|
import torch.nn as nn |
|
import torch |
|
import numpy as np |
|
from huggingface_hub import PyTorchModelHubMixin |
|
from transformers import BertModel, AutoTokenizer |
|
|
|
class IndoBertLSTMEcommerceReview(nn.Module, PyTorchModelHubMixin): |
|
def __init__(self, bert): |
|
super().__init__() |
|
self.bert = bert |
|
self.lstm = nn.LSTM(bert.config.hidden_size, 128) |
|
self.linear = nn.Linear(128, 3) |
|
self.sigmoid = nn.Sigmoid() |
|
|
|
def forward(self, input_ids, attention_mask): |
|
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask) |
|
|
|
last_hidden_state = outputs.last_hidden_state |
|
lstm_out, _ = self.lstm(last_hidden_state) |
|
pooled = lstm_out[:, -1, :] |
|
logits = self.linear(pooled) |
|
probabilities = self.sigmoid(logits) |
|
return probabilities |
|
|
|
bert = BertModel.from_pretrained("indobenchmark/indobert-base-p1") |
|
tokenizer = AutoTokenizer.from_pretrained("fahrendrakhoirul/indobert-finetuned-ecommerce-reviews") |
|
|
|
indobertlstm_model = IndoBertLSTMEcommerceReview.from_pretrained("fahrendrakhoirul/indobert-lstm-finetuned-ecommerce-reviews", bert=bert).to('cpu') |
|
|
|
|
|
res_token = tokenizer("hahahah", return_tensors="pt").to('cpu') |
|
input_ids = res_token['input_ids'] |
|
attention_mask = res_token['attention_mask'] |
|
|
|
print(res_token) |
|
with torch.no_grad(): |
|
logits = indobertlstm_model(input_ids=input_ids, attention_mask=attention_mask) |
|
preds = torch.sigmoid(logits).detach().cpu().numpy()[0] |
|
|
|
print(preds) |