Spaces:
Runtime error
Runtime error
File size: 59,991 Bytes
d84b524 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 |
import dash
import plotly.graph_objects as go
import plotly.express as px
import pickle
import tropycal.tracks as tracks
import pandas as pd
import numpy as np
import cachetools
import functools
import hashlib
import os
import argparse
from dash import dcc, html
from dash.dependencies import Input, Output, State
from dash.exceptions import PreventUpdate
from plotly.subplots import make_subplots
from datetime import datetime, timedelta
from datetime import date, datetime
from scipy import stats
from scipy.optimize import minimize, curve_fit
from sklearn.linear_model import LinearRegression
from sklearn.cluster import KMeans
from scipy.interpolate import interp1d
from fractions import Fraction
from concurrent.futures import ThreadPoolExecutor
from sklearn.metrics import mean_squared_error
import statsmodels.api as sm
import schedule
import time
import threading
import requests
from io import StringIO
import tempfile
import csv
from collections import defaultdict
import shutil
import filecmp
# Add command-line argument parsing
parser = argparse.ArgumentParser(description='Typhoon Analysis Dashboard')
parser.add_argument('--data_path', type=str, default=os.getcwd(), help='Path to the data directory')
args = parser.parse_args()
# Use the command-line argument for data path
DATA_PATH = args.data_path
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
LOCAL_iBtrace_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv')
iBtrace_uri = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/ibtracs.WP.list.v04r01.csv'
CACHE_FILE = 'ibtracs_cache.pkl'
CACHE_EXPIRY_DAYS = 1
last_oni_update = None
def should_update_oni():
today = datetime.now()
# Beginning of the month: 1st day
if today.day == 1:
return True
# Middle of the month: 15th day
if today.day == 15:
return True
# End of the month: last day
if today.day == (today.replace(day=1, month=today.month%12+1) - timedelta(days=1)).day:
return True
return False
color_map = {
'C5 Super Typhoon': 'rgb(255, 0, 0)', # Red
'C4 Very Strong Typhoon': 'rgb(255, 63, 0)', # Red-Orange
'C3 Strong Typhoon': 'rgb(255, 127, 0)', # Orange
'C2 Typhoon': 'rgb(255, 191, 0)', # Orange-Yellow
'C1 Typhoon': 'rgb(255, 255, 0)', # Yellow
'Tropical Storm': 'rgb(0, 255, 255)', # Cyan
'Tropical Depression': 'rgb(173, 216, 230)' # Light Blue
}
def convert_typhoondata(input_file, output_file):
with open(input_file, 'r') as infile:
# Skip the title and the unit line.
next(infile)
next(infile)
reader = csv.reader(infile)
# Used for storing data for each SID
sid_data = defaultdict(list)
for row in reader:
if not row: # Skip the blank lines
continue
sid = row[0]
iso_time = row[6]
sid_data[sid].append((row, iso_time))
with open(output_file, 'w', newline='') as outfile:
fieldnames = ['SID', 'ISO_TIME', 'LAT', 'LON', 'SEASON', 'NAME', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES', 'START_DATE', 'END_DATE']
writer = csv.DictWriter(outfile, fieldnames=fieldnames)
writer.writeheader()
for sid, data in sid_data.items():
start_date = min(data, key=lambda x: x[1])[1]
end_date = max(data, key=lambda x: x[1])[1]
for row, iso_time in data:
writer.writerow({
'SID': row[0],
'ISO_TIME': iso_time,
'LAT': row[8],
'LON': row[9],
'SEASON': row[1],
'NAME': row[5],
'WMO_WIND': row[10].strip() or ' ',
'WMO_PRES': row[11].strip() or ' ',
'USA_WIND': row[23].strip() or ' ',
'USA_PRES': row[24].strip() or ' ',
'START_DATE': start_date,
'END_DATE': end_date
})
def download_oni_file(url, filename):
print(f"Downloading file from {url}...")
try:
response = requests.get(url)
response.raise_for_status() # Raises an exception for non-200 status codes
with open(filename, 'wb') as f:
f.write(response.content)
print(f"File successfully downloaded and saved as {filename}")
return True
except requests.RequestException as e:
print(f"Download failed. Error: {e}")
return False
def convert_oni_ascii_to_csv(input_file, output_file):
data = defaultdict(lambda: [''] * 12)
season_to_month = {
'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5,
'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11
}
print(f"Attempting to read file: {input_file}")
try:
with open(input_file, 'r') as f:
lines = f.readlines()
print(f"Successfully read {len(lines)} lines")
if len(lines) <= 1:
print("Error: File is empty or contains only header")
return
for line in lines[1:]: # Skip header
parts = line.split()
if len(parts) >= 4:
season, year = parts[0], parts[1]
anom = parts[-1]
if season in season_to_month:
month = season_to_month[season]
if season == 'DJF':
year = str(int(year) - 1)
data[year][month-1] = anom
else:
print(f"Warning: Unknown season: {season}")
else:
print(f"Warning: Skipping invalid line: {line.strip()}")
print(f"Processed data for {len(data)} years")
except Exception as e:
print(f"Error reading file: {e}")
return
print(f"Attempting to write file: {output_file}")
try:
with open(output_file, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
for year in sorted(data.keys()):
row = [year] + data[year]
writer.writerow(row)
print(f"Successfully wrote {len(data)} rows of data")
except Exception as e:
print(f"Error writing file: {e}")
return
print(f"Conversion complete. Data saved to {output_file}")
def update_oni_data():
global last_oni_update
current_date = date.today()
# Check if already updated today
if last_oni_update == current_date:
print("ONI data already checked today. Skipping update.")
return
url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
output_file = ONI_DATA_PATH
if download_oni_file(url, temp_file):
if not os.path.exists(input_file) or not filecmp.cmp(temp_file, input_file, shallow=False):
# File doesn't exist or has been updated
os.replace(temp_file, input_file)
print("New ONI data detected. Converting to CSV.")
convert_oni_ascii_to_csv(input_file, output_file)
print("ONI data updated successfully.")
else:
print("ONI data is up to date. No conversion needed.")
os.remove(temp_file) # Remove temporary file
last_oni_update = current_date
else:
print("Failed to download ONI data.")
if os.path.exists(temp_file):
os.remove(temp_file) # Ensure cleanup of temporary file
def load_ibtracs_data():
if os.path.exists(CACHE_FILE):
cache_time = datetime.fromtimestamp(os.path.getmtime(CACHE_FILE))
if datetime.now() - cache_time < timedelta(days=CACHE_EXPIRY_DAYS):
print("Loading data from cache...")
with open(CACHE_FILE, 'rb') as f:
return pickle.load(f)
if os.path.exists(LOCAL_iBtrace_PATH):
print("Using local IBTrACS file...")
