak_indices[0]) > 0:
|
970 |
+
# Select strongest genesis point
|
971 |
+
max_idx = np.argmax(gpi_field)
|
972 |
+
max_i, max_j = np.unravel_index(max_idx, gpi_field.shape)
|
973 |
+
|
974 |
+
genesis_lat = lat_range[max_i]
|
975 |
+
genesis_lon = lon_range[max_j]
|
976 |
+
genesis_gpi = gpi_field[max_i, max_j]
|
977 |
+
|
978 |
+
# Determine probability of actual genesis
|
979 |
+
genesis_prob = min(0.8, genesis_gpi / 3.0)
|
980 |
+
|
981 |
+
if np.random.random() < genesis_prob:
|
982 |
+
genesis_events.append({
|
983 |
+
'day': day,
|
984 |
+
'lat': genesis_lat,
|
985 |
+
'lon': genesis_lon,
|
986 |
+
'gpi': genesis_gpi,
|
987 |
+
'probability': genesis_prob,
|
988 |
+
'date': f"{year}-{month:02d}-{day:02d}"
|
989 |
+
})
|
990 |
+
|
991 |
+
# Generate storm tracks for genesis events
|
992 |
+
storm_predictions = []
|
993 |
+
for i, genesis in enumerate(genesis_events):
|
994 |
+
storm_track = generate_storm_track_from_genesis(
|
995 |
+
genesis['lat'],
|
996 |
+
genesis['lon'],
|
997 |
+
genesis['day'],
|
998 |
+
month,
|
999 |
+
oni_value,
|
1000 |
+
storm_id=i+1
|
1001 |
+
)
|
1002 |
+
|
1003 |
+
if storm_track:
|
1004 |
+
storm_predictions.append({
|
1005 |
+
'storm_id': i + 1,
|
1006 |
+
'genesis_event': genesis,
|
1007 |
+
'track': storm_track,
|
1008 |
+
'uncertainty': calculate_track_uncertainty(storm_track)
|
1009 |
+
})
|
1010 |
+
|
1011 |
+
return {
|
1012 |
+
'month': month,
|
1013 |
+
'year': year,
|
1014 |
+
'oni_value': oni_value,
|
1015 |
+
'daily_gpi_maps': daily_gpi_maps,
|
1016 |
+
'genesis_events': genesis_events,
|
1017 |
+
'storm_predictions': storm_predictions,
|
1018 |
+
'summary': {
|
1019 |
+
'total_genesis_events': len(genesis_events),
|
1020 |
+
'total_storm_predictions': len(storm_predictions),
|
1021 |
+
'peak_gpi_day': max(daily_gpi_maps, key=lambda x: np.max(x['gpi_field']))['day'],
|
1022 |
+
'peak_gpi_value': max(np.max(day_data['gpi_field']) for day_data in daily_gpi_maps)
|
1023 |
+
}
|
1024 |
+
}
|
1025 |
+
|
1026 |
+
except Exception as e:
|
1027 |
+
logging.error(f"Error in genesis prediction: {e}")
|
1028 |
+
import traceback
|
1029 |
+
traceback.print_exc()
|
1030 |
+
return {
|
1031 |
+
'error': str(e),
|
1032 |
+
'month': month,
|
1033 |
+
'oni_value': oni_value,
|
1034 |
+
'storm_predictions': []
|
1035 |
+
}
|
1036 |
+
|
1037 |
+
def generate_storm_track_from_genesis(genesis_lat, genesis_lon, genesis_day, month, oni_value, storm_id=1):
|
1038 |
+
"""
|
1039 |
+
Generate a realistic storm track from a genesis location
|
1040 |
+
"""
|
1041 |
+
try:
|
1042 |
+
track_points = []
|
1043 |
+
current_lat = genesis_lat
|
1044 |
+
current_lon = genesis_lon
|
1045 |
+
current_intensity = 25 # Start as TD
|
1046 |
+
|
1047 |
+
# Track duration (3-10 days typically)
|
1048 |
+
track_duration_hours = np.random.randint(72, 240)
|
1049 |
+
|
1050 |
+
for hour in range(0, track_duration_hours + 6, 6):
|
1051 |
+
# Calculate storm motion
|
1052 |
+
# Base motion patterns for Western Pacific
|
1053 |
+
if current_lat < 20: # Low latitude - westward motion
|
1054 |
+
lat_speed = 0.1 + np.random.normal(0, 0.05) # Slight poleward
|
1055 |
+
lon_speed = -0.3 + np.random.normal(0, 0.1) # Westward
|
1056 |
+
elif current_lat < 25: # Mid latitude - WNW motion
|
1057 |
+
