Update app.py
Browse files
app.py
CHANGED
@@ -1,78 +1,62 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
-
from transformers import
|
4 |
from PyPDF2 import PdfReader
|
5 |
import torch
|
6 |
-
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
|
|
|
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def extract_text_from_pdf(pdf_file: str) -> str:
|
15 |
-
"""
|
16 |
-
Extracts text from a single PDF file using PyPDF2.
|
17 |
-
"""
|
18 |
pdf_reader = PdfReader(pdf_file)
|
19 |
text = ""
|
20 |
for page in pdf_reader.pages:
|
21 |
text += page.extract_text()
|
22 |
return text
|
23 |
|
24 |
-
# Function to search for a keyword in
|
25 |
-
def search_keyword_in_pdfs(keyword: str,
|
26 |
-
"""
|
27 |
-
Search for the keyword in the uploaded PDFs and return the list of PDF names.
|
28 |
-
"""
|
29 |
found_pdfs = []
|
30 |
-
for pdf_name, pdf_text in pdf_texts.items():
|
31 |
-
prompt = f"Does the keyword '{keyword}' appear in the following text? If yes, provide details.\n\n{pdf_text}"
|
32 |
-
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
33 |
-
outputs = model.generate(inputs.input_ids, max_new_tokens=20000)
|
34 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
35 |
-
|
36 |
-
# If keyword is found in the response
|
37 |
-
if keyword.lower() in response.lower():
|
38 |
-
found_pdfs.append(pdf_name)
|
39 |
-
return found_pdfs
|
40 |
-
|
41 |
-
# Function to process all PDFs in a specified folder
|
42 |
-
def process_pdfs_in_folder(folder_path: str) -> dict:
|
43 |
-
"""
|
44 |
-
Extracts text from all PDFs in the specified folder and stores it in a dictionary.
|
45 |
-
"""
|
46 |
-
pdf_texts = {}
|
47 |
for file_name in os.listdir(folder_path):
|
48 |
-
if file_name.endswith(".pdf"):
|
49 |
file_path = os.path.join(folder_path, file_name)
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
# Streamlit
|
54 |
-
st.title("PDF Keyword Search")
|
55 |
|
56 |
-
folder_path = st.text_input("Enter the folder path containing PDFs:")
|
57 |
keyword = st.text_input("Enter the keyword to search for:")
|
58 |
|
59 |
if st.button("Search"):
|
60 |
-
if
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
else:
|
63 |
-
|
64 |
-
# Process all PDFs in the folder
|
65 |
-
pdf_texts = process_pdfs_in_folder(folder_path)
|
66 |
-
|
67 |
-
# Perform keyword search in the extracted texts
|
68 |
-
found_pdfs = search_keyword_in_pdfs(keyword, pdf_texts)
|
69 |
-
|
70 |
-
# Display results
|
71 |
-
if found_pdfs:
|
72 |
-
st.write(f"The keyword '{keyword}' was found in the following PDF files:")
|
73 |
-
for pdf in found_pdfs:
|
74 |
-
st.write(f"- {pdf}")
|
75 |
-
else:
|
76 |
-
st.write(f"The keyword '{keyword}' was not found in any PDFs in the folder '{folder_path}'.")
|
77 |
-
except Exception as e:
|
78 |
-
st.error(f"Error: {e}")
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
from PyPDF2 import PdfReader
|
5 |
import torch
|
6 |
+
import bitsandbytes as bnb # For 4-bit quantization
|
7 |
|
8 |
+
# Device configuration
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
|
11 |
+
# Load the tokenizer and the quantized LLaMA model
|
12 |
+
model_name = "unsloth/Llama-3.2-1B-Instruct-bnb-4bit"
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
model_name,
|
17 |
+
load_in_4bit=True, # Enable 4-bit quantization
|
18 |
+
device_map="auto" if device == "cuda" else {"": "cpu"}
|
19 |
+
)
|
20 |
+
|
21 |
+
# Extract text from a PDF
|
22 |
def extract_text_from_pdf(pdf_file: str) -> str:
|
|
|
|
|
|
|
23 |
pdf_reader = PdfReader(pdf_file)
|
24 |
text = ""
|
25 |
for page in pdf_reader.pages:
|
26 |
text += page.extract_text()
|
27 |
return text
|
28 |
|
29 |
+
# Function to search for a keyword in PDFs
|
30 |
+
def search_keyword_in_pdfs(keyword: str, folder_path: str) -> list:
|
|
|
|
|
|
|
31 |
found_pdfs = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
for file_name in os.listdir(folder_path):
|
33 |
+
if file_name.endswith(".pdf"):
|
34 |
file_path = os.path.join(folder_path, file_name)
|
35 |
+
pdf_text = extract_text_from_pdf(file_path)
|
36 |
+
# Prepare prompt for model
|
37 |
+
prompt = f"Check if the keyword '{keyword}' appears in this text:\n{pdf_text[:1000]}" # Limiting input size for performance
|
38 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
39 |
+
with torch.no_grad():
|
40 |
+
output = model.generate(**inputs, max_new_tokens=200)
|
41 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
42 |
+
if keyword.lower() in response.lower():
|
43 |
+
found_pdfs.append(file_name)
|
44 |
+
return found_pdfs
|
45 |
|
46 |
+
# Streamlit interface
|
47 |
+
st.title("PDF Keyword Search with LLaMA 4-bit Model")
|
48 |
|
49 |
+
folder_path = st.text_input("Enter the folder path containing PDFs:")
|
50 |
keyword = st.text_input("Enter the keyword to search for:")
|
51 |
|
52 |
if st.button("Search"):
|
53 |
+
if folder_path and keyword:
|
54 |
+
found_pdfs = search_keyword_in_pdfs(keyword, folder_path)
|
55 |
+
if found_pdfs:
|
56 |
+
st.write(f"The keyword '{keyword}' was found in the following PDF files:")
|
57 |
+
for pdf in found_pdfs:
|
58 |
+
st.write(f"- {pdf}")
|
59 |
+
else:
|
60 |
+
st.write(f"The keyword '{keyword}' was not found in any PDFs.")
|
61 |
else:
|
62 |
+
st.error("Please provide both the folder path and the keyword.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|