fastvideogen / app.py
fantaxy's picture
Update app.py
e47f638 verified
raw
history blame
31.2 kB
import spaces
from functools import lru_cache
import gradio as gr
from gradio_toggle import Toggle
import torch
from huggingface_hub import snapshot_download
from transformers import CLIPProcessor, CLIPModel, pipeline
import random
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from xora.models.transformers.transformer3d import Transformer3DModel
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
from xora.schedulers.rf import RectifiedFlowScheduler
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline
from transformers import T5EncoderModel, T5Tokenizer
from xora.utils.conditioning_method import ConditioningMethod
from pathlib import Path
import safetensors.torch
import json
import numpy as np
import cv2
from PIL import Image
import tempfile
import os
import gc
import csv
from datetime import datetime
from openai import OpenAI
import argparse
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from diffusers import FluxPipeline
from diffusers.pipelines.stable_diffusion import safety_checker
from PIL import Image
from transformers import pipeline
import replicate
import logging
import requests
from pathlib import Path
import sys
import io
# ํ•œ๊ธ€-์˜์–ด ๋ฒˆ์—ญ๊ธฐ ์ดˆ๊ธฐํ™”
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.set_float32_matmul_precision("highest")
MAX_SEED = np.iinfo(np.int32).max
# Load Hugging Face token if needed
hf_token = os.getenv("HF_TOKEN")
openai_api_key = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=openai_api_key)
system_prompt_t2v_path = "assets/system_prompt_t2v.txt"
with open(system_prompt_t2v_path, "r") as f:
system_prompt_t2v = f.read()
# Set model download directory within Hugging Face Spaces
model_path = "asset"
commit_hash='c7c8ad4c2ddba847b94e8bfaefbd30bd8669fafc'
if not os.path.exists(model_path):
snapshot_download("Lightricks/LTX-Video", revision=commit_hash, local_dir=model_path, repo_type="model", token=hf_token)
# Global variables to load components
vae_dir = Path(model_path) / "vae"
unet_dir = Path(model_path) / "unet"
scheduler_dir = Path(model_path) / "scheduler"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path).to(torch.device("cuda:0"))
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path)
def process_prompt(prompt):
# ํ•œ๊ธ€์ด ํฌํ•จ๋˜์–ด ์žˆ๋Š”์ง€ ํ™•์ธ
if any(ord('๊ฐ€') <= ord(char) <= ord('ํžฃ') for char in prompt):
# ํ•œ๊ธ€์„ ์˜์–ด๋กœ ๋ฒˆ์—ญ
translated = translator(prompt)[0]['translation_text']
return translated
return prompt
def compute_clip_embedding(text=None):
inputs = clip_processor(text=text, return_tensors="pt", padding=True).to(device)
outputs = clip_model.get_text_features(**inputs)
embedding = outputs.detach().cpu().numpy().flatten().tolist()
return embedding
def load_vae(vae_dir):
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
vae_config_path = vae_dir / "config.json"
with open(vae_config_path, "r") as f:
vae_config = json.load(f)
vae = CausalVideoAutoencoder.from_config(vae_config)
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
vae.load_state_dict(vae_state_dict)
return vae.to(device).to(torch.bfloat16)
def load_unet(unet_dir):
unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors"
unet_config_path = unet_dir / "config.json"
transformer_config = Transformer3DModel.load_config(unet_config_path)
transformer = Transformer3DModel.from_config(transformer_config)
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
transformer.load_state_dict(unet_state_dict, strict=True)
return transformer.to(device).to(torch.bfloat16)
def load_scheduler(scheduler_dir):
scheduler_config_path = scheduler_dir / "scheduler_config.json"
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