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
else:
print("Local IBTrACS file not found. Fetching data from remote server...")
try:
response = requests.get(iBtrace_uri)
response.raise_for_status()
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv') as temp_file:
temp_file.write(response.text)
temp_file_path = temp_file.name
# Save the downloaded data as the local file
shutil.move(temp_file_path, LOCAL_iBtrace_PATH)
print(f"Downloaded data saved to {LOCAL_iBtrace_PATH}")
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
except requests.RequestException as e:
print(f"Error downloading data: {e}")
print("No local file available and download failed. Unable to load IBTrACS data.")
return None
with open(CACHE_FILE, 'wb') as f:
pickle.dump(ibtracs, f)
return ibtracs
def update_ibtracs_data():
global ibtracs
print("Checking for IBTrACS data updates...")
try:
# Get the last-modified time of the remote file
response = requests.head(iBtrace_uri)
remote_last_modified = datetime.strptime(response.headers['Last-Modified'], '%a, %d %b %Y %H:%M:%S GMT')
# Get the last-modified time of the local file
if os.path.exists(LOCAL_iBtrace_PATH):
local_last_modified = datetime.fromtimestamp(os.path.getmtime(LOCAL_iBtrace_PATH))
else:
local_last_modified = datetime.min
# Compare the modification times
if remote_last_modified <= local_last_modified:
print("Local IBTrACS data is up to date. No update needed.")
if os.path.exists(CACHE_FILE):
# Update the cache file's timestamp to extend its validity
os.utime(CACHE_FILE, None)
print("Cache file timestamp updated.")
return
print("Remote data is newer. Updating IBTrACS data...")
# Download the new data
response = requests.get(iBtrace_uri)
response.raise_for_status()
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv') as temp_file:
temp_file.write(response.text)
temp_file_path = temp_file.name
# Save the downloaded data as the local file
shutil.move(temp_file_path, LOCAL_iBtrace_PATH)
print(f"Downloaded data saved to {LOCAL_iBtrace_PATH}")
# Update the last modified time of the local file to match the remote file
os.utime(LOCAL_iBtrace_PATH, (remote_last_modified.timestamp(), remote_last_modified.timestamp()))
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
with open(CACHE_FILE, 'wb') as f:
pickle.dump(ibtracs, f)
print("IBTrACS data updated and cache refreshed.")
except requests.RequestException as e:
print(f"Error checking or downloading data: {e}")
if os.path.exists(LOCAL_iBtrace_PATH):
print("Using existing local file.")
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
if os.path.exists(CACHE_FILE):
# Update the cache file's timestamp even when using existing local file
os.utime(CACHE_FILE, None)
print("Cache file timestamp updated.")
else:
print("No local file available. Update failed.")
def run_schedule():
while True:
schedule.run_pending()
time.sleep(1)
def analyze_typhoon_generation(merged_data, start_date, end_date):
filtered_data = merged_data[
(merged_data['ISO_TIME'] >= start_date) &
(merged_data['ISO_TIME'] <= end_date)
]
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
typhoon_counts = filtered_data['ENSO_Phase'].value_counts().to_dict()
month_counts = filtered_data.groupby(['ENSO_Phase', filtered_data['ISO_TIME'].dt.month]).size().unstack(fill_value=0)
concentrated_months = month_counts.idxmax(axis=1).to_dict()
return typhoon_counts, concentrated_months
def cache_key_generator(*args, **kwargs):
key = hashlib.md5()
for arg in args:
key.update(str(arg).encode())
for k, v in sorted(kwargs.items()):
key.update(str(k).encode())
key.update(str(v).encode())
return key.hexdigest()
def categorize_typhoon(wind_speed):
wind_speed_kt = wind_speed / 2 # Convert kt to m/s
# Add category classification
if wind_speed_kt >= 137/2.35:
return 'C5 Super Typhoon'
elif wind_speed_kt >= 113/2.35:
return 'C4 Very Strong Typhoon'
elif wind_speed_kt >= 96/2.35:
return 'C3 Strong Typhoon'
elif wind_speed_kt >= 83/2.35:
return 'C2 Typhoon'
elif wind_speed_kt >= 64/2.35:
return 'C1 Typhoon'
elif wind_speed_kt >= 34/2.35:
return 'Tropical Storm'
else:
return 'Tropical Depression'
@functools.lru_cache(maxsize=None)
def process_oni_data_cached(oni_data_hash):
return process_oni_data(oni_data)
def process_oni_data(oni_data):
oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
oni_long['Month'] = oni_long['Month'].map({
'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', 'May': '05', 'Jun': '06',
'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12'
})
oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str) + '-' + oni_long['Month'] + '-01')
oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
return oni_long
def process_oni_data_with_cache(oni_data):
oni_data_hash = cache_key_generator(oni_data.to_json())
return process_oni_data_cached(oni_data_hash)
@functools.lru_cache(maxsize=None)
def process_typhoon_data_cached(typhoon_data_hash):
return process_typhoon_data(typhoon_data)
def process_typhoon_data(typhoon_data):
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
typhoon_max = typhoon_data.groupby('SID').agg({
'USA_WIND': 'max',
'USA_PRES': 'min',
'ISO_TIME': 'first',
'SEASON': 'first',
'NAME': 'first',
'LAT': 'first',
'LON': 'first'
}).reset_index()
typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon)
return typhoon_max
def process_typhoon_data_with_cache(typhoon_data):
typhoon_data_hash = cache_key_generator(typhoon_data.to_json())
return process_typhoon_data_cached(typhoon_data_hash)
def merge_data(oni_long, typhoon_max):
return pd.merge(typhoon_max, oni_long, on=['Year', 'Month'])
def calculate_logistic_regression(merged_data):