lat_speed = 0.15 + np.random.normal(0, 0.05)
|
1058 |
+
lon_speed = -0.2 + np.random.normal(0, 0.1)
|
1059 |
+
else: # High latitude - recurvature
|
1060 |
+
lat_speed = 0.2 + np.random.normal(0, 0.05)
|
1061 |
+
lon_speed = 0.1 + np.random.normal(0, 0.1) # Eastward
|
1062 |
+
|
1063 |
+
# ENSO effects on motion
|
1064 |
+
if oni_value > 0.5: # El Niño - more eastward
|
1065 |
+
lon_speed += 0.05
|
1066 |
+
elif oni_value < -0.5: # La Niña - more westward
|
1067 |
+
lon_speed -= 0.05
|
1068 |
+
|
1069 |
+
# Update position
|
1070 |
+
current_lat += lat_speed
|
1071 |
+
current_lon += lon_speed
|
1072 |
+
|
1073 |
+
# Intensity evolution
|
1074 |
+
# Get environmental conditions for intensity change
|
1075 |
+
env_conditions = get_environmental_conditions(current_lat, current_lon, month, oni_value)
|
1076 |
+
|
1077 |
+
# Intensity change factors
|
1078 |
+
sst_factor = max(0, env_conditions['sst'] - 26.5)
|
1079 |
+
shear_factor = max(0, (15 - env_conditions['wind_shear']) / 10)
|
1080 |
+
|
1081 |
+
# Basic intensity change
|
1082 |
+
if hour < 48: # Development phase
|
1083 |
+
intensity_change = 3 + sst_factor + shear_factor + np.random.normal(0, 2)
|
1084 |
+
elif hour < 120: # Mature phase
|
1085 |
+
intensity_change = 1 + sst_factor * 0.5 + np.random.normal(0, 1.5)
|
1086 |
+
else: # Weakening phase
|
1087 |
+
intensity_change = -2 + sst_factor * 0.3 + np.random.normal(0, 1)
|
1088 |
+
|
1089 |
+
# Environmental limits
|
1090 |
+
if current_lat > 30: # Cool waters
|
1091 |
+
intensity_change -= 5
|
1092 |
+
if current_lon < 120: # Land interaction
|
1093 |
+
intensity_change -= 8
|
1094 |
+
|
1095 |
+
current_intensity += intensity_change
|
1096 |
+
current_intensity = max(15, min(180, current_intensity)) # Realistic bounds
|
1097 |
+
|
1098 |
+
# Calculate pressure
|
1099 |
+
pressure = max(900, 1013 - (current_intensity - 25) * 0.9)
|
1100 |
+
|
1101 |
+
# Add uncertainty
|
1102 |
+
position_uncertainty = 0.5 + (hour / 120) * 1.5 # Growing uncertainty
|
1103 |
+
intensity_uncertainty = 5 + (hour / 120) * 15
|
1104 |
+
|
1105 |
+
track_points.append({
|
1106 |
+
'hour': hour,
|
1107 |
+
'day': genesis_day + hour / 24.0,
|
1108 |
+
'lat': current_lat,
|
1109 |
+
'lon': current_lon,
|
1110 |
+
'intensity': current_intensity,
|
1111 |
+
'pressure': pressure,
|
1112 |
+
'category': categorize_typhoon_enhanced(current_intensity),
|
1113 |
+
'position_uncertainty': position_uncertainty,
|
1114 |
+
'intensity_uncertainty': intensity_uncertainty
|
1115 |
+
})
|
1116 |
+
|
1117 |
+
# Stop if storm moves too far or weakens significantly
|
1118 |
+
if current_lat > 40 or current_lat < 0 or current_lon < 100 or current_intensity < 20:
|
1119 |
+
break
|
1120 |
+
|
1121 |
+
return track_points
|
1122 |
+
|
1123 |
+
except Exception as e:
|
1124 |
+
logging.error(f"Error generating storm track: {e}")
|
1125 |
+
return None
|
1126 |
+
|
1127 |
+
def calculate_track_uncertainty(track_points):
|
1128 |
+
"""Calculate uncertainty metrics for a storm track"""
|
1129 |
+
if not track_points:
|
1130 |
+
return {'position': 0, 'intensity': 0}
|
1131 |
+
|
1132 |
+
# Position uncertainty grows with time
|
1133 |
+
position_uncertainty = [point['position_uncertainty'] for point in track_points]
|
1134 |
+
|
1135 |
+
# Intensity uncertainty
|
1136 |