return RectifiedFlowScheduler.from_config(scheduler_config)
# Preset options for resolution and frame configuration
preset_options = [
{"label": "1216x704, 41 frames", "width": 1216, "height": 704, "num_frames": 41},
{"label": "1088x704, 49 frames", "width": 1088, "height": 704, "num_frames": 49},
{"label": "1056x640, 57 frames", "width": 1056, "height": 640, "num_frames": 57},
{"label": "448x448, 100 frames", "width": 448, "height": 448, "num_frames": 100},
{"label": "448x448, 200 frames", "width": 448, "height": 448, "num_frames": 200},
{"label": "448x448, 300 frames", "width": 448, "height": 448, "num_frames": 300},
{"label": "640x640, 80 frames", "width": 640, "height": 640, "num_frames": 80},
{"label": "640x640, 120 frames", "width": 640, "height": 640, "num_frames": 120},
{"label": "768x768, 64 frames", "width": 768, "height": 768, "num_frames": 64},
{"label": "768x768, 90 frames", "width": 768, "height": 768, "num_frames": 90},
{"label": "720x720, 64 frames", "width": 768, "height": 768, "num_frames": 64},
{"label": "720x720, 100 frames", "width": 768, "height": 768, "num_frames": 100},
{"label": "768x512, 97 frames", "width": 768, "height": 512, "num_frames": 97},
{"label": "512x512, 160 frames", "width": 512, "height": 512, "num_frames": 160},
{"label": "512x512, 200 frames", "width": 512, "height": 512, "num_frames": 200},
]
def preset_changed(preset):
if preset != "Custom":
selected = next(item for item in preset_options if item["label"] == preset)
return (
selected["height"],
selected["width"],
selected["num_frames"],
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
else:
return (
None,
None,
None,
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
)
# Load models
vae = load_vae(vae_dir)
unet = load_unet(unet_dir)
scheduler = load_scheduler(scheduler_dir)
patchifier = SymmetricPatchifier(patch_size=1)
text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to(torch.device("cuda:0"))
tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer")
pipeline_video = XoraVideoPipeline(
transformer=unet,
patchifier=patchifier,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
vae=vae,
).to(torch.device("cuda:0"))
def enhance_prompt_if_enabled(prompt, enhance_toggle):
if not enhance_toggle:
print("Enhance toggle is off, Prompt: ", prompt)
return prompt
messages = [
{"role": "system", "content": system_prompt_t2v},
{"role": "user", "content": prompt},
]
try:
response = client.chat.completions.create(
model="gpt-4-mini",
messages=messages,
max_tokens=200,
)
print("Enhanced Prompt: ", response.choices[0].message.content.strip())
return response.choices[0].message.content.strip()
except Exception as e:
print(f"Error: {e}")
return prompt
@spaces.GPU(duration=90)
def generate_video_from_text_90(
prompt="",
enhance_prompt_toggle=False,
negative_prompt="",
frame_rate=25,
seed=random.randint(0, MAX_SEED),
num_inference_steps=30,
guidance_scale=3.2,
height=768,
width=768,
num_frames=60,
progress=gr.Progress(),
):
# ํ”„๋กฌํ”„ํŠธ ์ „์ฒ˜๋ฆฌ (ํ•œ๊ธ€ -> ์˜์–ด)
prompt = process_prompt(prompt)
negative_prompt = process_prompt(negative_prompt)
if len(prompt.strip()) < 50:
raise gr.Error(
"Prompt must be at least 50 characters long. Please provide more details for the best results.",
duration=5,
)
prompt = enhance_prompt_if_enabled(prompt, enhance_prompt_toggle)
sample = {
"prompt": prompt,
"prompt_attention_mask": None,
"negative_prompt": negative_prompt,
"negative_prompt_attention_mask": None,
"media_items": None,
}
generator = torch.Generator(device="cuda").manual_seed(seed)
def gradio_progress_callback(self, step, timestep, kwargs):
progress((step + 1) / num_inference_steps)
try:
with torch.no_grad():
images = pipeline_video(
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
guidance_scale=guidance_scale,
generator=generator,