data = merged_data.dropna(subset=['USA_WIND', 'ONI'])
# Create binary outcome for severe typhoons
data['severe_typhoon'] = (data['USA_WIND'] >= 51).astype(int)
# Create binary predictor for El Niño
data['el_nino'] = (data['ONI'] >= 0.5).astype(int)
X = data['el_nino']
X = sm.add_constant(X) # Add constant term
y = data['severe_typhoon']
model = sm.Logit(y, X).fit()
beta_1 = model.params['el_nino']
exp_beta_1 = np.exp(beta_1)
p_value = model.pvalues['el_nino']
return beta_1, exp_beta_1, p_value
@cachetools.cached(cache={})
def fetch_oni_data_from_csv(file_path):
df = pd.read_csv(file_path, sep=',', header=0, na_values='-99.90')
df.columns = ['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
df = df.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
df['Date'] = pd.to_datetime(df['Year'].astype(str) + df['Month'], format='%Y%b')
df = df.set_index('Date')
return df
def classify_enso_phases(oni_value):
if isinstance(oni_value, pd.Series):
oni_value = oni_value.iloc[0]
if oni_value >= 0.5:
return 'El Nino'
elif oni_value <= -0.5:
return 'La Nina'
else:
return 'Neutral'
def load_data(oni_data_path, typhoon_data_path):
oni_data = pd.read_csv(oni_data_path)
typhoon_data = pd.read_csv(typhoon_data_path, low_memory=False)
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data = typhoon_data.dropna(subset=['ISO_TIME'])
print(f"Typhoon data shape after cleaning: {typhoon_data.shape}")
print(f"Year range: {typhoon_data['ISO_TIME'].dt.year.min()} - {typhoon_data['ISO_TIME'].dt.year.max()}")
return oni_data, typhoon_data
def preprocess_data(oni_data, typhoon_data):
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
typhoon_data['WMO_PRES'] = pd.to_numeric(typhoon_data['WMO_PRES'], errors='coerce')
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data['Year'] = typhoon_data['ISO_TIME'].dt.year
typhoon_data['Month'] = typhoon_data['ISO_TIME'].dt.month
monthly_max_wind_speed = typhoon_data.groupby(['Year', 'Month'])['USA_WIND'].max().reset_index()
oni_data_long = pd.melt(oni_data, id_vars=['Year'], var_name='Month', value_name='ONI')
oni_data_long['Month'] = oni_data_long['Month'].apply(lambda x: pd.to_datetime(x, format='%b').month)
merged_data = pd.merge(monthly_max_wind_speed, oni_data_long, on=['Year', 'Month'])
return merged_data
def calculate_max_wind_min_pressure(typhoon_data):
max_wind_speed = typhoon_data['USA_WIND'].max()
min_pressure = typhoon_data['WMO_PRES'].min()
return max_wind_speed, min_pressure
@functools.lru_cache(maxsize=None)
def get_storm_data(storm_id):
return ibtracs.get_storm(storm_id)
def filter_west_pacific_coordinates(lons, lats):
mask = (100 <= lons) & (lons <= 180) & (0 <= lats) & (lats <= 40)
return lons[mask], lats[mask]
def polynomial_exp(x, a, b, c, d):
return a * x**2 + b * x + c + d * np.exp(x)
def exponential(x, a, b, c):
return a * np.exp(b * x) + c
def generate_cluster_equations(cluster_center):
X = cluster_center[:, 0] # Longitudes
y = cluster_center[:, 1] # Latitudes
x_min = X.min()
x_max = X.max()
equations = []
# Fourier Series (up to 4th order)
def fourier_series(x, a0, a1, b1, a2, b2, a3, b3, a4, b4):
return (a0 + a1*np.cos(x) + b1*np.sin(x) +
a2*np.cos(2*x) + b2*np.sin(2*x) +
a3*np.cos(3*x) + b3*np.sin(3*x) +
a4*np.cos(4*x) + b4*np.sin(4*x))
# Normalize X to the range [0, 2π]
X_normalized = 2 * np.pi * (X - x_min) / (x_max - x_min)
params, _ = curve_fit(fourier_series, X_normalized, y)
a0, a1, b1, a2, b2, a3, b3, a4, b4 = params
# Create the equation string
fourier_eq = (f"y = {a0:.4f} + {a1:.4f}*cos(x) + {b1:.4f}*sin(x) + "
f"{a2:.4f}*cos(2x) + {b2:.4f}*sin(2x) + "
f"{a3:.4f}*cos(3x) + {b3:.4f}*sin(3x) + "
f"{a4:.4f}*cos(4x) + {b4:.4f}*sin(4x)")
equations.append(("Fourier Series", fourier_eq))
equations.append(("X Range", f"x goes from 0 to {2*np.pi:.4f}"))
equations.append(("Longitude Range", f"Longitude goes from {x_min:.4f}°E to {x_max:.4f}°E"))
return equations, (x_min, x_max)
#oni_df = fetch_oni_data_from_csv(ONI_DATA_PATH)
#ibtracs = load_ibtracs_data()
#oni_data, typhoon_data = load_data(ONI_DATA_PATH, TYPHOON_DATA_PATH)
#oni_long = process_oni_data_with_cache(oni_data)
#typhoon_max = process_typhoon_data_with_cache(typhoon_data)
#merged_data = merge_data(oni_long, typhoon_max)
#data = preprocess_data(oni_data, typhoon_data)
#max_wind_speed, min_pressure = calculate_max_wind_min_pressure(typhoon_data)
#
## Schedule the update to run daily at 1:00 AM
#schedule.every().day.at("01:00").do(update_ibtracs_data)
#
## Run the scheduler in a separate thread
#scheduler_thread = threading.Thread(target=run_schedule)
#scheduler_thread.start()
app = dash.Dash(__name__)
# First, add the classification standards
atlantic_standard = {
'C5 Super Typhoon': {'wind_speed': 137, 'color': 'rgb(255, 0, 0)'},
'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'rgb(255, 63, 0)'},
'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'rgb(255, 127, 0)'},
'C2 Typhoon': {'wind_speed': 83, 'color': 'rgb(255, 191, 0)'},
'C1 Typhoon': {'wind_speed': 64, 'color': 'rgb(255, 255, 0)'},
'Tropical Storm': {'wind_speed': 34, 'color': 'rgb(0, 255, 255)'},
'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'}
}
taiwan_standard = {
'Strong Typhoon': {'wind_speed': 51.0, 'color': 'rgb(255, 0, 0)'}, # >= 51.0 m/s
'Medium Typhoon': {'wind_speed': 33.7, 'color': 'rgb(255, 127, 0)'}, # 33.7-50.9 m/s
'Mild Typhoon': {'wind_speed': 17.2, 'color': 'rgb(255, 255, 0)'}, # 17.2-33.6 m/s
'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'} # < 17.2 m/s
}
app.layout = html.Div([
html.H1("Typhoon Analysis Dashboard"),
html.Div([
dcc.Input(id='start-year', type='number', placeholder='Start Year', value=2000, min=1900, max=2024, step=1),
