fangshengren's picture
Update app.py
7e91b24 verified
raw
history blame
1.38 kB
import gradio as gr
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
import time
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
def caption(img,min_len,max_len):
raw_image =Image.open(img).convert('RGB')
inputs =processor(raw_image,return_tensors="pt")
out = model.generate(**inputs, min_length=min_len, max_length=max_len)
return processor.decode(out[0],skip_special_tokens=True)
def greet(img, min_len,max_len):
start = time.time()
result=caption(img,min_len,max_len)
end =time.time()
total_time =str(end - start)
result=result+'n'+total_time +'seconds'
return result
iface = gr.Interface(fn=greet,
title='Blip Image Captioning Large',
description=" [Salesforce/blip-image-captioning-largel(https: //huggingface,co/Salesforce/blip-image-captioning-large)",
inputs=[gr.Image(type='filepath', label='Image'), gr.Slider(label='Minimum Length', minimum=1, maximum=1000, value=30)],
outputs=gr.Textbox(label='Caption'),
theme = gr.themes.Base(primary_hue="teal",secondary_hue="teal",neutral_hue="slate"))
iface.launch(server_port=23765, share=True)