output_type="pt",
height=height,
width=width,
num_frames=num_frames,
frame_rate=frame_rate,
**sample,
is_video=True,
vae_per_channel_normalize=True,
conditioning_method=ConditioningMethod.UNCONDITIONAL,
mixed_precision=True,
callback_on_step_end=gradio_progress_callback,
).images
except Exception as e:
raise gr.Error(
f"An error occurred while generating the video. Please try again. Error: {e}",
duration=5,
)
finally:
torch.cuda.empty_cache()
gc.collect()
output_path = tempfile.mktemp(suffix=".mp4")
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
video_np = (video_np * 255).astype(np.uint8)
height, width = video_np.shape[1:3]
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height))
for frame in video_np[..., ::-1]:
out.write(frame)
out.release()
del images
del video_np
torch.cuda.empty_cache()
return output_path
def create_advanced_options():
with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
seed = gr.Slider(label="4.1 Seed", minimum=0, maximum=1000000, step=1, value=646373)
inference_steps = gr.Slider(label="4.2 Inference Steps", minimum=5, maximum=150, step=5, value=40)
guidance_scale = gr.Slider(label="4.3 Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=4.2)
height_slider = gr.Slider(
label="4.4 Height",
minimum=256,
maximum=1024,
step=64,
value=768,
visible=False,
)
width_slider = gr.Slider(
label="4.5 Width",
minimum=256,
maximum=1024,
step=64,
value=768,
visible=False,
)
num_frames_slider = gr.Slider(
label="4.5 Number of Frames",
minimum=1,
maximum=500,
step=1,
value=60,
visible=False,
)
return [
seed,
inference_steps,
guidance_scale,
height_slider,
width_slider,
num_frames_slider,
]
###############################################
# ์—ฌ๊ธฐ์„œ๋ถ€ํ„ฐ ๋‘ ๋ฒˆ์งธ ์ฝ”๋“œ ํ†ตํ•ฉ ์ ์šฉ
###############################################
import argparse
import time
from os import path
import shutil
from safetensors.torch import load_file
from diffusers import FluxPipeline
from diffusers.pipelines.stable_diffusion import safety_checker
import replicate
import logging
import requests
from pathlib import Path
import sys
import io
# ๋กœ๊น… ์„ค์ •
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")
video_gallery_path = path.join(PERSISTENT_DIR, "video_gallery")
# API ์„ค์ •
CATBOX_USER_HASH = "e7a96fc68dd4c7d2954040cd5"
REPLICATE_API_TOKEN = os.getenv("API_KEY")
# ํ™˜๊ฒฝ ๋ณ€์ˆ˜ ์„ค์ •
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
# CUDA ์„ค์ •
torch.backends.cuda.matmul.allow_tf32 = True
# ๋ฒˆ์—ญ๊ธฐ ์ดˆ๊ธฐํ™” (์ด๋ฏธ ์œ„์—์„œ translator ์„ ์–ธ๋จ, ์ค‘๋ณต ์„ ์–ธ)
translator2 = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") # ๋‘ ๋ฒˆ์งธ ์ฝ”๋“œ์—์„œ๋„ ์„ ์–ธ. ๋ˆ„๋ฝ์—†์ด ์ถœ๋ ฅํ•˜๊ธฐ ์œ„ํ•ด ์ถ”๊ฐ€.
# ๋””๋ ‰ํ† ๋ฆฌ ์ƒ์„ฑ
for dir_path in [gallery_path, video_gallery_path]:
if not path.exists(dir_path):
os.makedirs(dir_path, exist_ok=True)
def check_api_key():
"""API ํ‚ค ํ™•์ธ ๋ฐ ์„ค์ •"""
if not REPLICATE_API_TOKEN:
logger.error("Replicate API key not found")
return False
os.environ["REPLICATE_API_TOKEN"] = REPLICATE_API_TOKEN
logger.info("Replicate API token set successfully")
return True
def translate_if_korean(text):
"""ํ•œ๊ธ€์ด ํฌํ•จ๋œ ๊ฒฝ์šฐ ์˜์–ด๋กœ ๋ฒˆ์—ญ"""
if any(ord(char) >= 0xAC00 and ord(char) <= 0xD7A3 for char in text):
translation = translator2(text)[0]['translation_text']
return translation
return text
def filter_prompt(prompt):
inappropriate_keywords = [
"nude", "naked", "nsfw", "porn", "sex", "explicit", "adult", "xxx",
"erotic", "sensual", "seductive", "provocative", "intimate",
"violence", "gore", "blood", "death", "kill", "murder", "torture",
"drug", "suicide", "abuse", "hate", "discrimination"
]
prompt_lower = prompt.lower()
for keyword in inappropriate_keywords:
if keyword in prompt_lower:
return False, "๋ถ€์ ์ ˆํ•œ ๋‚ด์šฉ์ด ํฌํ•จ๋œ ํ”„๋กฌํ”„ํŠธ์ž…๋‹ˆ๋‹ค."