dcc.Input(id='start-month', type='number', placeholder='Start Month', value=1, min=1, max=12, step=1),
dcc.Input(id='end-year', type='number', placeholder='End Year', value=2024, min=1900, max=2024, step=1),
dcc.Input(id='end-month', type='number', placeholder='End Month', value=6, min=1, max=12, step=1),
dcc.Dropdown(
id='enso-dropdown',
options=[
{'label': 'All Years', 'value': 'all'},
{'label': 'El Niño Years', 'value': 'el_nino'},
{'label': 'La Niña Years', 'value': 'la_nina'},
{'label': 'Neutral Years', 'value': 'neutral'}
],
value='all'
),
html.Button('Analyze', id='analyze-button', n_clicks=0),
]),
html.Div([
dcc.Input(id='typhoon-search', type='text', placeholder='Search Typhoon Name'),
html.Button('Find Typhoon', id='find-typhoon-button', n_clicks=0),
]),
html.Div([
html.Div(id='correlation-coefficient'),
html.Div(id='max-wind-speed'),
html.Div(id='min-pressure'),
]),
dcc.Graph(id='typhoon-tracks-graph'),
html.Div([
html.P("Number of Clusters"),
dcc.Input(id='n-clusters', type='number', placeholder='Number of Clusters', value=5, min=1, max=20, step=1),
html.Button('Show Clusters', id='show-clusters-button', n_clicks=0),
html.Button('Show Typhoon Routes', id='show-routes-button', n_clicks=0),
]),
dcc.Graph(id='typhoon-routes-graph'),
html.Div([
html.Button('Fourier Series', id='fourier-series-button', n_clicks=0),
]),
html.Div(id='cluster-equation-results'),
html.Div([
html.Button('Wind Speed Logistic Regression', id='wind-regression-button', n_clicks=0),
html.Button('Pressure Logistic Regression', id='pressure-regression-button', n_clicks=0),
html.Button('Longitude Logistic Regression', id='longitude-regression-button', n_clicks=0),
]),
html.Div(id='logistic-regression-results'),
html.H2("Typhoon Path Analysis"),
html.Div([
dcc.Dropdown(
id='year-dropdown',
options=[{'label': str(year), 'value': year} for year in range(1950, 2025)],
value=2024,
style={'width': '200px'}
),
dcc.Dropdown(
id='typhoon-dropdown',
style={'width': '300px'}
),
dcc.Dropdown(
id='classification-standard',
options=[
{'label': 'Atlantic Standard', 'value': 'atlantic'},
{'label': 'Taiwan Standard', 'value': 'taiwan'}
],
value='atlantic',
style={'width': '200px'}
)
], style={'display': 'flex', 'gap': '10px'}),
dcc.Graph(id='typhoon-path-animation'),
dcc.Graph(id='all-years-regression-graph'),
dcc.Graph(id='wind-oni-scatter-plot'),
dcc.Graph(id='pressure-oni-scatter'),
html.Div(id='regression-graphs'),
html.Div(id='slopes'),
html.Div([
html.H3("Correlation Analysis"),
html.Div(id='wind-oni-correlation'),
html.Div(id='pressure-oni-correlation'),
]),
html.Div([
html.H3("Typhoon Generation Analysis"),
html.Div(id='typhoon-count-analysis'),
html.Div(id='concentrated-months-analysis'),
]),
html.Div(id='cluster-info'),
html.Div([
dcc.Dropdown(
id='classification-standard',
options=[
{'label': 'Atlantic Standard', 'value': 'atlantic'},
{'label': 'Taiwan Standard', 'value': 'taiwan'}
],
value='atlantic',
style={'width': '200px'}
)
], style={'margin': '10px'}),
], style={'font-family': 'Arial, sans-serif'})
@app.callback(
Output('year-dropdown', 'options'),
Input('typhoon-tracks-graph', 'figure')
)
def initialize_year_dropdown(_):
try:
years = typhoon_data['ISO_TIME'].dt.year.unique()
years = years[~np.isnan(years)]
years = sorted(years)
options = [{'label': str(int(year)), 'value': int(year)} for year in years]
print(f"Generated options: {options[:5]}...")
return options
except Exception as e:
print(f"Error in initialize_year_dropdown: {str(e)}")
return [{'label': 'Error', 'value': 'error'}]
@app.callback(
[Output('typhoon-dropdown', 'options'),
Output('typhoon-dropdown', 'value')],
[Input('year-dropdown', 'value')]
)
def update_typhoon_dropdown(selected_year):
if not selected_year:
raise PreventUpdate
selected_year = int(selected_year)
season = ibtracs.get_season(selected_year)
storm_summary = season.summary()
typhoon_options = []
for i in range(storm_summary['season_storms']):
storm_id = storm_summary['id'][i]
storm_name = storm_summary['name'][i]
typhoon_options.append({'label': f"{storm_name} ({storm_id})", 'value': storm_id})
selected_typhoon = typhoon_options[0]['value'] if typhoon_options else None
return typhoon_options, selected_typhoon
@app.callback(
Output('typhoon-path-animation', 'figure'),
[Input('year-dropdown', 'value'),
Input('typhoon-dropdown', 'value'),
Input('classification-standard', 'value')]
)
def update_typhoon_path(selected_year, selected_sid, standard):
if not selected_year or not selected_sid:
raise PreventUpdate
storm = ibtracs.get_storm(selected_sid)
return create_typhoon_path_figure(storm, selected_year, standard)
def create_typhoon_path_figure(storm, selected_year, standard='atlantic'):
fig = go.Figure()
fig.add_trace(
go.Scattergeo(
lon=storm.lon,
lat=storm.lat,
mode='lines',
line=dict(width=2, color='gray'),
name='Path',
showlegend=False,
)
)
fig.add_trace(
go.Scattergeo(
lon=[storm.lon[0]],
lat=[storm.lat[0]],
mode='markers',
marker=dict(size=10, color='green', symbol='star'),
name='Starting Point',
text=storm.time[0].strftime('%Y-%m-%d %H:%M'),
hoverinfo='text+name',
)
)
frames = []
for i in range(len(storm.time)):
category, color = categorize_typhoon_by_standard(storm.vmax[i], standard)
r34_ne = storm.dict['USA_R34_NE'][i] if 'USA_R34_NE' in storm.dict else None
r34_se = storm.dict['USA_R34_SE'][i] if 'USA_R34_SE' in storm.dict else None
r34_sw = storm.dict['USA_R34_SW'][i] if 'USA_R34_SW' in storm.dict else None
r34_nw = storm.dict['USA_R34_NW'][i] if 'USA_R34_NW' in storm.dict else None
rmw = storm.dict['USA_RMW'][i] if 'USA_RMW' in storm.dict else None
