File size: 13,819 Bytes
d5f497d
 
 
6c91ee7
 
 
d5f497d
f2a614f
6c91ee7
 
d5f497d
 
6c91ee7
0bf993c
6c91ee7
 
9edd5a6
 
6c91ee7
d5f497d
 
6c91ee7
d5f497d
0bf993c
 
 
d5f497d
 
 
 
6c91ee7
 
d5f497d
6c91ee7
d5f497d
0bf993c
d5f497d
 
6c91ee7
d5f497d
 
6c91ee7
d5f497d
0bf993c
 
 
 
 
 
 
8d27edd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c91ee7
 
8d27edd
6c91ee7
 
 
 
 
 
d5f497d
8004741
d5f497d
8d27edd
 
 
 
 
 
 
d3c818e
9edd5a6
 
 
d3c818e
9edd5a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3c818e
9edd5a6
d3c818e
9edd5a6
d3c818e
 
 
 
 
9edd5a6
d3c818e
9edd5a6
d3c818e
9edd5a6
d3c818e
 
 
 
 
9edd5a6
d3c818e
9edd5a6
d3c818e
9edd5a6
 
 
d3c818e
9edd5a6
 
 
 
 
 
f2a614f
89d2c7a
f2a614f
 
 
34a3d1e
f2a614f
34a3d1e
f2a614f
 
 
e542bf3
f2a614f
 
d3c818e
f2a614f
 
 
d3c818e
f2a614f
89d2c7a
f2a614f
d3c818e
f2a614f
8d27edd
e542bf3
f2a614f
 
 
 
 
 
 
 
 
 
 
 
 
e542bf3
e004bee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2a614f
 
 
 
89d2c7a
 
d3c818e
 
89d2c7a
d3c818e
89d2c7a
 
 
 
6a40d86
 
 
d3c818e
 
 
 
 
6a40d86
 
 
 
d3c818e
89d2c7a
f2a614f
 
b4134a4
d3c818e
d5f497d
 
 
 
 
 
3fdf367
1a30d7e
d5f497d
540094e
 
 
 
3fdf367
 
540094e
89d2c7a
 
 
 
d3c818e
6a40d86
d3c818e
25fc214
6a40d86
89d2c7a
 
c43af94
89d2c7a
 
 
 
 
d5f497d
 
 
 
 
0bf993c
d5f497d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34a3d1e
d5f497d
 
 
 
 
 
34a3d1e
d5f497d
 
6c91ee7
 
d5f497d
 
6c91ee7
34a3d1e
6c91ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f497d
78ad020
c43af94
66f9e06
e542bf3
d5f497d
e542bf3
9de30d4
66f9e06
78ad020
e9f3ef9
89d2c7a
3ad3d31
 
e542bf3
 
3ad3d31
6a40d86
 
 
e004bee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import spaces
import random
import torch
import cv2
import gradio as gr
import numpy as np
from huggingface_hub import snapshot_download
from transformers import pipeline
from diffusers.utils import load_image
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.controlnet import ControlNetModel
from diffusers import AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image, ImageDraw, ImageFont
import os

device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")

# Add translation pipeline
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)

pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
    vae=vae,
    controlnet=controlnet_canny,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    force_zeros_for_empty_prompt=False
)

@spaces.GPU
def translate_korean_to_english(text):
    if any(ord(char) >= 0xAC00 and ord(char) <= 0xD7A3 for char in text):  # Check if Korean characters are present
        translated = translator(text, max_length=512)[0]['translation_text']
        return translated
    return text

def HWC3(x):
    assert x.dtype == np.uint8
    if x.ndim == 2:
        x = x[:, :, None]
    assert x.ndim == 3
    H, W, C = x.shape
    assert C == 1 or C == 3 or C == 4
    if C == 3:
        return x
    if C == 1:
        return np.concatenate([x, x, x], axis=2)
    if C == 4:
        color = x[:, :, 0:3].astype(np.float32)
        alpha = x[:, :, 3:4].astype(np.float32) / 255.0
        y = color * alpha + 255.0 * (1.0 - alpha)
        y = y.clip(0, 255).astype(np.uint8)
        return y

