fahrendrakhoirul's picture
update best label for model
d701c20
# streamlit
import streamlit as st
import pandas as pd
st.set_page_config(page_title="Home", page_icon="🏠", layout="centered")
st.markdown("# 🛍️ Aspect-Based Multilabel Classification of Ecommerce Reviews")
st.write("Ever wondered what people think about the products, customer service, and shipping of your favorite online store? Try this out!")
# help me create sidebar
st.sidebar.markdown("## 📚 About"
"\nThis is a simple web app to classify the aspect of reviews from an e-commerce dataset."
"\n\nThe dataset used is a multilabel dataset, which means a review can have multiple labels."
"\n\nThe labels are:"
"\n- 📦 **Product**"
"\n- 👩‍💼 **Customer Service**"
"\n- 🚚 **Shipping/Delivery**")
# add create by Fahrendra Khoirul Ihtada and Rizha Alfianita using streamlit and Hugging Face's IndoBERT model
st.sidebar.markdown("## 👨‍💻 Created by"
"\n[Fahrendra Khoirul Ihtada](https://www.linkedin.com/in/fahrendra-khoirul-ihtada/) "
"and [Rizha Alfianita](https://www.linkedin.com/in/rizha-alfianita/)"
"\n Using Streamlit and Hugging Face's [IndoBERT](https://huggingface.co/indobenchmark/indobert-base-p1) model.")
# add my hugging face profile
st.sidebar.markdown("## 🤖 Hugging Face"
"\n- [Fahrendra Khoirul Ihtada](https://huggingface.co/fahrendrakhoirul)")
# import here because why not??
import model_services.pipeline as pipeline
container_1 = st.container(border=True)
# create rows and 2 dropdown menus side by side
row1_1, row1_2 = container_1.columns((2, 1))
with row1_1:
df = pd.read_json("Product Reviews Ecommerce Multilabel Dataset.json", lines=True)
selected_review = st.selectbox(
"You can pick a review from dataset",
df["review"].values,
)
with row1_2:
selected_model = st.selectbox(
"Choose the model",
("IndoBERT", "IndoBERT-CNN", "IndoBERT-LSTM (Best)"),
)
# text input
input_review = container_1.text_area("Or you can input multiple review with separated line", selected_review, height=200)
# create button submit
button_submit = container_1.button("Classify")
def show_label_desc():
st.divider()
st.write("Let's see what is the meaning of each labels:")
st.write("- 📦**Product** : related Customer satisfaction with the quality, performance, and conformity of the product to the description given")
st.write("- 👩‍💼**Customer Service** : Interaction between customers and sellers, friendliness and speed of response from sellers, and handling complaints.")
st.write("- 🚚**Shipping/Delivery** : related to shipping speed, condition of goods when received, and timeliness of shipping")
def submit():
# Create UI for Result
st.success("Done! 👌")
outputs = do_calculation(input_review)
# input_review = ""
show_result(outputs)
show_label_desc()
def do_calculation(texts):
# split text by newline
reviews = texts.split("\n")
# remove empty string
reviews = list(filter(None, reviews))
# do the prediction
outputs = pipeline.get_result(reviews, selected_model)
return outputs
st.markdown("""
<style>
.label-container {
display: flex;
flex-wrap: wrap;
gap: 5px;
}
.rounded-label-product {
background-color: #FFD700;
color: black;
border-radius: 20px;
padding: 5px 10px;
font-size: 14px;
margin-bottom: 20px;
}
.rounded-label-customer-service {
background-color: #FFA07A;
color: black;
border-radius: 20px;
padding: 5px 10px;
font-size: 14px;
margin-bottom: 20px;
}
.rounded-label-shipping-delivery {
background-color: #20B2AA;
color: black;
border-radius: 20px;
padding: 5px 10px;
font-size: 14px;
margin-bottom: 20px;
}
.rounded-label-undefined {
background-color: #DCDCDC;
color: black;
border-radius: 20px;
padding: 5px 10px;
font-size: 14px;
margin-bottom: 20px;
}
</style>
""", unsafe_allow_html=True)
def chips_label(output):
asd = []
for label in output["predicted_labels"]:
if label == "Product":
score = f"{output['predicted_score'][0] * 100:.2f}%"
score = f"<strong>{score}</strong>"
asd.append(f"<div class='rounded-label-product'>📦Product {score}</div>")
elif label == "Customer Service":
score = f"{output['predicted_score'][1] * 100:.2f}%"
score = f"<strong>{score}</strong>"
asd.append(f"<div class='rounded-label-customer-service'>👩‍💼Customer Service {score}</div>")
elif label == "Shipping/Delivery":
score = f"{output['predicted_score'][2] * 100:.2f}%"
score = f"<strong>{score}</strong>"
asd.append(f"<div class='rounded-label-shipping-delivery'>🚚Shipping/Delivery {score}</div>")
# for label, score in zip(output["predicted_labels"], output["predicted_score"]):
# score = f"{score * 100:.2f}%"
# score = f"<strong>{score}</strong>"
# if label == "Product":
# asd.append(f"<div class='rounded-label-product'>📦Product {score}</div>")
# elif label == "Customer Service":
# asd.append(f"<div class='rounded-label-customer-service'>👩‍💼Customer Service {score}</div>")
# elif label == "Shipping/Delivery":
# asd.append(f"<div class='rounded-label-shipping-delivery'>🚚Shipping/Delivery {score}</div>")
if asd == []:
asd.append("<div class='rounded-label-undefined'>Undefined</div>")
labels_html = "".join(asd)
st.markdown(f"<div class='label-container'>{labels_html}</div>", unsafe_allow_html=True)
def show_result(outputs):
st.title("Result")
# create 2 column
col1, col2 = st.columns(2)
with col1:
st.write("📑 Total reviews : ", len(outputs))
with col2:
st.write("🖥️ Model used : ", selected_model)
for i, output in enumerate(outputs):
st.markdown(
f"<p style='color:grey; margin: 0; padding: 0;'>Review {i+1}:</p>",
unsafe_allow_html=True)
st.markdown(f"<p style='font-size:20px; margin-bottom: 5px;'><strong>{output['review']}</strong></p>", unsafe_allow_html=True)
chips_label(output)
st.balloons()
# change predicted_labels to dict with key is the label
new_outputs = []
for output in outputs:
temp = output
temp['predicted_score'] = [
f"Product {output['predicted_score'][0] * 100:.2f}%",
f"Customer Service {output['predicted_score'][1] * 100:.2f}%",
f"Shipping/Delivery {output['predicted_score'][2] * 100:.2f}%"
]
new_outputs.append(temp)
df = pd.DataFrame(new_outputs)
st.write(df)
# create note if wanna download, hove on top right in table show
st.markdown("**Note:** To download the table, hover over the top right corner of the table and click the download button.")
if button_submit and pipeline.ready_status:
submit()
elif button_submit and not pipeline.ready_status:
st.error("Models are not ready yet, please wait a moment")