File size: 18,463 Bytes
26853cd f2d9a72 26853cd 5df09e2 26853cd 3350655 26853cd 26378e3 3350655 26853cd f2d9a72 26378e3 3350655 26378e3 26853cd dc014e0 26853cd dc014e0 26853cd dc014e0 26853cd 5df09e2 26853cd 0bddf56 5df09e2 26853cd 5df09e2 26853cd 0bddf56 5df09e2 26853cd 16fe5e4 7c324a3 26853cd 15186bb 28ad19c 16fe5e4 15186bb 26853cd 3350655 b15506b 26853cd dc014e0 26853cd dc014e0 26853cd 5df09e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
import gradio as gr
import spaces
import os
import sys
import time
import subprocess
import shutil
import random
from omegaconf import OmegaConf
from moviepy.editor import VideoFileClip
from PIL import Image
import torch
import numpy as np
from black_box_image_edit.instructpix2pix import InstructPix2Pix
from prepare_video import crop_and_resize_video
from edit_image import infer_video
sys.path.insert(0, "i2vgen-xl")
from utils import load_ddim_latents_at_t
from pipelines.pipeline_i2vgen_xl import I2VGenXLPipeline
from run_group_ddim_inversion import ddim_inversion
from run_group_pnp_edit import init_pnp
from diffusers import DDIMInverseScheduler, DDIMScheduler
from diffusers.utils import load_image
import imageio
from transformers import pipeline
# Initialize the translation pipeline
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
DEBUG_MODE = False
demo_examples = [
["./demo/Man Walking.mp4", "./demo/Man Walking/edited_first_frame/turn the man into darth vader.png", "man walking", 0.1, 0.1, 1.0],
["./demo/A kitten turning its head on a wooden floor.mp4", "./demo/A kitten turning its head on a wooden floor/edited_first_frame/A dog turning its head on a wooden floor.png", "A dog turning its head on a wooden floor", 0.2, 0.2, 0.5],
["./demo/An Old Man Doing Exercises For The Body And Mind.mp4", "./demo/An Old Man Doing Exercises For The Body And Mind/edited_first_frame/jack ma.png", "a man doing exercises for the body and mind", 0.8, 0.8, 1.0],
["./demo/Ballet.mp4", "./demo/Ballet/edited_first_frame/van gogh style.png", "girl dancing ballet, in the style of van gogh", 1.0, 1.0, 1.0],
["./demo/A Couple In A Public Display Of Affection.mp4", "./demo/A Couple In A Public Display Of Affection/edited_first_frame/Snowing.png", "A couple in a public display of affection, snowing", 0.3, 0.3, 1.0]
]
TEMP_DIR = "_demo_temp"
image_edit_model = InstructPix2Pix()
@torch.no_grad()
@spaces.GPU(duration=30)
def perform_edit(video_path, prompt, force_512=False, seed=42, negative_prompt=""):
edited_image_path = infer_video(image_edit_model,
video_path,
output_dir=TEMP_DIR,
prompt=prompt,
prompt_type="instruct",
force_512=force_512,
seed=seed,
negative_prompt=negative_prompt,
overwrite=True)
return edited_image_path
# Set up default inversion config file
config = {
# DDIM inversion
"inverse_config": {
"image_size": [512, 512],
"n_frames": 16,
"cfg": 1.0,
"target_fps": 8,
"ddim_inv_prompt": "",
"prompt": "",
"negative_prompt": "",
},
"pnp_config": {
"random_ratio": 0.0,
"target_fps": 8,
},
}
config = OmegaConf.create(config)
# Initialize the I2VGenXL pipeline
pipe = I2VGenXLPipeline.from_pretrained(
"ali-vilab/i2vgen-xl",
torch_dtype=torch.float16,
variant="fp16",
).to("cuda:0")
# Initialize the DDIM inverse scheduler
inverse_scheduler = DDIMInverseScheduler.from_pretrained(
"ali-vilab/i2vgen-xl",
subfolder="scheduler",
)
# Initialize the DDIM scheduler
ddim_scheduler = DDIMScheduler.from_pretrained(
"ali-vilab/i2vgen-xl",
subfolder="scheduler",
)
@torch.no_grad()
@spaces.GPU(duration=150)
def perform_anyv2v(
video_path,
video_prompt,
video_negative_prompt,
