Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import time | |
from typing import Optional, Sequence, Union | |
from mmengine.registry import HOOKS | |
from .hook import Hook | |
DATA_BATCH = Optional[Union[dict, tuple, list]] | |
class IterTimerHook(Hook): | |
"""A hook that logs the time spent during iteration. | |
E.g. ``data_time`` for loading data and ``time`` for a model train step. | |
""" | |
priority = 'NORMAL' | |
def __init__(self): | |
self.time_sec_tot = 0 | |
self.time_sec_test_val = 0 | |
self.start_iter = 0 | |
def before_train(self, runner) -> None: | |
"""Synchronize the number of iterations with the runner after resuming | |
from checkpoints. | |
Args: | |
runner: The runner of the training, validation or testing | |
process. | |
""" | |
self.start_iter = runner.iter | |
def _before_epoch(self, runner, mode: str = 'train') -> None: | |
"""Record timestamp before start an epoch. | |
Args: | |
runner (Runner): The runner of the training validation and | |
testing process. | |
mode (str): Current mode of runner. Defaults to 'train'. | |
""" | |
self.t = time.time() | |
def _after_epoch(self, runner, mode: str = 'train') -> None: | |
self.time_sec_test_val = 0 | |
def _before_iter(self, | |
runner, | |
batch_idx: int, | |
data_batch: DATA_BATCH = None, | |
mode: str = 'train') -> None: | |
"""Calculating time for loading data and updating "data_time" | |
``HistoryBuffer`` of ``runner.message_hub``. | |
Args: | |
runner (Runner): The runner of the training, validation and | |
testing process. | |
batch_idx (int): The index of the current batch in the loop. | |
data_batch (dict or tuple or list, optional): Data from | |
dataloader. | |
mode (str): Current mode of runner. Defaults to 'train'. | |
""" | |
# Update data loading time in `runner.message_hub`. | |
runner.message_hub.update_scalar(f'{mode}/data_time', | |
time.time() - self.t) | |
def _after_iter(self, | |
runner, | |
batch_idx: int, | |
data_batch: DATA_BATCH = None, | |
outputs: Optional[Union[dict, Sequence]] = None, | |
mode: str = 'train') -> None: | |
"""Calculating time for an iteration and updating "time" | |
``HistoryBuffer`` of ``runner.message_hub``. | |
Args: | |
runner (Runner): The runner of the training validation and | |
testing process. | |
batch_idx (int): The index of the current batch in the loop. | |
data_batch (dict or tuple or list, optional): Data from dataloader. | |
outputs (dict or sequence, optional): Outputs from model. | |
mode (str): Current mode of runner. Defaults to 'train'. | |
""" | |
# Update iteration time in `runner.message_hub`. | |
message_hub = runner.message_hub | |
message_hub.update_scalar(f'{mode}/time', time.time() - self.t) | |
self.t = time.time() | |
iter_time = message_hub.get_scalar(f'{mode}/time') | |
if mode == 'train': | |
self.time_sec_tot += iter_time.current() | |
# Calculate average iterative time. | |
time_sec_avg = self.time_sec_tot / ( | |
runner.iter - self.start_iter + 1) | |
# Calculate eta. | |
eta_sec = time_sec_avg * (runner.max_iters - runner.iter - 1) | |
runner.message_hub.update_info('eta', eta_sec) | |
else: | |
if mode == 'val': | |
cur_dataloader = runner.val_dataloader | |
else: | |
cur_dataloader = runner.test_dataloader | |
self.time_sec_test_val += iter_time.current() | |
time_sec_avg = self.time_sec_test_val / (batch_idx + 1) | |
eta_sec = time_sec_avg * (len(cur_dataloader) - batch_idx - 1) | |
runner.message_hub.update_info('eta', eta_sec) | |