File size: 18,477 Bytes
26853cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2d9a72
26853cd
 
 
 
 
 
 
 
 
 
 
5df09e2
 
 
 
26853cd
3350655
26853cd
 
26378e3
3350655
 
 
 
26853cd
 
 
 
 
f2d9a72
26378e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3350655
26378e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26853cd
dc014e0
 
 
 
 
 
 
 
 
26853cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc014e0
 
26853cd
dc014e0
26853cd
 
 
 
 
5df09e2
 
26853cd
 
 
 
 
0bddf56
5df09e2
26853cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5df09e2
 
 
26853cd
 
 
 
0bddf56
5df09e2
26853cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16fe5e4
7c324a3
26853cd
15186bb
f2d9a72
16fe5e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15186bb
26853cd
3350655
 
b15506b
26853cd
 
 
 
dc014e0
26853cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc014e0
 
 
26853cd
 
 
 
 
 
5df09e2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import gradio as gr
import spaces

import os
import sys
import time
import subprocess
import shutil

import random
from omegaconf import OmegaConf
from moviepy.editor import VideoFileClip
from PIL import Image
import torch
import numpy as np

from black_box_image_edit.instructpix2pix import InstructPix2Pix
from prepare_video import crop_and_resize_video
from edit_image import infer_video

sys.path.insert(0, "i2vgen-xl")
from utils import load_ddim_latents_at_t
from pipelines.pipeline_i2vgen_xl import I2VGenXLPipeline
from run_group_ddim_inversion import ddim_inversion
from run_group_pnp_edit import init_pnp
from diffusers import DDIMInverseScheduler, DDIMScheduler
from diffusers.utils import load_image
import imageio
from transformers import pipeline

# Initialize the translation pipeline
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

DEBUG_MODE = False

demo_examples = [
                    ["./demo/Man Walking.mp4", "./demo/Man Walking/edited_first_frame/turn the man into darth vader.png", "man walking", 0.1, 0.1, 1.0],
                    ["./demo/A kitten turning its head on a wooden floor.mp4", "./demo/A kitten turning its head on a wooden floor/edited_first_frame/A dog turning its head on a wooden floor.png", "A dog turning its head on a wooden floor", 0.2, 0.2, 0.5],
                    ["./demo/An Old Man Doing Exercises For The Body And Mind.mp4", "./demo/An Old Man Doing Exercises For The Body And Mind/edited_first_frame/jack ma.png", "a man doing exercises for the body and mind", 0.8, 0.8, 1.0],
                    ["./demo/Ballet.mp4", "./demo/Ballet/edited_first_frame/van gogh style.png", "girl dancing ballet, in the style of van gogh", 1.0, 1.0, 1.0],
                    ["./demo/A Couple In A Public Display Of Affection.mp4", "./demo/A Couple In A Public Display Of Affection/edited_first_frame/Snowing.png", "A couple in a public display of affection, snowing", 0.3, 0.3, 1.0]
                ]

TEMP_DIR = "_demo_temp"


image_edit_model = InstructPix2Pix()

@torch.no_grad()
@spaces.GPU(duration=30)
def perform_edit(video_path, prompt, force_512=False, seed=42, negative_prompt=""):
    edited_image_path = infer_video(image_edit_model, 
                video_path, 
                output_dir=TEMP_DIR, 
                prompt=prompt, 
                prompt_type="instruct", 
                force_512=force_512, 
                seed=seed, 
                negative_prompt=negative_prompt,
                overwrite=True)
    return edited_image_path


# Set up default inversion config file
config = {
    # DDIM inversion
    "inverse_config": {
        "image_size": [512, 512],
        "n_frames": 16,
        "cfg": 1.0,
        "target_fps": 8,
        "ddim_inv_prompt": "",
        "prompt": "",
        "negative_prompt": "",
    },
    "pnp_config": {
        "random_ratio": 0.0,
        "target_fps": 8,
    },
}
config = OmegaConf.create(config)

# Initialize the I2VGenXL pipeline
pipe = I2VGenXLPipeline.from_pretrained(
    "ali-vilab/i2vgen-xl",
    torch_dtype=torch.float16,
    variant="fp16",
).to("cuda:0")

# Initialize the DDIM inverse scheduler
inverse_scheduler = DDIMInverseScheduler.from_pretrained(
        "ali-vilab/i2vgen-xl",
        subfolder="scheduler",
)
# Initialize the DDIM scheduler
ddim_scheduler = DDIMScheduler.from_pretrained(
        "ali-vilab/i2vgen-xl",
        subfolder="scheduler",
)

