|
|
|
import streamlit as st |
|
import pandas as pd |
|
|
|
st.set_page_config(page_title="Home", page_icon="🏠", layout="centered") |
|
|
|
st.markdown("# 🛍️ Aspect-Based Multilabel Classification of Ecommerce Reviews") |
|
st.write("Ever wondered what people think about the products, customer service, and shipping of your favorite online store? Try this out!") |
|
|
|
|
|
st.sidebar.markdown("## 📚 About" |
|
"\nThis is a simple web app to classify the aspect of reviews from an e-commerce dataset." |
|
"\n\nThe dataset used is a multilabel dataset, which means a review can have multiple labels." |
|
"\n\nThe labels are:" |
|
"\n- 📦 **Product**" |
|
"\n- 👩💼 **Customer Service**" |
|
"\n- 🚚 **Shipping/Delivery**") |
|
|
|
|
|
st.sidebar.markdown("## 👨💻 Created by" |
|
"\n[Fahrendra Khoirul Ihtada](https://www.linkedin.com/in/fahrendra-khoirul-ihtada/) " |
|
"and [Rizha Alfianita](https://www.linkedin.com/in/rizha-alfianita/)" |
|
"\n Using Streamlit and Hugging Face's [IndoBERT](https://huggingface.co/indobenchmark/indobert-base-p1) model.") |
|
|
|
|
|
st.sidebar.markdown("## 🤖 Hugging Face" |
|
"\n- [Fahrendra Khoirul Ihtada](https://huggingface.co/fahrendrakhoirul)") |
|
|
|
|
|
|
|
|
|
import model_services.pipeline as pipeline |
|
|
|
container_1 = st.container(border=True) |
|
|
|
|
|
|
|
row1_1, row1_2 = container_1.columns((2, 1)) |
|
with row1_1: |
|
df = pd.read_json("Product Reviews Ecommerce Multilabel Dataset.json", lines=True) |
|
selected_review = st.selectbox( |
|
"You can pick a review from dataset", |
|
df["review"].values, |
|
) |
|
with row1_2: |
|
selected_model = st.selectbox( |
|
"Choose the model", |
|
("IndoBERT", "IndoBERT-CNN", "IndoBERT-LSTM (Best)"), |
|
) |
|
|
|
|
|
input_review = container_1.text_area("Or you can input multiple review with separated line", selected_review, height=200) |
|
|
|
|
|
button_submit = container_1.button("Classify") |
|
|
|
|
|
def show_label_desc(): |
|
st.divider() |
|
st.write("Let's see what is the meaning of each labels:") |
|
st.write("- 📦**Product** : related Customer satisfaction with the quality, performance, and conformity of the product to the description given") |
|
st.write("- 👩💼**Customer Service** : Interaction between customers and sellers, friendliness and speed of response from sellers, and handling complaints.") |
|
st.write("- 🚚**Shipping/Delivery** : related to shipping speed, condition of goods when received, and timeliness of shipping") |
|
|
|
def submit(): |
|
|
|
st.success("Done! 👌") |
|
outputs = do_calculation(input_review) |
|
|
|
show_result(outputs) |
|
show_label_desc() |
|
|
|
def do_calculation(texts): |
|
|
|
reviews = texts.split("\n") |
|
|
|
reviews = list(filter(None, reviews)) |
|
|
|
outputs = pipeline.get_result(reviews, selected_model) |
|
return outputs |
|
|
|
st.markdown(""" |
|
<style> |
|
.label-container { |
|
display: flex; |
|
flex-wrap: wrap; |
|
gap: 5px; |
|
} |
|
.rounded-label-product { |
|
background-color: #FFD700; |
|
color: black; |
|
border-radius: 20px; |
|
padding: 5px 10px; |
|
font-size: 14px; |
|
margin-bottom: 20px; |
|
} |
|
|
|
.rounded-label-customer-service { |
|
background-color: #FFA07A; |
|
color: black; |
|
border-radius: 20px; |
|
padding: 5px 10px; |
|
font-size: 14px; |
|
margin-bottom: 20px; |
|
} |
|
|
|
.rounded-label-shipping-delivery { |
|
background-color: #20B2AA; |
|
color: black; |
|
border-radius: 20px; |
|
padding: 5px 10px; |
|
font-size: 14px; |
|
margin-bottom: 20px; |
|
} |
|
|
|
.rounded-label-undefined { |
|
background-color: #DCDCDC; |
|
color: black; |
|
border-radius: 20px; |
|
padding: 5px 10px; |
|
font-size: 14px; |
|
margin-bottom: 20px; |
|
} |
|
|
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
def chips_label(output): |
|
asd = [] |
|
for label in output["predicted_labels"]: |
|
if label == "Product": |
|
score = f"{output['predicted_score'][0] * 100:.2f}%" |
|
score = f"<strong>{score}</strong>" |
|
asd.append(f"<div class='rounded-label-product'>📦Product {score}</div>") |
|
elif label == "Customer Service": |
|
score = f"{output['predicted_score'][1] * 100:.2f}%" |
|
score = f"<strong>{score}</strong>" |
|
asd.append(f"<div class='rounded-label-customer-service'>👩💼Customer Service {score}</div>") |
|
elif label == "Shipping/Delivery": |
|
score = f"{output['predicted_score'][2] * 100:.2f}%" |
|
score = f"<strong>{score}</strong>" |
|
asd.append(f"<div class='rounded-label-shipping-delivery'>🚚Shipping/Delivery {score}</div>") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if asd == []: |
|
asd.append("<div class='rounded-label-undefined'>Undefined</div>") |
|
labels_html = "".join(asd) |
|
st.markdown(f"<div class='label-container'>{labels_html}</div>", unsafe_allow_html=True) |
|
|
|
def show_result(outputs): |
|
st.title("Result") |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.write("📑 Total reviews : ", len(outputs)) |
|
with col2: |
|
st.write("🖥️ Model used : ", selected_model) |
|
for i, output in enumerate(outputs): |
|
st.markdown( |
|
f"<p style='color:grey; margin: 0; padding: 0;'>Review {i+1}:</p>", |
|
unsafe_allow_html=True) |
|
st.markdown(f"<p style='font-size:20px; margin-bottom: 5px;'><strong>{output['review']}</strong></p>", unsafe_allow_html=True) |
|
chips_label(output) |
|
st.balloons() |
|
|
|
new_outputs = [] |
|
for output in outputs: |
|
temp = output |
|
temp['predicted_score'] = [ |
|
f"Product {output['predicted_score'][0] * 100:.2f}%", |
|
f"Customer Service {output['predicted_score'][1] * 100:.2f}%", |
|
f"Shipping/Delivery {output['predicted_score'][2] * 100:.2f}%" |
|
] |
|
new_outputs.append(temp) |
|
|
|
df = pd.DataFrame(new_outputs) |
|
st.write(df) |
|
|
|
|
|
st.markdown("**Note:** To download the table, hover over the top right corner of the table and click the download button.") |
|
|
|
|
|
|
|
|
|
if button_submit and pipeline.ready_status: |
|
submit() |
|
elif button_submit and not pipeline.ready_status: |
|
st.error("Models are not ready yet, please wait a moment") |
|
|
|
|