return True, prompt
def process_prompt_for_sd(prompt):
"""ํ”„๋กฌํ”„ํŠธ ์ „์ฒ˜๋ฆฌ (๋ฒˆ์—ญ ๋ฐ ํ•„ํ„ฐ๋ง)"""
translated_prompt = translate_if_korean(prompt)
is_safe, filtered_prompt = filter_prompt(translated_prompt)
return is_safe, filtered_prompt
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
# Model initialization
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
pipe_sd = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe_sd.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe_sd.fuse_lora(lora_scale=0.125)
pipe_sd.to(device="cuda", dtype=torch.bfloat16)
pipe_sd.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
def upload_to_catbox(image_path):
"""catbox.moe API๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€ ์—…๋กœ๋“œ"""
try:
logger.info(f"Preparing to upload image: {image_path}")
url = "https://catbox.moe/user/api.php"
file_extension = Path(image_path).suffix.lower()
if file_extension not in ['.jpg', '.jpeg', '.png', '.gif']:
logger.error(f"Unsupported file type: {file_extension}")
return None
files = {
'fileToUpload': (
os.path.basename(image_path),
open(image_path, 'rb'),
'image/jpeg' if file_extension in ['.jpg', '.jpeg'] else 'image/png'
)
}
data = {
'reqtype': 'fileupload',
'userhash': CATBOX_USER_HASH
}
response = requests.post(url, files=files, data=data)
if response.status_code == 200 and response.text.startswith('http'):
image_url = response.text
logger.info(f"Image uploaded successfully: {image_url}")
return image_url
else:
raise Exception(f"Upload failed: {response.text}")
except Exception as e:
logger.error(f"Image upload error: {str(e)}")
return None
def add_watermark(video_path):
"""OpenCV๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋น„๋””์˜ค์— ์›Œํ„ฐ๋งˆํฌ ์ถ”๊ฐ€"""
try:
cap = cv2.VideoCapture(video_path)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
text = "GiniGEN.AI"
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = height * 0.05 / 30
thickness = 2
color = (255, 255, 255)
(text_width, text_height), _ = cv2.getTextSize(text, font, font_scale, thickness)
margin = int(height * 0.02)
x_pos = width - text_width - margin
y_pos = height - margin
output_path = "watermarked_output.mp4"
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
cv2.putText(frame, text, (x_pos, y_pos), font, font_scale, color, thickness)
out.write(frame)
cap.release()
out.release()
return output_path
except Exception as e:
logger.error(f"Error adding watermark: {str(e)}")
return video_path
def generate_video(image, prompt):
logger.info("Starting video generation")
try:
if not check_api_key():
return "Replicate API key not properly configured"
if not image:
logger.error("No image provided")
return "Please upload an image"
image_url = upload_to_catbox(image)
if not image_url:
return "Failed to upload image"
input_data = {
"prompt": prompt,
"first_frame_image": image_url
}
try:
replicate.Client(api_token=REPLICATE_API_TOKEN)
output = replicate.run(
"minimax/video-01-live",
input=input_data
)
temp_file = "temp_output.mp4"
if hasattr(output, 'read'):
with open(temp_file, "wb") as file:
file.write(output.read())
elif isinstance(output, str):
response = requests.get(output)
with open(temp_file, "wb") as file:
file.write(response.content)
final_video = add_watermark(temp_file)
return final_video
except Exception as api_error:
logger.error(f"API call failed: {str(api_error)}")
return f"API call failed: {str(api_error)}"
except Exception as e:
logger.error(f"Unexpected error: {str(e)}")
return f"Unexpected error: {str(e)}"