eye_diameter = storm.dict['USA_EYE'][i] if 'USA_EYE' in storm.dict else None
radius_info = f"R34: NE={r34_ne}, SE={r34_se}, SW={r34_sw}, NW={r34_nw}<br>"
radius_info += f"RMW: {rmw}<br>"
radius_info += f"Eye Diameter: {eye_diameter}"
frame_data = [
go.Scattergeo(
lon=storm.lon[:i+1],
lat=storm.lat[:i+1],
mode='lines',
line=dict(width=2, color='blue'),
name='Path Traveled',
showlegend=False,
),
go.Scattergeo(
lon=[storm.lon[i]],
lat=[storm.lat[i]],
mode='markers+text',
marker=dict(size=10, color=color, symbol='star'),
text=category,
textposition="top center",
textfont=dict(size=12, color=color),
name='Current Location',
hovertext=f"{storm.time[i].strftime('%Y-%m-%d %H:%M')}<br>"
f"Category: {category}<br>"
f"Wind Speed: {storm.vmax[i]:.1f} m/s<br>"
f"{radius_info}",
hoverinfo='text',
),
]
frames.append(go.Frame(data=frame_data, name=f"frame{i}"))
fig.frames = frames
fig.update_layout(
title=f"{selected_year} Year {storm.name} Typhoon Path",
showlegend=False,
geo=dict(
projection_type='natural earth',
showland=True,
landcolor='rgb(243, 243, 243)',
countrycolor='rgb(204, 204, 204)',
coastlinecolor='rgb(100, 100, 100)',
showocean=True,
oceancolor='rgb(230, 250, 255)',
),
updatemenus=[{
"buttons": [
{
"args": [None, {"frame": {"duration": 100, "redraw": True},
"fromcurrent": True,
"transition": {"duration": 0}}],
"label": "Play",
"method": "animate"
},
{
"args": [[None], {"frame": {"duration": 0, "redraw": True},
"mode": "immediate",
"transition": {"duration": 0}}],
"label": "Pause",
"method": "animate"
}
],
"direction": "left",
"pad": {"r": 10, "t": 87},
"showactive": False,
"type": "buttons",
"x": 0.1,
"xanchor": "right",
"y": 0,
"yanchor": "top"
}],
sliders=[{
"active": 0,
"yanchor": "top",
"xanchor": "left",
"currentvalue": {
"font": {"size": 20},
"prefix": "Time: ",
"visible": True,
"xanchor": "right"
},
"transition": {"duration": 100, "easing": "cubic-in-out"},
"pad": {"b": 10, "t": 50},
"len": 0.9,
"x": 0.1,
"y": 0,
"steps": [
{
"args": [[f"frame{k}"],
{"frame": {"duration": 100, "redraw": True},
"mode": "immediate",
"transition": {"duration": 0}}
],
"label": storm.time[k].strftime('%Y-%m-%d %H:%M'),
"method": "animate"
}
for k in range(len(storm.time))
]
}]
)
return fig
@app.callback(
[Output('typhoon-routes-graph', 'figure'),
Output('cluster-equation-results', 'children')],
[Input('analyze-button', 'n_clicks'),
Input('show-clusters-button', 'n_clicks'),
Input('show-routes-button', 'n_clicks'),
Input('fourier-series-button', 'n_clicks')],
[State('start-year', 'value'),
State('start-month', 'value'),
State('end-year', 'value'),
State('end-month', 'value'),
State('n-clusters', 'value'),
State('enso-dropdown', 'value')]
)
def update_route_clusters(analyze_clicks, show_clusters_clicks, show_routes_clicks,
fourier_clicks, start_year, start_month, end_year, end_month,
n_clusters, enso_value):
ctx = dash.callback_context
button_id = ctx.triggered[0]['prop_id'].split('.')[0]
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_oni_df = oni_df[(oni_df.index >= start_date) & (oni_df.index <= end_date)]
fig_routes = go.Figure()
clusters = np.array([]) # Initialize as empty NumPy array
cluster_equations = []
# Clustering analysis
west_pacific_storms = []
for year in range(start_year, end_year + 1):
season = ibtracs.get_season(year)
for storm_id in season.summary()['id']:
storm = get_storm_data(storm_id)
storm_date = storm.time[0]
storm_oni = oni_df.loc[storm_date.strftime('%Y-%b')]['ONI']
if isinstance(storm_oni, pd.Series):
storm_oni = storm_oni.iloc[0]
storm_phase = classify_enso_phases(storm_oni)
if enso_value == 'all' or \
(enso_value == 'el_nino' and storm_phase == 'El Nino') or \
(enso_value == 'la_nina' and storm_phase == 'La Nina') or \
(enso_value == 'neutral' and storm_phase == 'Neutral'):
lons, lats = filter_west_pacific_coordinates(np.array(storm.lon), np.array(storm.lat))
if len(lons) > 1: # Ensure the storm has a valid path in West Pacific
west_pacific_storms.append((lons, lats))
max_length = max(len(storm[0]) for storm in west_pacific_storms)
standardized_routes = []
for lons, lats in west_pacific_storms:
if len(lons) < 2: # Skip if not enough points
continue
t = np.linspace(0, 1, len(lons))
t_new = np.linspace(0, 1, max_length)
lon_interp = interp1d(t, lons, kind='linear')(t_new)
lat_interp = interp1d(t, lats, kind='linear')(t_new)
route_vector = np.column_stack((lon_interp, lat_interp)).flatten()
standardized_routes.append(route_vector)
kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
clusters = kmeans.fit_predict(standardized_routes)
# Count the number of typhoons in each cluster
cluster_counts = np.bincount(clusters)
for lons, lats in west_pacific_storms:
fig_routes.add_trace(go.Scattergeo(
lon=lons, lat=lats,
mode='lines',
line=dict(width=1, color='lightgray'),
showlegend=False,
hoverinfo='none',
visible=(button_id == 'show-routes-button')
))
equations_output = []
for i in range(n_clusters):
cluster_center = kmeans.cluster_centers_[i].reshape(-1, 2)
cluster_equations, (lon_min, lon_max) = generate_cluster_equations(cluster_center)
#equations_output.append(html.H4(f"Cluster {i+1} (Typhoons: {cluster_counts[i]})"))
equations_output.append(html.H4([
f"Cluster {i+1} (Typhoons: ",
html.Span(f"{cluster_counts[i]}", style={'color': 'blue'}),
")"
]))
for name, eq in cluster_equations:
equations_output.append(html.P(f"{name}: {eq}"))
equations_output.append(html.P("To use in GeoGebra:"))
equations_output.append(html.P(f"1. Set x-axis from 0 to {2*np.pi:.4f}"))
equations_output.append(html.P(f"2. Use the equation as is"))
equations_output.append(html.P(f"3. To convert x back to longitude: lon = {lon_min:.4f} + x * {(lon_max - lon_min) / (2*np.pi):.4f}"))