@torch.no_grad()
@spaces.GPU(duration=150)
def perform_anyv2v(
                    video_path, 
                    video_prompt, 
                    video_negative_prompt,
                    edited_first_frame_path, 
                    conv_inj, 
                    spatial_inj, 
                    temp_inj, 
                    num_inference_steps,
                    guidance_scale,
                    ddim_init_latents_t_idx,
                    ddim_inversion_steps,
                    seed,
                    ):

    tmp_dir = os.path.join(TEMP_DIR, "AnyV2V")
    if os.path.exists(tmp_dir):
        shutil.rmtree(tmp_dir)
    os.makedirs(tmp_dir)

    ddim_latents_path = os.path.join(tmp_dir, "ddim_latents")

    def read_frames(video_path):
        frames = []
        with imageio.get_reader(video_path) as reader:
            for i, frame in enumerate(reader):
                pil_image = Image.fromarray(frame)
                frames.append(pil_image)
        return frames
    frame_list = read_frames(str(video_path))

    config.inverse_config.image_size = list(frame_list[0].size)
    config.inverse_config.n_steps = ddim_inversion_steps
    config.inverse_config.n_frames = len(frame_list)
    config.inverse_config.output_dir = ddim_latents_path
    ddim_init_latents_t_idx = min(ddim_init_latents_t_idx, num_inference_steps - 1)

    # Step 1. DDIM Inversion
    first_frame = frame_list[0]

    generator = torch.Generator(device="cuda:0")
    generator = generator.manual_seed(seed)
    _ddim_latents = ddim_inversion(
        config.inverse_config,
        first_frame,
        frame_list,
        pipe,
        inverse_scheduler,
        generator,
    )

    # Step 2. DDIM Sampling + PnP feature and attention injection
    # Load the edited first frame
    edited_1st_frame = load_image(edited_first_frame_path).resize(
        config.inverse_config.image_size, resample=Image.Resampling.LANCZOS
    )
    # Load the initial latents at t
    ddim_scheduler.set_timesteps(num_inference_steps)
    print(f"ddim_scheduler.timesteps: {ddim_scheduler.timesteps}")
    ddim_latents_at_t = load_ddim_latents_at_t(
        ddim_scheduler.timesteps[ddim_init_latents_t_idx],
        ddim_latents_path=ddim_latents_path,
    )
    print(
        f"ddim_scheduler.timesteps[t_idx]: {ddim_scheduler.timesteps[ddim_init_latents_t_idx]}"
    )
    print(f"ddim_latents_at_t.shape: {ddim_latents_at_t.shape}")

    # Blend the latents
    random_latents = torch.randn_like(ddim_latents_at_t)
    print(
        f"Blending random_ratio (1 means random latent): {config.pnp_config.random_ratio}"
    )
    mixed_latents = (
        random_latents * config.pnp_config.random_ratio
        + ddim_latents_at_t * (1 - config.pnp_config.random_ratio)
    )

    # Init Pnp
    config.pnp_config.n_steps = num_inference_steps
    config.pnp_config.pnp_f_t = conv_inj
    config.pnp_config.pnp_spatial_attn_t = spatial_inj
    config.pnp_config.pnp_temp_attn_t = temp_inj
    config.pnp_config.ddim_init_latents_t_idx = ddim_init_latents_t_idx
    init_pnp(pipe, ddim_scheduler, config.pnp_config)
    # Edit video
    pipe.register_modules(scheduler=ddim_scheduler)

    edited_video = pipe.sample_with_pnp(
        prompt=video_prompt,
        image=edited_1st_frame,
        height=config.inverse_config.image_size[1],
        width=config.inverse_config.image_size[0],
        num_frames=config.inverse_config.n_frames,
        num_inference_steps=config.pnp_config.n_steps,
        guidance_scale=guidance_scale,
        negative_prompt=video_negative_prompt,
        target_fps=config.pnp_config.target_fps,
        latents=mixed_latents,
        generator=generator,
        return_dict=True,
        ddim_init_latents_t_idx=ddim_init_latents_t_idx,
        ddim_inv_latents_path=ddim_latents_path,
        ddim_inv_prompt=config.inverse_config.ddim_inv_prompt,
        ddim_inv_1st_frame=first_frame,
    ).frames[0]

    edited_video = [
        frame.resize(config.inverse_config.image_size, resample=Image.LANCZOS)
        for frame in edited_video
    ]

    def images_to_video(images, output_path, fps=24):
        writer = imageio.get_writer(output_path, fps=fps)

        for img in images:
            img_np = np.array(img)
            writer.append_data(img_np)