def save_image(image):
"""Save the generated image in PNG format and return the path"""
try:
if not os.path.exists(gallery_path):
os.makedirs(gallery_path, exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
random_suffix = os.urandom(4).hex()
filename = f"generated_{timestamp}_{random_suffix}.png"
filepath = os.path.join(gallery_path, filename)
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
if image.mode != 'RGB':
image = image.convert('RGB')
image.save(
filepath,
format='PNG',
optimize=True,
quality=100
)
logger.info(f"Image saved successfully as PNG: {filepath}")
return filepath
except Exception as e:
logger.error(f"Error in save_image: {str(e)}")
return None
def load_gallery():
"""Load all images from the gallery directory"""
try:
os.makedirs(gallery_path, exist_ok=True)
image_files = []
for f in os.listdir(gallery_path):
if f.lower().endswith(('.png', '.jpg', '.jpeg')):
full_path = os.path.join(gallery_path, f)
image_files.append((full_path, os.path.getmtime(full_path)))
image_files.sort(key=lambda x: x[1], reverse=True)
return [f[0] for f in image_files]
except Exception as e:
print(f"Error loading gallery: {str(e)}")
return []
# CSS ์Šคํƒ€์ผ ์ •์˜
css = """
[์ด์ „์˜ CSS ์ฝ”๋“œ๋ฅผ ๊ทธ๋Œ€๋กœ ์œ ์ง€]
"""
def get_random_seed():
return torch.randint(0, 1000000, (1,)).item()
###############################################
# ์—ฌ๊ธฐ์„œ๋ถ€ํ„ฐ Gradio UI ํ†ตํ•ฉ
###############################################
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.HTML('<div class="title">AI Image & Video Generator</div>')
with gr.Tabs():
with gr.Tab("Image Generation"):
with gr.Row():
with gr.Column(scale=3):
img_prompt = gr.Textbox(
label="Image Description",
placeholder="์ด๋ฏธ์ง€ ์„ค๋ช…์„ ์ž…๋ ฅํ•˜์„ธ์š”... (ํ•œ๊ธ€ ์ž…๋ ฅ ๊ฐ€๋Šฅ)",
lines=3
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1152,
step=64,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1152,
step=64,
value=1024
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8
)
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5
)
seed = gr.Number(
label="Seed",
value=get_random_seed(),
precision=0
)
randomize_seed = gr.Button("๐ŸŽฒ Randomize Seed", elem_classes=["generate-btn"])
generate_btn = gr.Button(
"โœจ Generate Image",
elem_classes=["generate-btn"]
)
with gr.Column(scale=4):
img_output = gr.Image(
label="Generated Image",
type="pil",
format="png"
)
img_gallery = gr.Gallery(
label="Image Gallery",
show_label=True,
elem_id="gallery",
columns=[4],
rows=[2],
height="auto",
object_fit="cover"
)
img_gallery.value = load_gallery()
with gr.Tab("Video Generation"):
with gr.Row():
with gr.Column(scale=3):
video_prompt = gr.Textbox(
label="Video Description",
placeholder="๋น„๋””์˜ค ์„ค๋ช…์„ ์ž…๋ ฅํ•˜์„ธ์š”... (ํ•œ๊ธ€ ์ž…๋ ฅ ๊ฐ€๋Šฅ)",
lines=3
)
upload_image = gr.Image(
type="filepath",
label="Upload First Frame Image"
)
video_generate_btn = gr.Button(
"๐ŸŽฌ Generate Video",
elem_classes=["generate-btn"]
)
with gr.Column(scale=4):
video_output = gr.Video(label="Generated Video")
video_gallery = gr.Gallery(
label="Video Gallery",
show_label=True,
columns=[4],
rows=[2],
height="auto",
object_fit="cover"
)
# ์ดํ•˜ ์ฒซ ๋ฒˆ์งธ ์ฝ”๋“œ์˜ txt2vid ๊ด€๋ จ UI๋ฅผ ํ†ตํ•ฉ
# ์ฒซ ๋ฒˆ์งธ ์ฝ”๋“œ์˜ txt2vid UI๋ฅผ ์ถ”๊ฐ€ ํƒญ์œผ๋กœ ํ†ตํ•ฉ
with gr.Tab("Text-to-Video Generation"):
with gr.Column():
txt2vid_prompt = gr.Textbox(
label="Step 1: Enter Your Prompt (ํ•œ๊ธ€ ๋˜๋Š” ์˜์–ด)",
placeholder="์ƒ์„ฑํ•˜๊ณ  ์‹ถ์€ ๋น„๋””์˜ค๋ฅผ ์„ค๋ช…ํ•˜์„ธ์š” (์ตœ์†Œ 50์ž)...",
