Spaces:
Running
Running
title: SacreBLEU | |
emoji: 🤗 | |
colorFrom: blue | |
colorTo: red | |
sdk: gradio | |
sdk_version: 3.19.1 | |
app_file: app.py | |
pinned: false | |
tags: | |
- evaluate | |
- metric | |
description: >- | |
SacreBLEU provides hassle-free computation of shareable, comparable, and reproducible BLEU scores. | |
Inspired by Rico Sennrich's `multi-bleu-detok.perl`, it produces the official WMT scores but works with plain text. | |
It also knows all the standard test sets and handles downloading, processing, and tokenization for you. | |
See the [README.md] file at https://github.com/mjpost/sacreBLEU for more information. | |
# Metric Card for SacreBLEU | |
## Metric Description | |
SacreBLEU provides hassle-free computation of shareable, comparable, and reproducible BLEU scores. Inspired by Rico Sennrich's `multi-bleu-detok.perl`, it produces the official Workshop on Machine Translation (WMT) scores but works with plain text. It also knows all the standard test sets and handles downloading, processing, and tokenization. | |
See the [README.md] file at https://github.com/mjpost/sacreBLEU for more information. | |
## How to Use | |
This metric takes a set of predictions and a set of references as input, along with various optional parameters. | |
```python | |
>>> predictions = ["hello there general kenobi", "foo bar foobar"] | |
>>> references = [["hello there general kenobi", "hello there !"], | |
... ["foo bar foobar", "foo bar foobar"]] | |
>>> sacrebleu = evaluate.load("sacrebleu") | |
>>> results = sacrebleu.compute(predictions=predictions, | |
... references=references) | |
>>> print(list(results.keys())) | |
['score', 'counts', 'totals', 'precisions', 'bp', 'sys_len', 'ref_len'] | |
>>> print(round(results["score"], 1)) | |
100.0 | |
``` | |
### Inputs | |
- **`predictions`** (`list` of `str`): list of translations to score. Each translation should be tokenized into a list of tokens. | |
- **`references`** (`list` of `list` of `str`): A list of lists of references. The contents of the first sub-list are the references for the first prediction, the contents of the second sub-list are for the second prediction, etc. Note that there must be the same number of references for each prediction (i.e. all sub-lists must be of the same length). | |
- **`smooth_method`** (`str`): The smoothing method to use, defaults to `'exp'`. Possible values are: | |
- `'none'`: no smoothing | |
- `'floor'`: increment zero counts | |
- `'add-k'`: increment num/denom by k for n>1 | |
- `'exp'`: exponential decay | |
- **`smooth_value`** (`float`): The smoothing value. Only valid when `smooth_method='floor'` (in which case `smooth_value` defaults to `0.1`) or `smooth_method='add-k'` (in which case `smooth_value` defaults to `1`). | |
- **`tokenize`** (`str`): Tokenization method to use for BLEU. If not provided, defaults to `'zh'` for Chinese, `'ja-mecab'` for Japanese and `'13a'` (mteval) otherwise. Possible values are: | |
- `'none'`: No tokenization. | |
- `'zh'`: Chinese tokenization. | |
- `'13a'`: mimics the `mteval-v13a` script from Moses. | |
- `'intl'`: International tokenization, mimics the `mteval-v14` script from Moses | |
- `'char'`: Language-agnostic character-level tokenization. | |
- `'ja-mecab'`: Japanese tokenization. Uses the [MeCab tokenizer](https://pypi.org/project/mecab-python3). | |
- **`lowercase`** (`bool`): If `True`, lowercases the input, enabling case-insensitivity. Defaults to `False`. | |
- **`force`** (`bool`): If `True`, insists that your tokenized input is actually detokenized. Defaults to `False`. | |
- **`use_effective_order`** (`bool`): If `True`, stops including n-gram orders for which precision is 0. This should be `True`, if sentence-level BLEU will be computed. Defaults to `False`. | |
### Output Values | |
- `score`: BLEU score | |
- `counts`: Counts | |
- `totals`: Totals | |
- `precisions`: Precisions | |
- `bp`: Brevity penalty | |
- `sys_len`: predictions length | |
- `ref_len`: reference length | |
The output is in the following format: | |
```python | |
{'score': 39.76353643835252, 'counts': [6, 4, 2, 1], 'totals': [10, 8, 6, 4], 'precisions': [60.0, 50.0, 33.333333333333336, 25.0], 'bp': 1.0, 'sys_len': 10, 'ref_len': 7} | |
``` | |
The score can take any value between `0.0` and `100.0`, inclusive. | |
#### Values from Popular Papers | |
### Examples | |
```python | |
>>> predictions = ["hello there general kenobi", | |
... "on our way to ankh morpork"] | |
>>> references = [["hello there general kenobi", "hello there !"], | |
... ["goodbye ankh morpork", "ankh morpork"]] | |
>>> sacrebleu = evaluate.load("sacrebleu") | |
>>> results = sacrebleu.compute(predictions=predictions, | |
... references=references) | |
>>> print(list(results.keys())) | |
['score', 'counts', 'totals', 'precisions', 'bp', 'sys_len', 'ref_len'] | |
>>> print(round(results["score"], 1)) | |
39.8 | |
``` | |
## Limitations and Bias | |
Because what this metric calculates is BLEU scores, it has the same limitations as that metric, except that sacreBLEU is more easily reproducible. | |
## Citation | |
```bibtex | |
@inproceedings{post-2018-call, | |
title = "A Call for Clarity in Reporting {BLEU} Scores", | |
author = "Post, Matt", | |
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", | |
month = oct, | |
year = "2018", | |
address = "Belgium, Brussels", | |
publisher = "Association for Computational Linguistics", | |
url = "https://www.aclweb.org/anthology/W18-6319", | |
pages = "186--191", | |
} | |
``` | |
## Further References | |
- See the [sacreBLEU README.md file](https://github.com/mjpost/sacreBLEU) for more information. |