edited_first_frame_path,
conv_inj,
spatial_inj,
temp_inj,
num_inference_steps,
guidance_scale,
ddim_init_latents_t_idx,
ddim_inversion_steps,
seed,
):
tmp_dir = os.path.join(TEMP_DIR, "AnyV2V")
if os.path.exists(tmp_dir):
shutil.rmtree(tmp_dir)
os.makedirs(tmp_dir)
ddim_latents_path = os.path.join(tmp_dir, "ddim_latents")
def read_frames(video_path):
frames = []
with imageio.get_reader(video_path) as reader:
for i, frame in enumerate(reader):
pil_image = Image.fromarray(frame)
frames.append(pil_image)
return frames
frame_list = read_frames(str(video_path))
config.inverse_config.image_size = list(frame_list[0].size)
config.inverse_config.n_steps = ddim_inversion_steps
config.inverse_config.n_frames = len(frame_list)
config.inverse_config.output_dir = ddim_latents_path
ddim_init_latents_t_idx = min(ddim_init_latents_t_idx, num_inference_steps - 1)
# Step 1. DDIM Inversion
first_frame = frame_list[0]
generator = torch.Generator(device="cuda:0")
generator = generator.manual_seed(seed)
_ddim_latents = ddim_inversion(
config.inverse_config,
first_frame,
frame_list,
pipe,
inverse_scheduler,
generator,
)
# Step 2. DDIM Sampling + PnP feature and attention injection
# Load the edited first frame
edited_1st_frame = load_image(edited_first_frame_path).resize(
config.inverse_config.image_size, resample=Image.Resampling.LANCZOS
)
# Load the initial latents at t
ddim_scheduler.set_timesteps(num_inference_steps)
print(f"ddim_scheduler.timesteps: {ddim_scheduler.timesteps}")
ddim_latents_at_t = load_ddim_latents_at_t(
ddim_scheduler.timesteps[ddim_init_latents_t_idx],
ddim_latents_path=ddim_latents_path,
)
print(
f"ddim_scheduler.timesteps[t_idx]: {ddim_scheduler.timesteps[ddim_init_latents_t_idx]}"
)
print(f"ddim_latents_at_t.shape: {ddim_latents_at_t.shape}")
# Blend the latents
random_latents = torch.randn_like(ddim_latents_at_t)
print(
f"Blending random_ratio (1 means random latent): {config.pnp_config.random_ratio}"
)
mixed_latents = (
random_latents * config.pnp_config.random_ratio
+ ddim_latents_at_t * (1 - config.pnp_config.random_ratio)
)
# Init Pnp
config.pnp_config.n_steps = num_inference_steps
config.pnp_config.pnp_f_t = conv_inj
config.pnp_config.pnp_spatial_attn_t = spatial_inj
config.pnp_config.pnp_temp_attn_t = temp_inj
config.pnp_config.ddim_init_latents_t_idx = ddim_init_latents_t_idx
init_pnp(pipe, ddim_scheduler, config.pnp_config)
# Edit video
pipe.register_modules(scheduler=ddim_scheduler)
edited_video = pipe.sample_with_pnp(
prompt=video_prompt,
image=edited_1st_frame,
height=config.inverse_config.image_size[1],
width=config.inverse_config.image_size[0],
num_frames=config.inverse_config.n_frames,
num_inference_steps=config.pnp_config.n_steps,
guidance_scale=guidance_scale,
negative_prompt=video_negative_prompt,
target_fps=config.pnp_config.target_fps,
latents=mixed_latents,
generator=generator,
return_dict=True,
ddim_init_latents_t_idx=ddim_init_latents_t_idx,
ddim_inv_latents_path=ddim_latents_path,
ddim_inv_prompt=config.inverse_config.ddim_inv_prompt,
ddim_inv_1st_frame=first_frame,
).frames[0]
edited_video = [
frame.resize(config.inverse_config.image_size, resample=Image.LANCZOS)
for frame in edited_video
]
def images_to_video(images, output_path, fps=24):
writer = imageio.get_writer(output_path, fps=fps)
for img in images:
img_np = np.array(img)
writer.append_data(img_np)
writer.close()
output_path = os.path.join(tmp_dir, "edited_video.mp4")
images_to_video(
edited_video, output_path, fps=config.pnp_config.target_fps
)
return output_path