equations_output.append(html.Hr())
fig_routes.add_trace(go.Scattergeo(
lon=cluster_center[:, 0],
lat=cluster_center[:, 1],
mode='lines',
name=f'Cluster {i+1} (n={cluster_counts[i]})',
line=dict(width=3),
visible=(button_id == 'show-clusters-button')
))
enso_phase_text = {
'all': 'All Years',
'el_nino': 'El Niño Years',
'la_nina': 'La Niña Years',
'neutral': 'Neutral Years'
}
fig_routes.update_layout(
title=f'Typhoon Routes Clustering in West Pacific ({start_year}-{end_year}) - {enso_phase_text[enso_value]}',
geo=dict(
projection_type='mercator',
showland=True,
landcolor='rgb(243, 243, 243)',
countrycolor='rgb(204, 204, 204)',
coastlinecolor='rgb(100, 100, 100)',
showocean=True,
oceancolor='rgb(230, 250, 255)',
lataxis={'range': [0, 40]},
lonaxis={'range': [100, 180]},
center={'lat': 20, 'lon': 140},
),
legend_title='Clusters'
)
return fig_routes, html.Div(equations_output)
@app.callback(
[Output('typhoon-tracks-graph', 'figure'),
Output('all-years-regression-graph', 'figure'),
Output('regression-graphs', 'children'),
Output('slopes', 'children'),
Output('wind-oni-scatter-plot', 'figure'),
Output('pressure-oni-scatter', 'figure'),
Output('correlation-coefficient', 'children'),
Output('max-wind-speed', 'children'),
Output('min-pressure', 'children'),
Output('wind-oni-correlation', 'children'),
Output('pressure-oni-correlation', 'children'),
Output('typhoon-count-analysis', 'children'),
Output('concentrated-months-analysis', 'children')],
[Input('analyze-button', 'n_clicks'),
Input('find-typhoon-button', 'n_clicks')],
[State('start-year', 'value'),
State('start-month', 'value'),
State('end-year', 'value'),
State('end-month', 'value'),
State('enso-dropdown', 'value'),
State('typhoon-search', 'value')]
)
def update_graphs(analyze_clicks, find_typhoon_clicks,
start_year, start_month, end_year, end_month,
enso_value, typhoon_search):
ctx = dash.callback_context
button_id = ctx.triggered[0]['prop_id'].split('.')[0]
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_oni_df = oni_df[(oni_df.index >= start_date) & (oni_df.index <= end_date)]
regression_data = {'El Nino': {'longitudes': [], 'oni_values': [], 'names': []},
'La Nina': {'longitudes': [], 'oni_values': [], 'names': []},
'Neutral': {'longitudes': [], 'oni_values': [], 'names': []},
'All': {'longitudes': [], 'oni_values': [], 'names': []}}
fig_tracks = go.Figure()
def process_storm(year, storm_id):
storm = get_storm_data(storm_id)
storm_dates = storm.time
if any(start_date <= date <= end_date for date in storm_dates):
storm_oni = filtered_oni_df.loc[storm_dates[0].strftime('%Y-%b')]['ONI']
if isinstance(storm_oni, pd.Series):
storm_oni = storm_oni.iloc[0]
phase = classify_enso_phases(storm_oni)
regression_data[phase]['longitudes'].append(storm.lon[0])
regression_data[phase]['oni_values'].append(storm_oni)
regression_data[phase]['names'].append(f'{storm.name} ({year})')
regression_data['All']['longitudes'].append(storm.lon[0])
regression_data['All']['oni_values'].append(storm_oni)
regression_data['All']['names'].append(f'{storm.name} ({year})')
if (enso_value == 'all' or
(enso_value == 'el_nino' and phase == 'El Nino') or
(enso_value == 'la_nina' and phase == 'La Nina') or
(enso_value == 'neutral' and phase == 'Neutral')):
color = {'El Nino': 'red', 'La Nina': 'blue', 'Neutral': 'green'}[phase]
return go.Scattergeo(
lon=storm.lon,
lat=storm.lat,
mode='lines',
name=storm.name,
text=f'{storm.name} ({year})',
hoverinfo='text',
line=dict(width=2, color=color)
)
return None
with ThreadPoolExecutor() as executor:
futures = []
for year in range(start_year, end_year + 1):
season = ibtracs.get_season(year)
for storm_id in season.summary()['id']:
futures.append(executor.submit(process_storm, year, storm_id))
for future in futures:
result = future.result()
if result:
fig_tracks.add_trace(result)
fig_tracks.update_layout(
title=f'Typhoon Tracks from {start_year}-{start_month} to {end_year}-{end_month}',
geo=dict(
projection_type='natural earth',
showland=True,
)
)
regression_figs = []
slopes = []
all_years_fig = go.Figure() # Initialize with an empty figure
for phase in ['El Nino', 'La Nina', 'Neutral', 'All']:
df = pd.DataFrame({
'Longitude': regression_data[phase]['longitudes'],
'ONI': regression_data[phase]['oni_values'],
'Name': regression_data[phase]['names']
})
if not df.empty and len(df) > 1: # Ensure there's enough data for regression
try:
fig = px.scatter(df, x='Longitude', y='ONI', hover_data=['Name'],
labels={'Longitude': 'Longitude of Typhoon Generation', 'ONI': 'ONI Value'},
title=f'Typhoon Generation Location vs. ONI ({phase})')
X = np.array(df['Longitude']).reshape(-1, 1)
y = df['ONI']
model = LinearRegression()
model.fit(X, y)
y_pred = model.predict(X)
slope = model.coef_[0]
intercept = model.intercept_
fraction_slope = Fraction(slope).limit_denominator()
equation = f'ONI = {fraction_slope} * Longitude + {Fraction(intercept).limit_denominator()}'
fig.add_trace(go.Scatter(x=df['Longitude'], y=y_pred, mode='lines', name='Regression Line'))
fig.add_annotation(x=df['Longitude'].mean(), y=y_pred.mean(),
text=equation, showarrow=False, yshift=10)
if phase == 'All':
all_years_fig = fig
else:
regression_figs.append(dcc.Graph(figure=fig))
correlation_coef = np.corrcoef(df['Longitude'], df['ONI'])[0, 1]
slopes.append(html.P(f'{phase} Regression Slope: {slope:.4f}, Correlation Coefficient: {correlation_coef:.4f}'))
except Exception as e:
print(f"Error in regression analysis for {phase}: {str(e)}")
if phase != 'All':
regression_figs.append(html.Div(f"Error in analysis for {phase}"))
slopes.append(html.P(f'{phase} Regression: Error in analysis'))