+
intensity_uncertainty = [point['intensity_uncertainty'] for point in track_points]
|
1137 |
+
|
1138 |
+
return {
|
1139 |
+
'position_mean': np.mean(position_uncertainty),
|
1140 |
+
'position_max': np.max(position_uncertainty),
|
1141 |
+
'intensity_mean': np.mean(intensity_uncertainty),
|
1142 |
+
'intensity_max': np.max(intensity_uncertainty),
|
1143 |
+
'track_length': len(track_points)
|
1144 |
+
}
|
1145 |
+
|
1146 |
+
def create_genesis_animation(prediction_data, enable_animation=True):
|
1147 |
+
"""
|
1148 |
+
Create animation showing daily genesis potential and storm development
|
1149 |
+
"""
|
1150 |
+
try:
|
1151 |
+
if 'daily_gpi_maps' not in prediction_data or not prediction_data['daily_gpi_maps']:
|
1152 |
+
return create_error_plot("No GPI data available for animation")
|
1153 |
+
|
1154 |
+
daily_maps = prediction_data['daily_gpi_maps']
|
1155 |
+
storm_predictions = prediction_data.get('storm_predictions', [])
|
1156 |
+
month = prediction_data['month']
|
1157 |
+
oni_value = prediction_data['oni_value']
|
1158 |
+
|
1159 |
+
fig = go.Figure()
|
1160 |
+
|
1161 |
+
if enable_animation and len(daily_maps) > 1:
|
1162 |
+
# Create animated version
|
1163 |
+
frames = []
|
1164 |
+
|
1165 |
+
for day_idx, day_data in enumerate(daily_maps):
|
1166 |
+
day = day_data['day']
|
1167 |
+
gpi_field = day_data['gpi_field']
|
1168 |
+
lat_range = day_data['lat_range']
|
1169 |
+
lon_range = day_data['lon_range']
|
1170 |
+
|
1171 |
+
frame_data = []
|
1172 |
+
|
1173 |
+
# Add GPI contour
|
1174 |
+
frame_data.append(
|
1175 |
+
go.Contour(
|
1176 |
+
z=gpi_field,
|
1177 |
+
x=lon_range,
|
1178 |
+
y=lat_range,
|
1179 |
+
colorscale='Viridis',
|
1180 |
+
showscale=True,
|
1181 |
+
colorbar=dict(title="Genesis Potential Index"),
|
1182 |
+
name=f'GPI Day {day}',
|
1183 |
+
hovertemplate=(
|
1184 |
+
'Longitude: %{x:.1f}°E<br>'
|
1185 |
+
'Latitude: %{y:.1f}°N<br>'
|
1186 |
+
'GPI: %{z:.2f}<br>'
|
1187 |
+
f'Day: {day}<br>'
|
1188 |
+
'<extra></extra>'
|
1189 |
+
)
|
1190 |
+
)
|
1191 |
+
)
|
1192 |
+
|
1193 |
+
# Add storm tracks up to current day
|
1194 |
+
for storm in storm_predictions:
|
1195 |
+
track = storm['track']
|
1196 |
+
# Only show track points up to current day
|
1197 |
+
current_track = [pt for pt in track if pt['day'] <= day]
|
1198 |
+
|
1199 |
+
if current_track:
|
1200 |
+
lats = [pt['lat'] for pt in current_track]
|
1201 |
+
lons = [pt['lon'] for pt in current_track]
|
1202 |
+
intensities = [pt['intensity'] for pt in current_track]
|
1203 |
+
|
1204 |
+
# Storm track
|
1205 |
+
frame_data.append(
|
1206 |
+
go.Scatter(
|
1207 |
+
x=lons,
|
1208 |
+
y=lats,
|
1209 |
+
mode='lines+markers',
|
1210 |
+
line=dict(color='red', width=3),
|
1211 |
+
marker=dict(
|
1212 |
+
size=[max(4, int/10) for int in intensities],
|
1213 |
+
color='red'
|
1214 |
+
),
|
1215 |
+
name=f'Storm {storm["storm_id"]}',
|
1216 |
+
hovertemplate=(
|
1217 |
+
f'Storm {storm["storm_id"]}<br>'
|
1218 |
+
'Longitude: %{x:.1f}°E<br>'
|
1219 |
+
'Latitude: %{y:.1f}°N<br>'
|
1220 |
+
'<extra></extra>'
|
1221 |
+
),
|
1222 |
+
showlegend=(day_idx == 0)
|
1223 |
+
)
|
1224 |
+
)
|
1225 |
+
|
1226 |
+
# Current position marker
|
1227 |
+
if current_track:
|
1228 |
+
current_pos = current_track[-1]
|
1229 |
+
frame_data.append(