value="๊ธด ๊ฐˆ์ƒ‰ ๋จธ๋ฆฌ์™€ ๋ฐ์€ ํ”ผ๋ถ€๋ฅผ ๊ฐ€์ง„ ์—ฌ์„ฑ์ด ๊ธด ๊ธˆ๋ฐœ ๋จธ๋ฆฌ๋ฅผ ๊ฐ€์ง„ ๋‹ค๋ฅธ ์—ฌ์„ฑ์„ ํ–ฅํ•ด ๋ฏธ์†Œ ์ง“์Šต๋‹ˆ๋‹ค. ๊ฐˆ์ƒ‰ ๋จธ๋ฆฌ ์—ฌ์„ฑ์€ ๊ฒ€์€ ์žฌํ‚ท์„ ์ž…๊ณ  ์žˆ์œผ๋ฉฐ ์˜ค๋ฅธ์ชฝ ๋บจ์— ์ž‘๊ณ  ๊ฑฐ์˜ ๋ˆˆ์— ๋„์ง€ ์•Š๋Š” ์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์นด๋ฉ”๋ผ ์•ต๊ธ€์€ ๊ฐˆ์ƒ‰ ๋จธ๋ฆฌ ์—ฌ์„ฑ์˜ ์–ผ๊ตด์— ์ดˆ์ ์„ ๋งž์ถ˜ ํด๋กœ์ฆˆ์—…์ž…๋‹ˆ๋‹ค. ์กฐ๋ช…์€ ๋”ฐ๋œปํ•˜๊ณ  ์ž์—ฐ์Šค๋Ÿฌ์šฐ๋ฉฐ, ์•„๋งˆ๋„ ์ง€๋Š” ํ•ด์—์„œ ๋‚˜์˜ค๋Š” ๊ฒƒ ๊ฐ™์•„ ์žฅ๋ฉด์— ๋ถ€๋“œ๋Ÿฌ์šด ๋น›์„ ๋น„์ถฅ๋‹ˆ๋‹ค.",
lines=5,
)
txt2vid_enhance_toggle = Toggle(
label="Enhance Prompt",
value=False,
interactive=True,
)
txt2vid_negative_prompt = gr.Textbox(
label="Step 2: Enter Negative Prompt",
placeholder="๋น„๋””์˜ค์—์„œ ์›ํ•˜์ง€ ์•Š๋Š” ์š”์†Œ๋ฅผ ์„ค๋ช…ํ•˜์„ธ์š”...",
value="low quality, worst quality, deformed, distorted, damaged, motion blur, motion artifacts, fused fingers, incorrect anatomy, strange hands, ugly",
lines=2,
)
txt2vid_preset = gr.Dropdown(
choices=[p["label"] for p in preset_options],
value="512x512, 160 frames",
label="Step 3.1: Choose Resolution Preset",
)
txt2vid_frame_rate = gr.Slider(
label="Step 3.2: Frame Rate",
minimum=6,
maximum=60,
step=1,
value=20,
)
txt2vid_advanced = create_advanced_options()
txt2vid_generate = gr.Button(
"Step 5: Generate Video",
variant="primary",
size="lg",
)
txt2vid_output = gr.Video(label="Generated Output")
txt2vid_preset.change(
fn=preset_changed,
inputs=[txt2vid_preset],
outputs=txt2vid_advanced[3:],
)
txt2vid_generate.click(
fn=generate_video_from_text_90,
inputs=[
txt2vid_prompt,
txt2vid_enhance_toggle,
txt2vid_negative_prompt,
txt2vid_frame_rate,
*txt2vid_advanced,
],
outputs=txt2vid_output,
concurrency_limit=1,
concurrency_id="generate_video",
queue=True,
)
@spaces.GPU
def process_and_save_image(height, width, steps, scales, prompt, seed):
is_safe, translated_prompt = process_prompt_for_sd(prompt)
if not is_safe:
gr.Warning("๋ถ€์ ์ ˆํ•œ ๋‚ด์šฉ์ด ํฌํ•จ๋œ ํ”„๋กฌํ”„ํŠธ์ž…๋‹ˆ๋‹ค.")
return None, load_gallery()
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
try:
generated_image = pipe_sd(
prompt=[translated_prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
if not isinstance(generated_image, Image.Image):
generated_image = Image.fromarray(generated_image)
if generated_image.mode != 'RGB':
generated_image = generated_image.convert('RGB')
img_byte_arr = io.BytesIO()
generated_image.save(img_byte_arr, format='PNG')
img_byte_arr = img_byte_arr.getvalue()
saved_path = save_image(generated_image)
if saved_path is None:
logger.warning("Failed to save generated image")
return None, load_gallery()
return Image.open(io.BytesIO(img_byte_arr)), load_gallery()
except Exception as e:
logger.error(f"Error in image generation: {str(e)}")
return None, load_gallery()
def process_and_generate_video(image, prompt):
is_safe, translated_prompt = process_prompt_for_sd(prompt)
if not is_safe:
gr.Warning("๋ถ€์ ์ ˆํ•œ ๋‚ด์šฉ์ด ํฌํ•จ๋œ ํ”„๋กฌํ”„ํŠธ์ž…๋‹ˆ๋‹ค.")
return None
return generate_video(image, translated_prompt)
def update_seed():
return get_random_seed()
generate_btn.click(
process_and_save_image,
inputs=[height, width, steps, scales, img_prompt, seed],
outputs=[img_output, img_gallery]
)
video_generate_btn.click(
process_and_generate_video,
inputs=[upload_image, video_prompt],
outputs=video_output
)
randomize_seed.click(
update_seed,
outputs=[seed]
)
generate_btn.click(
update_seed,
outputs=[seed]
)
if __name__ == "__main__":
demo.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(share=True, show_api=False, allowed_paths=[PERSISTENT_DIR])