Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Computes the RL Reliability Metrics.""" | |
import datasets | |
import numpy as np | |
from rl_reliability_metrics.evaluation import eval_metrics | |
from rl_reliability_metrics.metrics import metrics_offline, metrics_online | |
import evaluate | |
logger = evaluate.logging.get_logger(__name__) | |
DEFAULT_EVAL_POINTS = [ | |
50000, | |
150000, | |
250000, | |
350000, | |
450000, | |
550000, | |
650000, | |
750000, | |
850000, | |
950000, | |
1050000, | |
1150000, | |
1250000, | |
1350000, | |
1450000, | |
1550000, | |
1650000, | |
1750000, | |
1850000, | |
1950000, | |
] | |
N_RUNS_RECOMMENDED = 10 | |
_CITATION = """\ | |
@conference{rl_reliability_metrics, | |
title = {Measuring the Reliability of Reinforcement Learning Algorithms}, | |
author = {Stephanie CY Chan, Sam Fishman, John Canny, Anoop Korattikara, and Sergio Guadarrama}, | |
booktitle = {International Conference on Learning Representations, Addis Ababa, Ethiopia}, | |
year = 2020, | |
} | |
""" | |
_DESCRIPTION = """\ | |
This new module is designed to solve this great NLP task and is crafted with a lot of care. | |
""" | |
_KWARGS_DESCRIPTION = """ | |
Computes the RL reliability metrics from a set of experiments. There is an `"online"` and `"offline"` configuration for evaluation. | |
Args: | |
timestamps: list of timestep lists/arrays that serve as index. | |
rewards: list of reward lists/arrays of each experiment. | |
Returns: | |
dictionary: a set of reliability metrics | |
Examples: | |
>>> import numpy as np | |
>>> rl_reliability = evaluate.load("rl_reliability", "online") | |
>>> results = rl_reliability.compute( | |
... timesteps=[np.linspace(0, 2000000, 1000)], | |
... rewards=[np.linspace(0, 100, 1000)] | |
... ) | |
>>> print(results["LowerCVaROnRaw"].round(4)) | |
[0.0258] | |
""" | |
class RLReliability(evaluate.EvaluationModule): | |
"""Computes the RL Reliability Metrics.""" | |
def _info(self): | |
if self.config_name not in ["online", "offline"]: | |
raise KeyError("""You should supply a configuration name selected in '["online", "offline"]'""") | |
return evaluate.EvaluationModuleInfo( | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"timesteps": datasets.Sequence(datasets.Value("int64")), | |
"rewards": datasets.Sequence(datasets.Value("float")), | |
} | |
), | |
homepage="https://github.com/google-research/rl-reliability-metrics", | |
) | |
def _compute( | |
self, | |
timesteps, | |
rewards, | |
baseline="default", | |
freq_thresh=0.01, | |
window_size=100000, | |
window_size_trimmed=99000, | |
alpha=0.05, | |
eval_points=None, | |
): | |
if len(timesteps) < N_RUNS_RECOMMENDED: | |
logger.warning( | |
f"For robust statistics it is recommended to use at least {N_RUNS_RECOMMENDED} runs whereas you provided {len(timesteps)}." | |
) | |
curves = [] | |
for timestep, reward in zip(timesteps, rewards): | |
curves.append(np.stack([timestep, reward])) | |
if self.config_name == "online": | |
if baseline == "default": | |
baseline = "curve_range" | |
if eval_points is None: | |
eval_points = DEFAULT_EVAL_POINTS | |
metrics = [ | |
metrics_online.HighFreqEnergyWithinRuns(thresh=freq_thresh), | |
metrics_online.IqrWithinRuns( | |
window_size=window_size_trimmed, eval_points=eval_points, baseline=baseline | |
), | |
metrics_online.IqrAcrossRuns( | |
lowpass_thresh=freq_thresh, eval_points=eval_points, window_size=window_size, baseline=baseline | |
), | |
metrics_online.LowerCVaROnDiffs(baseline=baseline), | |
metrics_online.LowerCVaROnDrawdown(baseline=baseline), | |
metrics_online.LowerCVaROnAcross( | |
lowpass_thresh=freq_thresh, eval_points=eval_points, window_size=window_size, baseline=baseline | |
), | |
metrics_online.LowerCVaROnRaw(alpha=alpha, baseline=baseline), | |
metrics_online.MadAcrossRuns( | |
lowpass_thresh=freq_thresh, eval_points=eval_points, window_size=window_size, baseline=baseline | |
), | |
metrics_online.MadWithinRuns( | |
eval_points=eval_points, window_size=window_size_trimmed, baseline=baseline | |
), | |
metrics_online.MaxDrawdown(), | |
metrics_online.StddevAcrossRuns( | |
lowpass_thresh=freq_thresh, eval_points=eval_points, window_size=window_size, baseline=baseline | |
), | |
metrics_online.StddevWithinRuns( | |
eval_points=eval_points, window_size=window_size_trimmed, baseline=baseline | |
), | |
metrics_online.UpperCVaROnAcross( | |
alpha=alpha, | |
lowpass_thresh=freq_thresh, | |
eval_points=eval_points, | |
window_size=window_size, | |
baseline=baseline, | |
), | |
metrics_online.UpperCVaROnDiffs(alpha=alpha, baseline=baseline), | |
metrics_online.UpperCVaROnDrawdown(alpha=alpha, baseline=baseline), | |
metrics_online.UpperCVaROnRaw(alpha=alpha, baseline=baseline), | |
metrics_online.MedianPerfDuringTraining(window_size=window_size, eval_points=eval_points), | |
] | |
else: | |
if baseline == "default": | |
baseline = "median_perf" | |
metrics = [ | |
metrics_offline.MadAcrossRollouts(baseline=baseline), | |
metrics_offline.IqrAcrossRollouts(baseline=baseline), | |
metrics_offline.StddevAcrossRollouts(baseline=baseline), | |
metrics_offline.LowerCVaRAcrossRollouts(alpha=alpha, baseline=baseline), | |
metrics_offline.UpperCVaRAcrossRollouts(alpha=alpha, baseline=baseline), | |
metrics_offline.MedianPerfAcrossRollouts(baseline=None), | |
] | |
evaluator = eval_metrics.Evaluator(metrics=metrics) | |
result = evaluator.compute_metrics(curves) | |
return result | |