def get_first_frame_as_pil(video_path):
with VideoFileClip(video_path) as clip:
# Extract the first frame (at t=0) as an array
first_frame_array = clip.get_frame(0)
# Convert the numpy array to a PIL Image
first_frame_image = Image.fromarray(first_frame_array)
return first_frame_image
def btn_preprocess_video_fn(video_path, width, height, start_time, end_time, center_crop, x_offset, y_offset, longest_to_width):
def check_video(video_path):
with VideoFileClip(video_path) as clip:
if clip.duration == 2 and clip.fps == 8:
return True
else:
return False
if check_video(video_path) == False:
processed_video_path = crop_and_resize_video(input_video_path=video_path,
output_folder=TEMP_DIR,
clip_duration=2,
width=width,
height=height,
start_time=start_time,
end_time=end_time,
center_crop=center_crop,
x_offset=x_offset,
y_offset=y_offset,
longest_to_width=longest_to_width)
return processed_video_path
else:
return video_path
def btn_image_edit_fn(video_path, instruct_prompt, ie_force_512, ie_seed, ie_neg_prompt):
"""
Generate an image based on the video and text input.
"""
# Translate the instruction prompt from Korean to English
translated_prompt = translator(instruct_prompt, src_lang="ko", tgt_lang="en")[0]['translation_text']
if ie_seed < 0:
ie_seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {ie_seed}")
edited_image_path = perform_edit(video_path=video_path,
prompt=translated_prompt,
force_512=ie_force_512,
seed=ie_seed,
negative_prompt=ie_neg_prompt)
return edited_image_path
def btn_infer_fn(video_path,
video_prompt,
video_negative_prompt,
edited_first_frame_path,
conv_inj,
spatial_inj,
temp_inj,
num_inference_steps,
guidance_scale,
ddim_init_latents_t_idx,
ddim_inversion_steps,
seed,
):
# Translate the video prompt from Korean to English
translated_video_prompt = translator(video_prompt, src_lang="ko", tgt_lang="en")[0]['translation_text']
if seed < 0:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
result_video_path = perform_anyv2v(video_path=video_path,
video_prompt=translated_video_prompt,
video_negative_prompt=video_negative_prompt,
edited_first_frame_path=edited_first_frame_path,
conv_inj=conv_inj,
spatial_inj=spatial_inj,
temp_inj=temp_inj,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
ddim_init_latents_t_idx=ddim_init_latents_t_idx,
ddim_inversion_steps=ddim_inversion_steps,
seed=seed)
return result_video_path
# Create the UI
#=====================================
with gr.Blocks() as demo:
gr.Markdown("# text + video + image")
with gr.Tabs():
with gr.TabItem('text + video + image'):
with gr.Row():
with gr.Column():
video_raw = gr.Video(label="Raw Video Input")
btn_pv = gr.Button("Preprocess Video")
with gr.Column():
video_input = gr.Video(label="Preprocessed Video Input", interactive=False)
with gr.Column():
advanced_settings_pv = gr.Accordion("Advanced Settings for Video Preprocessing", open=False)
with advanced_settings_pv:
with gr.Column():
pv_width = gr.Number(label="Width", value=512, minimum=1, maximum=4096)
pv_height = gr.Number(label="Height", value=512, minimum=1, maximum=4096)
pv_start_time = gr.Number(label="Start Time (End time - Start time must be = 2)", value=0, minimum=0)
pv_end_time = gr.Number(label="End Time (End time - Start time must be = 2)", value=2, minimum=0)
pv_center_crop = gr.Checkbox(label="Center Crop", value=True)
pv_x_offset = gr.Number(label="Horizontal Offset (-1 to 1)", value=0, minimum=-1, maximum=1)
pv_y_offset = gr.Number(label="Vertical Offset (-1 to 1)", value=0, minimum=-1, maximum=1)
pv_longest_to_width = gr.Checkbox(label="Resize Longest Dimension to Width")
