label_distribution / label_distribution.py
lvwerra's picture
lvwerra HF staff
Update Space (evaluate main: c447fc8e)
e7bfd46
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Label Distribution Measurement."""
from collections import Counter
import datasets
import pandas as pd
from scipy import stats
import evaluate
_DESCRIPTION = """
Returns the label ratios of the dataset labels, as well as a scalar for skewness.
"""
_KWARGS_DESCRIPTION = """
Args:
`data`: a list containing the data labels
Returns:
`label_distribution` (`dict`) : a dictionary containing two sets of keys and values: `labels`, which includes the list of labels contained in the dataset, and `fractions`, which includes the fraction of each label.
`label_skew` (`scalar`) : the asymmetry of the label distribution.
Examples:
>>> data = [1, 0, 1, 1, 0, 1, 0]
>>> distribution = evaluate.load("label_distribution")
>>> results = distribution.compute(data=data)
>>> print(results)
{'label_distribution': {'labels': [1, 0], 'fractions': [0.5714285714285714, 0.42857142857142855]}, 'label_skew': -0.2886751345948127}
"""
_CITATION = """\
@ARTICLE{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class LabelDistribution(evaluate.Measurement):
def _info(self):
return evaluate.MeasurementInfo(
module_type="measurement",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=[
datasets.Features({"data": datasets.Value("int32")}),
datasets.Features({"data": datasets.Value("string")}),
],
)
def _compute(self, data):
"""Returns the fraction of each label present in the data"""
c = Counter(data)
label_distribution = {"labels": [k for k in c.keys()], "fractions": [f / len(data) for f in c.values()]}
if isinstance(data[0], str):
label2id = {label: id for id, label in enumerate(label_distribution["labels"])}
data = [label2id[d] for d in data]
skew = stats.skew(data)
return {"label_distribution": label_distribution, "label_skew": skew}