else:
if phase != 'All':
regression_figs.append(html.Div(f"Insufficient data for {phase}"))
slopes.append(html.P(f'{phase} Regression: Insufficient data'))
if all_years_fig.data == ():
all_years_fig = go.Figure()
all_years_fig.add_annotation(text="No data available for regression analysis",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False)
if button_id == 'find-typhoon-button' and typhoon_search:
for trace in fig_tracks.data:
if typhoon_search.lower() in trace.name.lower():
trace.line.width = 5
trace.line.color = 'yellow'
filtered_data = merged_data[
(merged_data['Year'] >= start_year) &
(merged_data['Year'] <= end_year) &
(merged_data['Month'].astype(int) >= start_month) &
(merged_data['Month'].astype(int) <= end_month)
]
wind_oni_scatter = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category',
hover_data=['NAME', 'Year','Category'],
title='Wind Speed vs ONI',
labels={'ONI': 'ONI Value', 'USA_WIND': 'Maximum Wind Speed (knots)'},
color_discrete_map=color_map)
wind_oni_scatter.update_traces(hovertemplate='<b>%{customdata[0]} (%{customdata[1]})</b><br>Category: %{customdata[2]}<br>ONI: %{x}<br>Wind Speed: %{y} knots')
pressure_oni_scatter = px.scatter(filtered_data, x='ONI', y='USA_PRES',color='Category',
hover_data=['NAME', 'Year','Category'],
title='Pressure vs ONI',
labels={'ONI': 'ONI Value', 'USA_PRES': 'Minimum Pressure (hPa)'},
color_discrete_map=color_map)
pressure_oni_scatter.update_traces(hovertemplate='<b>%{customdata[0]} (%{customdata[1]})</b><br>Category: %{customdata[2]}<br>ONI: %{x}<br>Pressure: %{y} hPa')
if typhoon_search:
for fig in [wind_oni_scatter, pressure_oni_scatter]:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
fig.add_trace(go.Scatter(
x=filtered_data.loc[mask, 'ONI'],
y=filtered_data.loc[mask, 'USA_WIND' if 'Wind' in fig.layout.title.text else 'USA_PRES'],
mode='markers',
marker=dict(size=10, color='red', symbol='star'),
name=f'Matched: {typhoon_search}',
hovertemplate='<b>%{text}</b><br>Category: %{customdata}<br>ONI: %{x}<br>Value: %{y}',
text=filtered_data.loc[mask, 'NAME'] + ' (' + filtered_data.loc[mask, 'Year'].astype(str) + ')',
customdata=filtered_data.loc[mask, 'Category']
))
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
typhoon_counts, concentrated_months = analyze_typhoon_generation(merged_data, start_date, end_date)
month_names = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
count_analysis = [html.P(f"{phase}: {count} typhoons") for phase, count in typhoon_counts.items()]
month_analysis = [html.P(f"{phase}: Most concentrated in {month_names[month-1]}") for phase, month in concentrated_months.items()]
max_wind_speed = filtered_data['USA_WIND'].max()
min_pressure = typhoon_data[(typhoon_data['ISO_TIME'].dt.year >= start_year) &
(typhoon_data['ISO_TIME'].dt.year <= end_year)]['WMO_PRES'].min()
correlation_text = f"Logistic Regression Results: see below"
max_wind_speed_text = f"Maximum Wind Speed: {max_wind_speed:.2f} knots"
min_pressure_text = f"Minimum Pressure: {min_pressure:.2f} hPa"
return (fig_tracks, all_years_fig, regression_figs, slopes,
wind_oni_scatter, pressure_oni_scatter,
correlation_text, max_wind_speed_text, min_pressure_text,
"Wind-ONI correlation: See logistic regression results",
"Pressure-ONI correlation: See logistic regression results",
count_analysis, month_analysis)
@app.callback(
Output('logistic-regression-results', 'children'),
[Input('wind-regression-button', 'n_clicks'),
Input('pressure-regression-button', 'n_clicks'),
Input('longitude-regression-button', 'n_clicks')],
[State('start-year', 'value'),
State('start-month', 'value'),
State('end-year', 'value'),
State('end-month', 'value')]
)
def update_logistic_regression(wind_clicks, pressure_clicks, longitude_clicks,
start_year, start_month, end_year, end_month):
ctx = dash.callback_context
if not ctx.triggered:
return "Click a button to see logistic regression results."
button_id = ctx.triggered[0]['prop_id'].split('.')[0]
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_data = merged_data[
(merged_data['ISO_TIME'] >= start_date) &
(merged_data['ISO_TIME'] <= end_date)
]
if button_id == 'wind-regression-button':
return calculate_wind_logistic_regression(filtered_data)
elif button_id == 'pressure-regression-button':
return calculate_pressure_logistic_regression(filtered_data)
elif button_id == 'longitude-regression-button':
return calculate_longitude_logistic_regression(filtered_data)
def calculate_wind_logistic_regression(data):
data['severe_typhoon'] = (data['USA_WIND'] >= 64).astype(int) # 64 knots threshold for severe typhoons
X = sm.add_constant(data['ONI'])
y = data['severe_typhoon']
model = sm.Logit(y, X).fit()
beta_1 = model.params['ONI']
exp_beta_1 = np.exp(beta_1)
p_value = model.pvalues['ONI']
el_nino_data = data[data['ONI'] >= 0.5]
la_nina_data = data[data['ONI'] <= -0.5]
neutral_data = data[(data['ONI'] > -0.5) & (data['ONI'] < 0.5)]
el_nino_severe = el_nino_data['severe_typhoon'].mean()
la_nina_severe = la_nina_data['severe_typhoon'].mean()
neutral_severe = neutral_data['severe_typhoon'].mean()
return html.Div([
html.H3("Wind Speed Logistic Regression Results"),
html.P(f"β1 (ONI coefficient): {beta_1:.4f}"),
html.P(f"exp(β1) (Odds Ratio): {exp_beta_1:.4f}"),
html.P(f"P-value: {p_value:.4f}"),
html.P("Interpretation:"),
html.Ul([
html.Li(f"For each unit increase in ONI, the odds of a severe typhoon are "
f"{'increased' if exp_beta_1 > 1 else 'decreased'} by a factor of {exp_beta_1:.2f}."),
html.Li(f"This effect is {'statistically significant' if p_value < 0.05 else 'not statistically significant'} "
f"at the 0.05 level.")
