File size: 7,493 Bytes
c7f5132 d701c20 c7f5132 9759e5c c7f5132 9759e5c c7f5132 9759e5c c7f5132 992c7ee d701c20 992c7ee c7f5132 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# streamlit
import streamlit as st
import pandas as pd
st.set_page_config(page_title="Home", page_icon="🏠", layout="centered")
st.markdown("# 🛍️ Aspect-Based Multilabel Classification of Ecommerce Reviews")
st.write("Ever wondered what people think about the products, customer service, and shipping of your favorite online store? Try this out!")
# help me create sidebar
st.sidebar.markdown("## 📚 About"
"\nThis is a simple web app to classify the aspect of reviews from an e-commerce dataset."
"\n\nThe dataset used is a multilabel dataset, which means a review can have multiple labels."
"\n\nThe labels are:"
"\n- 📦 **Product**"
"\n- 👩💼 **Customer Service**"
"\n- 🚚 **Shipping/Delivery**")
# add create by Fahrendra Khoirul Ihtada and Rizha Alfianita using streamlit and Hugging Face's IndoBERT model
st.sidebar.markdown("## 👨💻 Created by"
"\n[Fahrendra Khoirul Ihtada](https://www.linkedin.com/in/fahrendra-khoirul-ihtada/) "
"and [Rizha Alfianita](https://www.linkedin.com/in/rizha-alfianita/)"
"\n Using Streamlit and Hugging Face's [IndoBERT](https://huggingface.co/indobenchmark/indobert-base-p1) model.")
# add my hugging face profile
st.sidebar.markdown("## 🤖 Hugging Face"
"\n- [Fahrendra Khoirul Ihtada](https://huggingface.co/fahrendrakhoirul)")
# import here because why not??
import model_services.pipeline as pipeline
container_1 = st.container(border=True)
# create rows and 2 dropdown menus side by side
row1_1, row1_2 = container_1.columns((2, 1))
with row1_1:
df = pd.read_json("Product Reviews Ecommerce Multilabel Dataset.json", lines=True)
selected_review = st.selectbox(
"You can pick a review from dataset",
df["review"].values,
)
with row1_2:
selected_model = st.selectbox(
"Choose the model",
("IndoBERT", "IndoBERT-CNN", "IndoBERT-LSTM (Best)"),
)
# text input
input_review = container_1.text_area("Or you can input multiple review with separated line", selected_review, height=200)
# create button submit
button_submit = container_1.button("Classify")
def show_label_desc():
st.divider()
st.write("Let's see what is the meaning of each labels:")
st.write("- 📦**Product** : related Customer satisfaction with the quality, performance, and conformity of the product to the description given")
st.write("- 👩💼**Customer Service** : Interaction between customers and sellers, friendliness and speed of response from sellers, and handling complaints.")
st.write("- 🚚**Shipping/Delivery** : related to shipping speed, condition of goods when received, and timeliness of shipping")
def submit():
# Create UI for Result
st.success("Done! 👌")
outputs = do_calculation(input_review)
# input_review = ""
show_result(outputs)
show_label_desc()
def do_calculation(texts):
# split text by newline
reviews = texts.split("\n")
# remove empty string
reviews = list(filter(None, reviews))
# do the prediction
outputs = pipeline.get_result(reviews, selected_model)
return outputs
st.markdown("""
<style>
.label-container {
display: flex;
flex-wrap: wrap;
gap: 5px;
}
.rounded-label-product {
background-color: #FFD700;
color: black;
border-radius: 20px;
padding: 5px 10px;
font-size: 14px;
margin-bottom: 20px;
}
.rounded-label-customer-service {
background-color: #FFA07A;
color: black;
border-radius: 20px;
padding: 5px 10px;
font-size: 14px;
margin-bottom: 20px;
}
.rounded-label-shipping-delivery {
background-color: #20B2AA;
color: black;
border-radius: 20px;
padding: 5px 10px;
font-size: 14px;
margin-bottom: 20px;
}
.rounded-label-undefined {
background-color: #DCDCDC;
color: black;
border-radius: 20px;
padding: 5px 10px;
font-size: 14px;
margin-bottom: 20px;
}
</style>
""", unsafe_allow_html=True)
def chips_label(output):
asd = []
for label in output["predicted_labels"]:
if label == "Product":
score = f"{output['predicted_score'][0] * 100:.2f}%"
score = f"<strong>{score}</strong>"
asd.append(f"<div class='rounded-label-product'>📦Product {score}</div>")
elif label == "Customer Service":
score = f"{output['predicted_score'][1] * 100:.2f}%"
score = f"<strong>{score}</strong>"
asd.append(f"<div class='rounded-label-customer-service'>👩💼Customer Service {score}</div>")
elif label == "Shipping/Delivery":
score = f"{output['predicted_score'][2] * 100:.2f}%"
score = f"<strong>{score}</strong>"
asd.append(f"<div class='rounded-label-shipping-delivery'>🚚Shipping/Delivery {score}</div>")
# for label, score in zip(output["predicted_labels"], output["predicted_score"]):
# score = f"{score * 100:.2f}%"
# score = f"<strong>{score}</strong>"
# if label == "Product":
# asd.append(f"<div class='rounded-label-product'>📦Product {score}</div>")
# elif label == "Customer Service":
# asd.append(f"<div class='rounded-label-customer-service'>👩💼Customer Service {score}</div>")
# elif label == "Shipping/Delivery":
# asd.append(f"<div class='rounded-label-shipping-delivery'>🚚Shipping/Delivery {score}</div>")
if asd == []:
asd.append("<div class='rounded-label-undefined'>Undefined</div>")
labels_html = "".join(asd)
st.markdown(f"<div class='label-container'>{labels_html}</div>", unsafe_allow_html=True)
def show_result(outputs):
st.title("Result")
# create 2 column
col1, col2 = st.columns(2)
with col1:
st.write("📑 Total reviews : ", len(outputs))
with col2:
st.write("🖥️ Model used : ", selected_model)
for i, output in enumerate(outputs):
st.markdown(
f"<p style='color:grey; margin: 0; padding: 0;'>Review {i+1}:</p>",
unsafe_allow_html=True)
st.markdown(f"<p style='font-size:20px; margin-bottom: 5px;'><strong>{output['review']}</strong></p>", unsafe_allow_html=True)
chips_label(output)
st.balloons()
# change predicted_labels to dict with key is the label
new_outputs = []
for output in outputs:
temp = output
temp['predicted_score'] = [
f"Product {output['predicted_score'][0] * 100:.2f}%",
f"Customer Service {output['predicted_score'][1] * 100:.2f}%",
f"Shipping/Delivery {output['predicted_score'][2] * 100:.2f}%"
]
new_outputs.append(temp)
df = pd.DataFrame(new_outputs)
st.write(df)
# create note if wanna download, hove on top right in table show
st.markdown("**Note:** To download the table, hover over the top right corner of the table and click the download button.")
if button_submit and pipeline.ready_status:
submit()
elif button_submit and not pipeline.ready_status:
st.error("Models are not ready yet, please wait a moment")
|