|
1230 |
+
go.Scatter(
|
1231 |
+
x=[current_pos['lon']],
|
1232 |
+
y=[current_pos['lat']],
|
1233 |
+
mode='markers',
|
1234 |
+
marker=dict(
|
1235 |
+
size=15,
|
1236 |
+
color='yellow',
|
1237 |
+
symbol='star',
|
1238 |
+
line=dict(width=2, color='black')
|
1239 |
+
),
|
1240 |
+
name=f'Storm {storm["storm_id"]} Current',
|
1241 |
+
showlegend=False,
|
1242 |
+
hovertemplate=(
|
1243 |
+
f'Storm {storm["storm_id"]} - Day {day:.1f}<br>'
|
1244 |
+
f'Intensity: {current_pos["intensity"]:.0f} kt<br>'
|
1245 |
+
f'Category: {current_pos["category"]}<br>'
|
1246 |
+
f'Pressure: {current_pos["pressure"]:.0f} hPa<br>'
|
1247 |
+
'<extra></extra>'
|
1248 |
+
)
|
1249 |
+
)
|
1250 |
+
)
|
1251 |
+
|
1252 |
+
frames.append(go.Frame(
|
1253 |
+
data=frame_data,
|
1254 |
+
name=str(day),
|
1255 |
+
layout=go.Layout(
|
1256 |
+
title=f"Genesis Potential & Storm Development - Month {month}, Day {day}<br>ONI: {oni_value:.2f}"
|
1257 |
+
)
|
1258 |
+
))
|
1259 |
+
|
1260 |
+
fig.frames = frames
|
1261 |
+
|
1262 |
+
# Set initial frame
|
1263 |
+
if frames:
|
1264 |
+
fig.add_traces(frames[0].data)
|
1265 |
+
|
1266 |
+
# Add animation controls
|
1267 |
+
fig.update_layout(
|
1268 |
+
updatemenus=[{
|
1269 |
+
"buttons": [
|
1270 |
+
{
|
1271 |
+
"args": [None, {"frame": {"duration": 1000, "redraw": True},
|
1272 |
+
"fromcurrent": True, "transition": {"duration": 300}}],
|
1273 |
+
"label": "▶️ Play",
|
1274 |
+
"method": "animate"
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"args": [[None], {"frame": {"duration": 0, "redraw": True},
|
1278 |
+
"mode": "immediate", "transition": {"duration": 0}}],
|
1279 |
+
"label": "⏸️ Pause",
|
1280 |
+
"method": "animate"
|
1281 |
+
}
|
1282 |
+
],
|
1283 |
+
"direction": "left",
|
1284 |
+
"pad": {"r": 10, "t": 87},
|
1285 |
+
"showactive": False,
|
1286 |
+
"type": "buttons",
|
1287 |
+
"x": 0.1,
|
1288 |
+
"xanchor": "right",
|
1289 |
+
"y": 0,
|
1290 |
+
"yanchor": "top"
|
1291 |
+
}],
|
1292 |
+
sliders=[{
|
1293 |
+
"active": 0,
|
1294 |
+
"yanchor": "top",
|
1295 |
+
"xanchor": "left",
|
1296 |
+
"currentvalue": {
|
1297 |
+
"font": {"size": 16},
|
1298 |
+
"prefix": "Day: ",
|
1299 |
+
"visible": True,
|
1300 |
+
"xanchor": "right"
|
1301 |
+
},
|
1302 |
+
"transition": {"duration": 300, "easing": "cubic-in-out"},
|
1303 |
+
"pad": {"b": 10, "t": 50},
|
1304 |
+
"len": 0.9,
|
1305 |
+
"x": 0.1,
|
1306 |
+
"y": 0,
|
1307 |
+
"steps": [
|
1308 |
+
{
|
1309 |
+
"args": [[str(day_data['day'])], {"frame": {"duration": 300, "redraw": True},
|
1310 |
+
"mode": "immediate", "transition": {"duration": 300}}],
|
1311 |
+
"label": f"D{day_data['day']}",
|
1312 |
+
"method": "animate"
|
1313 |
+
}
|
1314 |
+
for day_data in daily_maps[::max(1, len(daily_maps)//15)]
|
1315 |
+
]
|
1316 |
+
}]
|
1317 |
+
)
|
1318 |
+
|
1319 |
+
else:
|
1320 |
+
# Static version showing final day
|
1321 |
+
final_day = daily_maps[-1]
|
1322 |
+
gpi_field = final_day['gpi_field']
|
1323 |
+
lat_range = final_day['lat_range']
|
1324 |
+
lon_range = final_day['lon_range']
|
1325 |
+
|
1326 |
+
# Add GPI contour
|
1327 |
+
fig.add_trace(
|
1328 |
+
go.Contour(
|
1329 |
+
z=gpi_field,
|
1330 |
+
x=lon_range,
|
1331 |
+
y=lat_range,
|
1332 |
+
colorscale='Viridis',
|
1333 |
+
showscale=True,
|