        writer.close()
    output_path = os.path.join(tmp_dir, "edited_video.mp4")
    images_to_video(
        edited_video, output_path, fps=config.pnp_config.target_fps
    )
    return output_path



def get_first_frame_as_pil(video_path):
    with VideoFileClip(video_path) as clip:
        # Extract the first frame (at t=0) as an array
        first_frame_array = clip.get_frame(0)
        # Convert the numpy array to a PIL Image
        first_frame_image = Image.fromarray(first_frame_array)
        return first_frame_image
        
def btn_preprocess_video_fn(video_path, width, height, start_time, end_time, center_crop, x_offset, y_offset, longest_to_width):
    def check_video(video_path):
        with VideoFileClip(video_path) as clip:
            if clip.duration == 2 and clip.fps == 8:
                return True
            else:
                return False

    if check_video(video_path) == False:
        processed_video_path = crop_and_resize_video(input_video_path=video_path, 
                                                    output_folder=TEMP_DIR,
                                                    clip_duration=2,
                                                    width=width, 
                                                    height=height, 
                                                    start_time=start_time, 
                                                    end_time=end_time, 
                                                    center_crop=center_crop, 
                                                    x_offset=x_offset, 
                                                    y_offset=y_offset, 
                                                    longest_to_width=longest_to_width)

        return processed_video_path
    else:
        return video_path

def btn_image_edit_fn(video_path, instruct_prompt, ie_force_512, ie_seed, ie_neg_prompt):
    """
    Generate an image based on the video and text input.
    """
    # Translate the instruction prompt from Korean to English
    translated_prompt = translator(instruct_prompt, src_lang="ko", tgt_lang="en")[0]['translation_text']

    if ie_seed < 0:
        ie_seed = int.from_bytes(os.urandom(2), "big")
    print(f"Using seed: {ie_seed}")

    edited_image_path = perform_edit(video_path=video_path, 
                                             prompt=translated_prompt,
                                             force_512=ie_force_512,
                                             seed=ie_seed,
                                             negative_prompt=ie_neg_prompt)
    return edited_image_path


def btn_infer_fn(video_path, 
                video_prompt, 
                video_negative_prompt,
                edited_first_frame_path, 
                conv_inj, 
                spatial_inj, 
                temp_inj, 
                num_inference_steps,
                guidance_scale,
                ddim_init_latents_t_idx,
                ddim_inversion_steps,
                seed,
                ):
    # Translate the video prompt from Korean to English
    translated_video_prompt = translator(video_prompt, src_lang="ko", tgt_lang="en")[0]['translation_text']

    if seed < 0:
        seed = int.from_bytes(os.urandom(2), "big")
    print(f"Using seed: {seed}")

    result_video_path = perform_anyv2v(video_path=video_path,
                                                        video_prompt=translated_video_prompt,
                                                        video_negative_prompt=video_negative_prompt,
                                                        edited_first_frame_path=edited_first_frame_path,
                                                        conv_inj=conv_inj,
                                                        spatial_inj=spatial_inj,
                                                        temp_inj=temp_inj,
                                                        num_inference_steps=num_inference_steps,
                                                        guidance_scale=guidance_scale,
                                                        ddim_init_latents_t_idx=ddim_init_latents_t_idx,
                                                        ddim_inversion_steps=ddim_inversion_steps,
                                                        seed=seed)

    return result_video_path

# Create the UI
#=====================================
with gr.Blocks() as demo:
    gr.Markdown("# text + video + image")

    with gr.Tabs():
        with gr.TabItem('AnyV2V(I2VGenXL) + InstructPix2Pix'):
            with gr.Row():
                with gr.Column():
                    video_raw = gr.Video(label="Raw Video Input")
                    btn_pv = gr.Button("Preprocess Video")
                    
                with gr.Column():
                    video_input = gr.Video(label="Preprocessed Video Input", interactive=False)
                with gr.Column():
                    advanced_settings_pv = gr.Accordion("Advanced Settings for Video Preprocessing", open=False)
                    with advanced_settings_pv:
                        with gr.Column():
                            pv_width = gr.Number(label="Width", value=512, minimum=1, maximum=4096)
                            pv_height = gr.Number(label="Height", value=512, minimum=1, maximum=4096)
                            pv_start_time = gr.Number(label="Start Time (End time - Start time must be = 2)", value=0, minimum=0)
                            pv_end_time = gr.Number(label="End Time (End time - Start time must be = 2)", value=2, minimum=0)
                            pv_center_crop = gr.Checkbox(label="Center Crop", value=True)
                            pv_x_offset = gr.Number(label="Horizontal Offset (-1 to 1)", value=0, minimum=-1, maximum=1)
                            pv_y_offset = gr.Number(label="Vertical Offset (-1 to 1)", value=0, minimum=-1, maximum=1)
                            pv_longest_to_width = gr.Checkbox(label="Resize Longest Dimension to Width")
                    