@spaces.GPU
def process_canny_condition(image, canny_threods=[100,200]):
    np_image = np.array(image)
    np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1])
    np_image = np_image[:, :, None]
    np_image = np.concatenate([np_image, np_image, np_image], axis=2)
    np_image = HWC3(np_image)
    return Image.fromarray(np_image)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def resize_image(image, resolution):
    w, h = image.size
    ratio = resolution / max(w, h)
    new_w = int(w * ratio)
    new_h = int(h * ratio)
    return image.resize((new_w, new_h), Image.LANCZOS)

def text_to_image(text, size=72, position="middle-center"):
    width, height = 1024, 576
    image = Image.new("RGB", (width, height), "white")
    draw = ImageDraw.Draw(image)

    font_files = ["Arial_Unicode.ttf"]
    font = None
    for font_file in font_files:
        font_path = os.path.join(os.path.dirname(__file__), font_file)
        if os.path.exists(font_path):
            try:
                font = ImageFont.truetype(font_path, size=size)
                print(f"Using font: {font_file}")
                break
            except IOError:
                print(f"Error loading font: {font_file}")
    if font is None:
        print("No suitable font found. Using default font.")
        font = ImageFont.load_default()

    lines = text.split('\n')
    max_line_width = 0
    total_height = 0
    line_heights = []
    for line in lines:
        left, top, right, bottom = draw.textbbox((0, 0), line, font=font)
        line_width = right - left
        line_height = bottom - top
        line_heights.append(line_height)
        max_line_width = max(max_line_width, line_width)
        total_height += line_height

    position_mapping = {
        "top-left": (10, 10),
        "top-left-center": (width // 4 - max_line_width // 2, 10),
        "top-center": ((width - max_line_width) / 2, 10),
        "top-right-center": (3 * width // 4 - max_line_width // 2, 10),
        "top-right": (width - max_line_width - 10, 10),
        "upper-left": (10, height // 4 - total_height // 2),
        "upper-left-center": (width // 4 - max_line_width // 2, height // 4 - total_height // 2),
        "upper-center": ((width - max_line_width) / 2, height // 4 - total_height // 2),
        "upper-right-center": (3 * width // 4 - max_line_width // 2, height // 4 - total_height // 2),
        "upper-right": (width - max_line_width - 10, height // 4 - total_height // 2),
        "middle-left": (10, (height - total_height) / 2),
        "middle-left-center": (width // 4 - max_line_width // 2, (height - total_height) / 2),
        "middle-center": ((width - max_line_width) / 2, (height - total_height) / 2),
        "middle-right-center": (3 * width // 4 - max_line_width // 2, (height - total_height) / 2),
        "middle-right": (width - max_line_width - 10, (height - total_height) / 2),
        "lower-left": (10, 3 * height // 4 - total_height // 2),
        "lower-left-center": (width // 4 - max_line_width // 2, 3 * height // 4 - total_height // 2),
        "lower-center": ((width - max_line_width) / 2, 3 * height // 4 - total_height // 2),
        "lower-right-center": (3 * width // 4 - max_line_width // 2, 3 * height // 4 - total_height // 2),
        "lower-right": (width - max_line_width - 10, 3 * height // 4 - total_height // 2),
        "bottom-left": (10, height - total_height - 10),
        "bottom-left-center": (width // 4 - max_line_width // 2, height - total_height - 10),
        "bottom-center": ((width - max_line_width) / 2, height - total_height - 10),
        "bottom-right-center": (3 * width // 4 - max_line_width // 2, height - total_height - 10),
        "bottom-right": (width - max_line_width - 10, height - total_height - 10),
    }

    x, y = position_mapping.get(position, ((width - max_line_width) / 2, (height - total_height) / 2))
    for i, line in enumerate(lines):
        draw.text((x, y), line, fill="black", font=font)
        y += line_heights[i]

    return image

@spaces.GPU
def infer_canny(prompt, text_for_image, text_position, font_size,
          negative_prompt = "nsfw, facial shadows, low resolution, jpeg artifacts, blurry, bad quality, dark face, neon lights", 
          seed = 397886929, 
          randomize_seed = False,
          guidance_scale = 8.0, 
          num_inference_steps = 50,
          controlnet_conditioning_scale = 0.8,
          control_guidance_end = 0.9,
          strength = 1.0
        ):

    prompt = translate_korean_to_english(prompt)
    negative_prompt = translate_korean_to_english(negative_prompt)

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)

