Spaces:
Running
Running
import os | |
from langchain_community.vectorstores.pinecone import Pinecone | |
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings | |
from langchain.retrievers import ContextualCompressionRetriever | |
from langchain.retrievers.document_compressors import FlashrankRerank | |
from langchain_core.tools import tool | |
from apps.agent.constant import INDEX_NAME_WEWEB, INDEX_NAME_XANO | |
# os.environ["PINECONE_API_KEY"] = "a526d62f-ccca-40d6-859b-3d878c8d288b" | |
embeddings = FastEmbedEmbeddings(model_name="BAAI/bge-small-en-v1.5") | |
compressor = FlashrankRerank() | |
def create_compressed_retriever(index_name: str, embeddings, compressor) -> ContextualCompressionRetriever: | |
vectorstore = Pinecone.from_existing_index(embedding=embeddings, index_name=index_name) | |
retriever = vectorstore.as_retriever() | |
return ContextualCompressionRetriever(base_compressor=compressor, base_retriever=retriever) | |
reranker_xano = create_compressed_retriever(INDEX_NAME_XANO, embeddings, compressor) | |
reranker_weweb = create_compressed_retriever(INDEX_NAME_WEWEB, embeddings, compressor) | |
def tool_xano(query: str): | |
""" | |
Searches and returns excerpts from the Xano documentation | |
""" | |
docs = reranker_xano.invoke(query) | |
return "\n\n".join([doc["page_content"] for doc in docs]) | |
def tool_weweb(query: str): | |
""" | |
Searches and returns excerpts from the Weweb documentation | |
""" | |
docs = reranker_weweb.invoke(query) | |
return "\n\n".join([doc["page_content"] for doc in docs]) | |