            gr.Markdown("# Image Editing Stage")
            with gr.Row():
                with gr.Column():
                    src_first_frame = gr.Image(label="First Frame", type="filepath", interactive=False)
                    image_instruct_prompt = gr.Textbox(label="Editing instruction prompt")
                    btn_image_edit = gr.Button("Edit the first frame")
                with gr.Column():
                    image_input_output = gr.Image(label="Edited Frame", type="filepath")
                with gr.Column():
                    advanced_settings_image_edit = gr.Accordion("Advanced Settings for Image Editing", open=True)
                    with advanced_settings_image_edit:
                        with gr.Column():
                            ie_neg_prompt = gr.Textbox(label="Negative Prompt", value="low res, blurry, watermark, jpeg artifacts")
                            ie_seed = gr.Number(label="Seed (-1 means random)", value=-1, minimum=-1, maximum=sys.maxsize)
                            ie_force_512 = gr.Checkbox(label="Force resize to 512x512 before feeding into the image editing model")

            gr.Markdown("# Video Editing Stage")
            with gr.Row():
                with gr.Column():
                    video_prompt = gr.Textbox(label="Video description prompt")
                    settings_anyv2v = gr.Accordion("Settings for AnyV2V")
                    with settings_anyv2v:
                        with gr.Column():
                            av_pnp_f_t = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.2, label="Convolutional injection (pnp_f_t)")
                            av_pnp_spatial_attn_t = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.2, label="Spatial Attention injection (pnp_spatial_attn_t)")
                            av_pnp_temp_attn_t = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label="Temporal Attention injection (pnp_temp_attn_t)")
                    btn_infer = gr.Button("Run Video Editing")
                with gr.Column():
                    video_output = gr.Video(label="Video Output")
                with gr.Column():
                    advanced_settings_anyv2v = gr.Accordion("Advanced Settings for AnyV2V", open=False)
                    with advanced_settings_anyv2v:
                        with gr.Column():
                            av_ddim_init_latents_t_idx = gr.Number(label="DDIM Initial Latents t Index", value=0, minimum=0)
                            av_ddim_inversion_steps = gr.Number(label="DDIM Inversion Steps", value=100, minimum=1)
                            av_num_inference_steps = gr.Number(label="Number of Inference Steps", value=50, minimum=1)
                            av_guidance_scale = gr.Number(label="Guidance Scale", value=9, minimum=0)
                            av_seed = gr.Number(label="Seed (-1 means random)", value=42, minimum=-1, maximum=sys.maxsize)
                            av_neg_prompt = gr.Textbox(label="Negative Prompt", value="Distorted, discontinuous, Ugly, blurry, low resolution, motionless, static, disfigured, disconnected limbs, Ugly faces, incomplete arms")

    examples = gr.Examples(examples=demo_examples, 
                           label="Examples (Just click on Video Editing button after loading them into the UI)",
                            inputs=[video_input, image_input_output, video_prompt, av_pnp_f_t, av_pnp_spatial_attn_t, av_pnp_temp_attn_t])
    gr.Markdown('Reference: You can find good source videos from https://www.pexels.com/videos/')

    btn_pv.click(
        btn_preprocess_video_fn,
        inputs=[video_raw, pv_width, pv_height, pv_start_time, pv_end_time, pv_center_crop, pv_x_offset, pv_y_offset, pv_longest_to_width],
        outputs=video_input
    )

    btn_image_edit.click(
        btn_image_edit_fn,
        inputs=[video_input, image_instruct_prompt, ie_force_512, ie_seed, ie_neg_prompt],
        outputs=image_input_output
    )
    
    btn_infer.click(
        btn_infer_fn,
        inputs=[video_input, 
                video_prompt, 
                av_neg_prompt,
                image_input_output, 
                av_pnp_f_t, 
                av_pnp_spatial_attn_t, 
                av_pnp_temp_attn_t,
                av_num_inference_steps,
                av_guidance_scale,
                av_ddim_init_latents_t_idx,
                av_ddim_inversion_steps,
                av_seed],
        outputs=video_output
    )

    video_input.change(fn=get_first_frame_as_pil, inputs=video_input, outputs=src_first_frame)

#=====================================

# Minimizing usage of GPU Resources
torch.set_grad_enabled(False)


demo.launch()