Spaces:
Running
Running
import gradio as gr | |
import cv2 | |
import requests | |
import os | |
from PIL import Image | |
import torch | |
import ultralytics | |
model = torch.hub.load("ultralytics/yolov5", "custom", path="yolov5_0.65map_exp7_best.pt", | |
force_reload=False) | |
model.conf = 0.20 # NMS confidence threshold | |
path = [['img/test-image.jpg'], ['img/test-image-2.jpg']] | |
# def show_preds_image(image_path): | |
# image = cv2.imread(image_path) | |
# # outputs = model(source=image_path) | |
# # results = outputs[0].cpu().numpy() | |
# results = model(image_path) | |
# results.xyxy[0] # img1 predictions (tensor) | |
# results.pandas().xyxy[0] # img1 predictions (pandas) | |
# predictions = results.pred[0] | |
# boxes = predictions[:, :4] # x1, y1, x2, y2 | |
# scores = predictions[:, 4] | |
# categories = predictions[:, 5] | |
# # for i, det in enumerate(results.boxes.xyxy): | |
# # cv2.rectangle( | |
# # image, | |
# # (int(det[0]), int(det[1])), | |
# # (int(det[2]), int(det[3])), | |
# # color=(0, 0, 255), | |
# # thickness=2, | |
# # lineType=cv2.LINE_AA | |
# # ) | |
# return results.show() | |
def show_preds_image(im, size=640): | |
g = (size / max(im.size)) # gain | |
im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize | |
results = model(im) # inference | |
results.render() # updates results.imgs with boxes and labels | |
results.save() | |
os.system("ls") | |
return "out.png" | |
inputs_image = [ | |
gr.components.Image(type="filepath", label="Input Image"), | |
] | |
outputs_image = [ | |
gr.components.Image(type="file", label="Output Image"), | |
] | |
interface_image = gr.Interface( | |
fn=show_preds_image, | |
inputs=inputs_image, | |
outputs=outputs_image, | |
title="Cashew Disease Detection", | |
examples=path, | |
cache_examples=False, | |
) | |
interface_image.launch() |