1334 |
+
colorbar=dict(title="Genesis Potential Index"),
|
1335 |
+
name='Genesis Potential',
|
1336 |
+
hovertemplate=(
|
1337 |
+
'Longitude: %{x:.1f}°E<br>'
|
1338 |
+
'Latitude: %{y:.1f}°N<br>'
|
1339 |
+
'GPI: %{z:.2f}<br>'
|
1340 |
+
'<extra></extra>'
|
1341 |
+
)
|
1342 |
+
)
|
1343 |
+
)
|
1344 |
+
|
1345 |
+
# Add complete storm tracks
|
1346 |
+
for storm in storm_predictions:
|
1347 |
+
track = storm['track']
|
1348 |
+
if track:
|
1349 |
+
lats = [pt['lat'] for pt in track]
|
1350 |
+
lons = [pt['lon'] for pt in track]
|
1351 |
+
intensities = [pt['intensity'] for pt in track]
|
1352 |
+
|
1353 |
+
fig.add_trace(
|
1354 |
+
go.Scatter(
|
1355 |
+
x=lons,
|
1356 |
+
y=lats,
|
1357 |
+
mode='lines+markers',
|
1358 |
+
line=dict(color='red', width=3),
|
1359 |
+
marker=dict(
|
1360 |
+
size=[max(4, int/10) for int in intensities],
|
1361 |
+
color=intensities,
|
1362 |
+
colorscale='Reds',
|
1363 |
+
showscale=False
|
1364 |
+
),
|
1365 |
+
name=f'Storm {storm["storm_id"]}',
|
1366 |
+
hovertemplate=(
|
1367 |
+
f'Storm {storm["storm_id"]}<br>'
|
1368 |
+
'Longitude: %{x:.1f}°E<br>'
|
1369 |
+
'Latitude: %{y:.1f}°N<br>'
|
1370 |
+
'<extra></extra>'
|
1371 |
+
)
|
1372 |
+
)
|
1373 |
+
)
|
1374 |
+
|
1375 |
+
# Genesis marker
|
1376 |
+
fig.add_trace(
|
1377 |
+
go.Scatter(
|
1378 |
+
x=[lons[0]],
|
1379 |
+
y=[lats[0]],
|
1380 |
+
mode='markers',
|
1381 |
+
marker=dict(
|
1382 |
+
size=20,
|
1383 |
+
color='yellow',
|
1384 |
+
symbol='star',
|
1385 |
+
line=dict(width=2, color='black')
|
1386 |
+
),
|
1387 |
+
name=f'Genesis {storm["storm_id"]}',
|
1388 |
+
showlegend=False
|
1389 |
+
)
|
1390 |
+
)
|
1391 |
+
|
1392 |
+
# Update layout
|
1393 |
+
fig.update_layout(
|
1394 |
+
title=f"Typhoon Genesis Prediction - Month {month} (ONI: {oni_value:.2f})" +
|
1395 |
+
(" - Animated" if enable_animation else ""),
|
1396 |
+
xaxis_title="Longitude (°E)",
|
1397 |
+
yaxis_title="Latitude (°N)",
|
1398 |
+
width=1000,
|
1399 |
+
height=700,
|
1400 |
+
showlegend=True
|
1401 |
+
)
|
1402 |
+
|
1403 |
+
# Set map bounds
|
1404 |
+
fig.update_xaxes(range=[110, 180])
|
1405 |
+
fig.update_yaxes(range=[5, 35])
|
1406 |
+
|
1407 |
+
return fig
|
1408 |
+
|
1409 |
+
except Exception as e:
|
1410 |
+
logging.error(f"Error creating genesis animation: {e}")
|
1411 |
+
return create_error_plot(f"Animation error: {str(e)}")
|
1412 |
+
|
1413 |
+
def create_error_plot(error_message):
|
1414 |
+
"""Create a simple error plot"""
|
1415 |
+
fig = go.Figure()
|
1416 |
+
fig.add_annotation(
|
1417 |
+
text=error_message,
|
1418 |
+
xref="paper", yref="paper",
|
1419 |
+
x=0.5, y=0.5, xanchor='center', yanchor='middle',
|
1420 |
+
showarrow=False, font_size=16
|
1421 |
+
)
|
1422 |
+
fig.update_layout(title="Error in Visualization")
|
1423 |
+
return fig
|
1424 |
+
|
1425 |
+
def create_prediction_summary(prediction_data):
|
1426 |
+
"""Create a comprehensive summary of the prediction"""
|
1427 |
+
try:
|
1428 |
+
if 'error' in prediction_data:
|
1429 |
+
return f"Error in prediction: {prediction_data['error']}"
|
1430 |
+
|
1431 |
+
month = prediction_data['month']
|
1432 |
+
oni_value = prediction_data['oni_value']
|
1433 |
+
summary = prediction_data.get('summary', {})
|
1434 |
+
genesis_events = prediction_data.get('genesis_events', [])