gr.Markdown("# Image Editing Stage")
with gr.Row():
with gr.Column():
src_first_frame = gr.Image(label="First Frame", type="filepath", interactive=False)
image_instruct_prompt = gr.Textbox(label="Editing instruction prompt")
btn_image_edit = gr.Button("Edit the first frame")
with gr.Column():
image_input_output = gr.Image(label="Edited Frame", type="filepath")
with gr.Column():
advanced_settings_image_edit = gr.Accordion("Advanced Settings for Image Editing", open=True)
with advanced_settings_image_edit:
with gr.Column():
ie_neg_prompt = gr.Textbox(label="Negative Prompt", value="low res, blurry, watermark, jpeg artifacts")
ie_seed = gr.Number(label="Seed (-1 means random)", value=-1, minimum=-1, maximum=sys.maxsize)
ie_force_512 = gr.Checkbox(label="Force resize to 512x512 before feeding into the image editing model")
gr.Markdown("# Video Editing Stage")
with gr.Row():
with gr.Column():
video_prompt = gr.Textbox(label="Video description prompt")
settings_anyv2v = gr.Accordion("Settings for AnyV2V")
with settings_anyv2v:
with gr.Column():
av_pnp_f_t = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.2, label="Convolutional injection (pnp_f_t)")
av_pnp_spatial_attn_t = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.2, label="Spatial Attention injection (pnp_spatial_attn_t)")
av_pnp_temp_attn_t = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label="Temporal Attention injection (pnp_temp_attn_t)")
btn_infer = gr.Button("Run Video Editing")
with gr.Column():
video_output = gr.Video(label="Video Output")
with gr.Column():
advanced_settings_anyv2v = gr.Accordion("Advanced Settings for AnyV2V", open=False)
with advanced_settings_anyv2v:
with gr.Column():
av_ddim_init_latents_t_idx = gr.Number(label="DDIM Initial Latents t Index", value=0, minimum=0)
av_ddim_inversion_steps = gr.Number(label="DDIM Inversion Steps", value=100, minimum=1)
av_num_inference_steps = gr.Number(label="Number of Inference Steps", value=50, minimum=1)
av_guidance_scale = gr.Number(label="Guidance Scale", value=9, minimum=0)
av_seed = gr.Number(label="Seed (-1 means random)", value=42, minimum=-1, maximum=sys.maxsize)
av_neg_prompt = gr.Textbox(label="Negative Prompt", value="Distorted, discontinuous, Ugly, blurry, low resolution, motionless, static, disfigured, disconnected limbs, Ugly faces, incomplete arms")
examples = gr.Examples(examples=demo_examples,
label="Examples (Just click on Video Editing button after loading them into the UI)",
inputs=[video_input, image_input_output, video_prompt, av_pnp_f_t, av_pnp_spatial_attn_t, av_pnp_temp_attn_t])
gr.Markdown('Reference: You can find good source videos from https://www.pexels.com/videos/')
btn_pv.click(
btn_preprocess_video_fn,
inputs=[video_raw, pv_width, pv_height, pv_start_time, pv_end_time, pv_center_crop, pv_x_offset, pv_y_offset, pv_longest_to_width],
outputs=video_input
)
btn_image_edit.click(
btn_image_edit_fn,
inputs=[video_input, image_instruct_prompt, ie_force_512, ie_seed, ie_neg_prompt],
outputs=image_input_output
)
btn_infer.click(
btn_infer_fn,
inputs=[video_input,
video_prompt,
av_neg_prompt,
image_input_output,
av_pnp_f_t,
av_pnp_spatial_attn_t,
av_pnp_temp_attn_t,
av_num_inference_steps,
av_guidance_scale,
av_ddim_init_latents_t_idx,
av_ddim_inversion_steps,
av_seed],
outputs=video_output
)
video_input.change(fn=get_first_frame_as_pil, inputs=video_input, outputs=src_first_frame)
#=====================================
# Minimizing usage of GPU Resources
torch.set_grad_enabled(False)
demo.launch()
|