]),
html.P("Proportion of severe typhoons:"),
html.Ul([
html.Li(f"El Niño conditions: {el_nino_severe:.2%}"),
html.Li(f"La Niña conditions: {la_nina_severe:.2%}"),
html.Li(f"Neutral conditions: {neutral_severe:.2%}")
])
])
def calculate_pressure_logistic_regression(data):
data['intense_typhoon'] = (data['USA_PRES'] <= 950).astype(int) # 950 hPa threshold for intense typhoons
X = sm.add_constant(data['ONI'])
y = data['intense_typhoon']
model = sm.Logit(y, X).fit()
beta_1 = model.params['ONI']
exp_beta_1 = np.exp(beta_1)
p_value = model.pvalues['ONI']
el_nino_data = data[data['ONI'] >= 0.5]
la_nina_data = data[data['ONI'] <= -0.5]
neutral_data = data[(data['ONI'] > -0.5) & (data['ONI'] < 0.5)]
el_nino_intense = el_nino_data['intense_typhoon'].mean()
la_nina_intense = la_nina_data['intense_typhoon'].mean()
neutral_intense = neutral_data['intense_typhoon'].mean()
return html.Div([
html.H3("Pressure Logistic Regression Results"),
html.P(f"β1 (ONI coefficient): {beta_1:.4f}"),
html.P(f"exp(β1) (Odds Ratio): {exp_beta_1:.4f}"),
html.P(f"P-value: {p_value:.4f}"),
html.P("Interpretation:"),
html.Ul([
html.Li(f"For each unit increase in ONI, the odds of an intense typhoon (pressure <= 950 hPa) are "
f"{'increased' if exp_beta_1 > 1 else 'decreased'} by a factor of {exp_beta_1:.2f}."),
html.Li(f"This effect is {'statistically significant' if p_value < 0.05 else 'not statistically significant'} "
f"at the 0.05 level.")
]),
html.P("Proportion of intense typhoons:"),
html.Ul([
html.Li(f"El Niño conditions: {el_nino_intense:.2%}"),
html.Li(f"La Niña conditions: {la_nina_intense:.2%}"),
html.Li(f"Neutral conditions: {neutral_intense:.2%}")
])
])
def calculate_longitude_logistic_regression(data):
# Use only the data points where longitude is available
data = data.dropna(subset=['LON'])
if len(data) == 0:
return html.Div("Insufficient data for longitude analysis")
data['western_typhoon'] = (data['LON'] <= 140).astype(int) # 140°E as threshold for western typhoons
X = sm.add_constant(data['ONI'])
y = data['western_typhoon']
model = sm.Logit(y, X).fit()
beta_1 = model.params['ONI']
exp_beta_1 = np.exp(beta_1)
p_value = model.pvalues['ONI']
el_nino_data = data[data['ONI'] >= 0.5]
la_nina_data = data[data['ONI'] <= -0.5]
neutral_data = data[(data['ONI'] > -0.5) & (data['ONI'] < 0.5)]
el_nino_western = el_nino_data['western_typhoon'].mean()
la_nina_western = la_nina_data['western_typhoon'].mean()
neutral_western = neutral_data['western_typhoon'].mean()
return html.Div([
html.H3("Longitude Logistic Regression Results"),
html.P(f"β1 (ONI coefficient): {beta_1:.4f}"),
html.P(f"exp(β1) (Odds Ratio): {exp_beta_1:.4f}"),
html.P(f"P-value: {p_value:.4f}"),
html.P("Interpretation:"),
html.Ul([
html.Li(f"For each unit increase in ONI, the odds of a typhoon forming west of 140°E are "
f"{'increased' if exp_beta_1 > 1 else 'decreased'} by a factor of {exp_beta_1:.2f}."),
html.Li(f"This effect is {'statistically significant' if p_value < 0.05 else 'not statistically significant'} "
f"at the 0.05 level.")
]),
html.P("Proportion of typhoons forming west of 140°E:"),
html.Ul([
html.Li(f"El Niño conditions: {el_nino_western:.2%}"),
html.Li(f"La Niña conditions: {la_nina_western:.2%}"),
html.Li(f"Neutral conditions: {neutral_western:.2%}")
])
])
def categorize_typhoon_by_standard(wind_speed, standard='atlantic'):
"""
Categorize typhoon based on wind speed and chosen standard
wind_speed is in knots
"""
if standard == 'taiwan':
# Convert knots to m/s for Taiwan standard
wind_speed_ms = wind_speed * 0.514444
if wind_speed_ms >= 51.0:
return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['color']
elif wind_speed_ms >= 33.7:
return 'Medium Typhoon', taiwan_standard['Medium Typhoon']['color']
elif wind_speed_ms >= 17.2:
return 'Mild Typhoon', taiwan_standard['Mild Typhoon']['color']
else:
return 'Tropical Depression', taiwan_standard['Tropical Depression']['color']
else:
# Atlantic standard uses knots
if wind_speed >= 137:
return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['color']
elif wind_speed >= 113:
return 'C4 Very Strong Typhoon', atlantic_standard['C4 Very Strong Typhoon']['color']
elif wind_speed >= 96:
return 'C3 Strong Typhoon', atlantic_standard['C3 Strong Typhoon']['color']
elif wind_speed >= 83:
return 'C2 Typhoon', atlantic_standard['C2 Typhoon']['color']
elif wind_speed >= 64:
return 'C1 Typhoon', atlantic_standard['C1 Typhoon']['color']
elif wind_speed >= 34:
return 'Tropical Storm', atlantic_standard['Tropical Storm']['color']
else:
return 'Tropical Depression', atlantic_standard['Tropical Depression']['color']
if __name__ == "__main__":
print(f"Using data path: {DATA_PATH}")
# Update ONI data before starting the application
update_oni_data()
oni_df = fetch_oni_data_from_csv(ONI_DATA_PATH)
ibtracs = load_ibtracs_data()
convert_typhoondata(LOCAL_iBtrace_PATH, TYPHOON_DATA_PATH)
oni_data, typhoon_data = load_data(ONI_DATA_PATH, TYPHOON_DATA_PATH)
oni_long = process_oni_data_with_cache(oni_data)
typhoon_max = process_typhoon_data_with_cache(typhoon_data)
merged_data = merge_data(oni_long, typhoon_max)
data = preprocess_data(oni_data, typhoon_data)
max_wind_speed, min_pressure = calculate_max_wind_min_pressure(typhoon_data)
# Schedule IBTrACS data update daily
schedule.every().day.at("01:00").do(update_ibtracs_data)
# Schedule ONI data check daily, but only update on specified dates
schedule.every().day.at("00:00").do(lambda: update_oni_data() if should_update_oni() else None)
# Run the scheduler in a separate thread
scheduler_thread = threading.Thread(target=run_schedule)
scheduler_thread.start()
app.run_server(debug=True, host='127.0.0.1', port=8050)
|