|
1435 |
+
storm_predictions = prediction_data.get('storm_predictions', [])
|
1436 |
+
|
1437 |
+
month_names = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
|
1438 |
+
'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
1439 |
+
month_name = month_names[month - 1]
|
1440 |
+
|
1441 |
+
summary_text = f"""
|
1442 |
+
TYPHOON GENESIS PREDICTION SUMMARY - {month_name.upper()} 2025
|
1443 |
+
{'='*70}
|
1444 |
+
|
1445 |
+
🌊 ENVIRONMENTAL CONDITIONS:
|
1446 |
+
• Month: {month_name} (Month {month})
|
1447 |
+
• ONI Value: {oni_value:.2f} {'(El Niño)' if oni_value > 0.5 else '(La Niña)' if oni_value < -0.5 else '(Neutral)'}
|
1448 |
+
• Season Phase: {'Peak Season' if month in [7,8,9,10] else 'Off Season' if month in [1,2,3,4,11,12] else 'Transition Season'}
|
1449 |
+
|
1450 |
+
📊 GENESIS POTENTIAL ANALYSIS:
|
1451 |
+
• Peak GPI Day: Day {summary.get('peak_gpi_day', 'Unknown')}
|
1452 |
+
• Peak GPI Value: {summary.get('peak_gpi_value', 0):.2f}
|
1453 |
+
• Total Genesis Events: {summary.get('total_genesis_events', 0)}
|
1454 |
+
• Storm Development Success: {summary.get('total_storm_predictions', 0)}/{summary.get('total_genesis_events', 0)} events
|
1455 |
+
|
1456 |
+
🎯 GENESIS EVENTS BREAKDOWN:
|
1457 |
+
"""
|
1458 |
+
|
1459 |
+
if genesis_events:
|
1460 |
+
for i, event in enumerate(genesis_events, 1):
|
1461 |
+
summary_text += f"""
|
1462 |
+
Event {i}:
|
1463 |
+
• Date: {event['date']}
|
1464 |
+
• Location: {event['lat']:.1f}°N, {event['lon']:.1f}°E
|
1465 |
+
• GPI Value: {event['gpi']:.2f}
|
1466 |
+
• Genesis Probability: {event['probability']*100:.0f}%
|
1467 |
+
"""
|
1468 |
+
else:
|
1469 |
+
summary_text += "\n• No significant genesis events predicted for this month\n"
|
1470 |
+
|
1471 |
+
summary_text += f"""
|
1472 |
+
|
1473 |
+
🌪️ STORM TRACK PREDICTIONS:
|
1474 |
+
"""
|
1475 |
+
|
1476 |
+
if storm_predictions:
|
1477 |
+
for storm in storm_predictions:
|
1478 |
+
track = storm['track']
|
1479 |
+
if track:
|
1480 |
+
genesis = storm['genesis_event']
|
1481 |
+
max_intensity = max(pt['intensity'] for pt in track)
|
1482 |
+
max_category = categorize_typhoon_enhanced(max_intensity)
|
1483 |
+
track_duration = len(track) * 6 # hours
|
1484 |
+
final_pos = track[-1]
|
1485 |
+
|
1486 |
+
summary_text += f"""
|
1487 |
+
Storm {storm['storm_id']}:
|
1488 |
+
• Genesis: Day {genesis['day']}, {genesis['lat']:.1f}°N {genesis['lon']:.1f}°E
|
1489 |
+
• Peak Intensity: {max_intensity:.0f} kt ({max_category})
|
1490 |
+
• Track Duration: {track_duration} hours ({track_duration/24:.1f} days)
|
1491 |
+
• Final Position: {final_pos['lat']:.1f}°N, {final_pos['lon']:.1f}°E
|
1492 |
+
• Uncertainty: ±{storm['uncertainty']['position_mean']:.1f}° position, ±{storm['uncertainty']['intensity_mean']:.0f} kt intensity
|
1493 |
+
"""
|
1494 |
+
else:
|
1495 |
+
summary_text += "\n• No storm development predicted from genesis events\n"
|
1496 |
+
|
1497 |
+
# Add climatological context
|
1498 |
+
summary_text += f"""
|
1499 |
+
|
1500 |
+
📈 CLIMATOLOGICAL CONTEXT:
|
1501 |
+
• {month_name} Typical Activity: {'Very High' if month in [8,9] else 'High' if month in [7,10] else 'Moderate' if month in [6,11] else 'Low'}
|
1502 |
+