    # Generate text image
    init_image = text_to_image(text_for_image, size=font_size, position=text_position)
    init_image = resize_image(init_image, MAX_IMAGE_SIZE)

    pipe = pipe_canny.to("cuda")
    condi_img = process_canny_condition(init_image)
 
    image = pipe(
        prompt=prompt,
        image=init_image,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        control_guidance_end=control_guidance_end, 
        strength=strength, 
        control_image=condi_img,
        negative_prompt=negative_prompt, 
        num_inference_steps=num_inference_steps, 
        guidance_scale=guidance_scale,
        num_images_per_prompt=1,
        generator=generator,
    ).images[0]
    return image, seed  # CANNY 이미지 반환 제거

def update_button_states(selected_position):
    return [
        gr.update(variant="primary") if pos == selected_position else gr.update(variant="secondary")
        for pos in position_list
    ]

position_list = [
    "top-left", "top-left-center", "top-center", "top-right-center", "top-right",
    "upper-left", "upper-left-center", "upper-center", "upper-right-center", "upper-right",
    "middle-left", "middle-left-center", "middle-center", "middle-right-center", "middle-right",
    "lower-left", "lower-left-center", "lower-center", "lower-right-center", "lower-right",
    "bottom-left", "bottom-left-center", "bottom-center", "bottom-right-center", "bottom-right"
]


css = """
footer {
    visibility: hidden;
}
.text-position-grid {
    display: grid;
    grid-template-columns: repeat(5, 1fr);
    gap: 2px;
    margin-bottom: 10px;
    width: 150px;
}
.text-position-grid button {
    aspect-ratio: 1;
    padding: 0;
    border: 1px solid #ccc;
    background-color: #f0f0f0;
    cursor: pointer;
    font-size: 10px;
    transition: all 0.3s ease;
}
.text-position-grid button:hover {
    background-color: #e0e0e0;
}
.text-position-grid button.selected {
    background-color: #007bff;
    color: white;
    transform: scale(1.1);
}
"""

with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as Kolors:
    text_position = gr.State("middle-center")
    with gr.Row():
        with gr.Column(elem_id="col-left"):
            with gr.Row():
                prompt = gr.Textbox(
                    label="Prompt",
                    placeholder="Enter your prompt",
                    lines=2,
                    value="coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K, 리얼리티 사진"  # Default value added here
                )
            with gr.Row():
                text_for_image = gr.Textbox(
                    label="Text for Image Generation",
                    placeholder="Enter text to be converted into an image",
                    lines=3,
                    value="대한 萬世 GO"  # Default value added here
                )
            with gr.Row():
                with gr.Column():
                    gr.Markdown("Text Position")
                    with gr.Row(elem_classes="text-position-grid"):
                        position_buttons = [gr.Button("•") for _ in range(25)]
                    
                    for btn, pos in zip(position_buttons, position_list):
                        btn.click(lambda p=pos: p, outputs=text_position)
                        btn.click(update_button_states, inputs=[text_position], outputs=position_buttons)
                with gr.Column():
                    font_size = gr.Slider(
                        label="Text Size",
                        minimum=12,
                        maximum=144,
                        step=1,
                        value=72
                    )
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt = gr.Textbox(
                    label="Negative prompt",
                    placeholder="Enter a negative prompt",
                    visible=True,
                    value="nsfw, facial shadows, low resolution, jpeg artifacts, blurry, bad quality, dark face, neon lights"
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=8.0,
                    )
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=10,
                        maximum=50,
                        step=1,
                        value=50,
                    )
                with gr.Row():
                    controlnet_conditioning_scale = gr.Slider(
                        label="Controlnet Conditioning Scale",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.8,
                    )
                    control_guidance_end = gr.Slider(
                        label="Control Guidance End",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.9,
                    )
                with gr.Row():
                    strength = gr.Slider(
                        label="Strength",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=1.0,
                    )
            with gr.Row():
                canny_button = gr.Button("Start", elem_id="button")


        with gr.Column(elem_id="col-right"):
            result = gr.Image(label="Result", show_label=False)  # Gallery에서 Image로 변경
            seed_used = gr.Number(label="Seed Used")

    canny_button.click(
        fn = infer_canny,
        inputs = [prompt, text_for_image, text_position, font_size, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
        outputs = [result, seed_used]
    )
        


    # Set initial button states
    Kolors.load(update_button_states, inputs=[text_position], outputs=position_buttons)

Kolors.launch()