• ENSO Influence: {'Strong suppression expected' if oni_value > 1.0 else 'Moderate suppression' if oni_value > 0.5 else 'Strong enhancement likely' if oni_value < -1.0 else 'Moderate enhancement' if oni_value < -0.5 else 'Near-normal activity'}
|
1503 |
+
• Regional Focus: Western Pacific Main Development Region (10-25°N, 120-160°E)
|
1504 |
+
|
1505 |
+
🔧 METHODOLOGY DETAILS:
|
1506 |
+
• Genesis Potential Index: Emanuel & Nolan (2004) formulation
|
1507 |
+
• Environmental Factors: SST, humidity, vorticity, wind shear, Coriolis effect
|
1508 |
+
• Temporal Resolution: Daily evolution throughout month
|
1509 |
+
• Spatial Resolution: 2.5° grid spacing
|
1510 |
+
• ENSO Modulation: Integrated ONI effects on environmental parameters
|
1511 |
+
• Track Prediction: Physics-based storm motion and intensity evolution
|
1512 |
+
|
1513 |
+
⚠️ UNCERTAINTY & LIMITATIONS:
|
1514 |
+
• Genesis timing: ±2-3 days typical uncertainty
|
1515 |
+
• Track position: Growing uncertainty with time (±0.5° to ±2°)
|
1516 |
+
• Intensity prediction: ±5-15 kt uncertainty range
|
1517 |
+
• Environmental assumptions: Based on climatological patterns
|
1518 |
+
• Model limitations: Simplified compared to operational NWP systems
|
1519 |
+
|
1520 |
+
🎯 FORECAST CONFIDENCE:
|
1521 |
+
• Genesis Location: {'High' if summary.get('peak_gpi_value', 0) > 2 else 'Moderate' if summary.get('peak_gpi_value', 0) > 1 else 'Low'}
|
1522 |
+
• Genesis Timing: {'High' if month in [7,8,9] else 'Moderate' if month in [6,10] else 'Low'}
|
1523 |
+
• Track Prediction: Moderate (physics-based motion patterns)
|
1524 |
+
• Intensity Evolution: Moderate (environmental constraints applied)
|
1525 |
+
|
1526 |
+
📋 OPERATIONAL IMPLICATIONS:
|
1527 |
+
• Monitor Days {', '.join([str(event['day']) for event in genesis_events[:3]])} for potential development
|
1528 |
+
• Focus regions: {', '.join([f"{event['lat']:.0f}°N {event['lon']:.0f}°E" for event in genesis_events[:3]])}
|
1529 |
+
• Preparedness level: {'High' if len(storm_predictions) > 2 else 'Moderate' if len(storm_predictions) > 0 else 'Routine'}
|
1530 |
+
|
1531 |
+
🔬 RESEARCH APPLICATIONS:
|
1532 |
+
• Suitable for seasonal planning and climate studies
|
1533 |
+
• Genesis mechanism investigation
|
1534 |
+
• ENSO-typhoon relationship analysis
|
1535 |
+
• Environmental parameter sensitivity studies
|
1536 |
+
|
1537 |
+
⚠️ IMPORTANT DISCLAIMERS:
|
1538 |
+
• This is a research prediction system, not operational forecast
|
1539 |
+
• Use official meteorological services for real-time warnings
|
1540 |
+
• Actual conditions may differ from climatological assumptions
|
1541 |
+
• Model simplified compared to operational prediction systems
|
1542 |
+
• Uncertainty grows significantly beyond 5-7 day lead times
|
1543 |
+
"""
|
1544 |
+
|
1545 |
+
return summary_text
|
1546 |
+
|
1547 |
+
except Exception as e:
|
1548 |
+
logging.error(f"Error creating prediction summary: {e}")
|
1549 |
+
return f"Error generating summary: {str(e)}"
|
1550 |
+
|
1551 |
# -----------------------------
|
1552 |
# FIXED: ADVANCED ML FEATURES WITH ROBUST ERROR HANDLING
|
1553 |
# -----------------------------
|
|
|
2255 |
)
|
2256 |
return error_fig, error_fig, error_fig, error_fig, f"Error in clustering: {str(e)}"
|
2257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2258 |
# -----------------------------
|
2259 |
# Regression Functions (Original)
|
2260 |
# -----------------------------
|
|
|
2832 |
"""
|
2833 |
gr.Markdown(overview_text)
|
2834 |
|
2835 |
+
with gr.Tab("🌊 Monthly Typhoon Genesis Prediction"):
|
2836 |
+
gr.Markdown("## 🌊 Monthly Typhoon Genesis Prediction")
|
2837 |
+
gr.Markdown("**Enter month (1-12) and ONI value to see realistic typhoon development throughout the month using Genesis Potential Index**")
|
2838 |
|
2839 |
with gr.Row():
|
2840 |
with gr.Column(scale=1):
|
2841 |
+
genesis_month = gr.Slider(
|
2842 |
1, 12,
|
2843 |
+
label="Month",
|
2844 |
value=9,
|
2845 |
+
step=1,
|
2846 |
+
info="1=Jan, 2=Feb, ..., 12=Dec"
|
2847 |
)
|
2848 |
+
genesis_oni = gr.Number(
|
2849 |
label="ONI Value",
|
2850 |
value=0.0,
|
2851 |
info="El Niño (+) / La Niña (-) / Neutral (0)"
|
2852 |
)
|
2853 |
+
enable_genesis_animation = gr.Checkbox(
|
2854 |
label="Enable Animation",
|
2855 |
value=True,
|
2856 |
+
info="Watch daily genesis potential evolution"
|
2857 |
)
|
2858 |
+
generate_genesis_btn = gr.Button("🌊 Generate Monthly Genesis Prediction", variant="primary", size="lg")
|
2859 |
|
2860 |
with gr.Column(scale=2):
|
2861 |
gr.Markdown("### 🌊 What You'll Get:")
|
2862 |
gr.Markdown("""
|
2863 |
+
- **Daily GPI Evolution**: See genesis potential change day-by-day throughout the month
|
2864 |
+
- **Genesis Event Detection**: Automatic identification of likely cyclogenesis times/locations
|
2865 |
+
- **Storm Track Development**: Physics-based tracks from each genesis point
|
2866 |
+
- **Real-time Animation**: Watch storms develop and move with uncertainty visualization
|
2867 |
+
- **Environmental Analysis**: SST, humidity, wind shear, and vorticity effects
|
2868 |
+
- **ENSO Modulation**: How El Niño/La Niña affects monthly patterns
|
2869 |
""")
|
2870 |
|
2871 |
with gr.Row():
|
2872 |
+
genesis_animation = gr.Plot(label="🗺️ Daily Genesis Potential & Storm Development")
|
|
|
|
|
|
|
2873 |
|
2874 |
with gr.Row():
|
2875 |
+
genesis_summary = gr.Textbox(label="📋 Monthly Genesis Analysis Summary", lines=25)
|
2876 |
|
2877 |
+
def run_genesis_prediction(month, oni, animation):
|
2878 |
try:
|
2879 |
+
# Generate monthly prediction using GPI
|
2880 |
+
prediction_data = generate_genesis_prediction_monthly(month, oni, year=2025)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2881 |
|
2882 |
+
# Create animation
|
2883 |
+
genesis_fig = create_genesis_animation(prediction_data, animation)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2884 |
|
2885 |
+
# Generate summary
|
2886 |
+
summary_text = create_prediction_summary(prediction_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2887 |
|
2888 |
+
return genesis_fig, summary_text
|
2889 |
|
2890 |
except Exception as e:
|
2891 |
import traceback
|
2892 |
+
error_msg = f"Genesis prediction failed: {str(e)}\n\nDetails:\n{traceback.format_exc()}"
|
2893 |
logging.error(error_msg)
|
2894 |
+
return create_error_plot(error_msg), error_msg
|
2895 |
|
2896 |
+
generate_genesis_btn.click(
|
2897 |
+
fn=run_genesis_prediction,
|
2898 |
+
inputs=[genesis_month, genesis_oni, enable_genesis_animation],
|
2899 |
+
outputs=[genesis_animation, genesis_summary]
|
2900 |
)
|
2901 |
|
2902 |
with gr.Tab("🔬 Advanced ML Clustering"):
|