Spaces:
Paused
Paused
File size: 13,819 Bytes
d5f497d 6c91ee7 d5f497d f2a614f 6c91ee7 d5f497d 6c91ee7 0bf993c 6c91ee7 9edd5a6 6c91ee7 d5f497d 6c91ee7 d5f497d 0bf993c d5f497d 6c91ee7 d5f497d 6c91ee7 d5f497d 0bf993c d5f497d 6c91ee7 d5f497d 6c91ee7 d5f497d 0bf993c 8d27edd 6c91ee7 8d27edd 6c91ee7 d5f497d 8004741 d5f497d 8d27edd d3c818e 9edd5a6 d3c818e 9edd5a6 d3c818e 9edd5a6 d3c818e 9edd5a6 d3c818e 9edd5a6 d3c818e 9edd5a6 d3c818e 9edd5a6 d3c818e 9edd5a6 d3c818e 9edd5a6 d3c818e 9edd5a6 d3c818e 9edd5a6 f2a614f 89d2c7a f2a614f 34a3d1e f2a614f 34a3d1e f2a614f e542bf3 f2a614f d3c818e f2a614f d3c818e f2a614f 89d2c7a f2a614f d3c818e f2a614f 8d27edd e542bf3 f2a614f e542bf3 e004bee f2a614f 89d2c7a d3c818e 89d2c7a d3c818e 89d2c7a 6a40d86 d3c818e 6a40d86 d3c818e 89d2c7a f2a614f b4134a4 d3c818e d5f497d 3fdf367 1a30d7e d5f497d 540094e 3fdf367 540094e 89d2c7a d3c818e 6a40d86 d3c818e 25fc214 6a40d86 89d2c7a c43af94 89d2c7a d5f497d 0bf993c d5f497d 34a3d1e d5f497d 34a3d1e d5f497d 6c91ee7 d5f497d 6c91ee7 34a3d1e 6c91ee7 d5f497d 78ad020 c43af94 66f9e06 e542bf3 d5f497d e542bf3 9de30d4 66f9e06 78ad020 e9f3ef9 89d2c7a 3ad3d31 e542bf3 3ad3d31 6a40d86 e004bee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
import spaces
import random
import torch
import cv2
import gradio as gr
import numpy as np
from huggingface_hub import snapshot_download
from transformers import pipeline
from diffusers.utils import load_image
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.controlnet import ControlNetModel
from diffusers import AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image, ImageDraw, ImageFont
import os
device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")
# Add translation pipeline
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)
pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
vae=vae,
controlnet=controlnet_canny,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
force_zeros_for_empty_prompt=False
)
@spaces.GPU
def translate_korean_to_english(text):
if any(ord(char) >= 0xAC00 and ord(char) <= 0xD7A3 for char in text): # Check if Korean characters are present
translated = translator(text, max_length=512)[0]['translation_text']
return translated
return text
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
@spaces.GPU
def process_canny_condition(image, canny_threods=[100,200]):
np_image = np.array(image)
np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1])
np_image = np_image[:, :, None]
np_image = np.concatenate([np_image, np_image, np_image], axis=2)
np_image = HWC3(np_image)
return Image.fromarray(np_image)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def resize_image(image, resolution):
w, h = image.size
ratio = resolution / max(w, h)
new_w = int(w * ratio)
new_h = int(h * ratio)
return image.resize((new_w, new_h), Image.LANCZOS)
def text_to_image(text, size=72, position="middle-center"):
width, height = 1024, 576
image = Image.new("RGB", (width, height), "white")
draw = ImageDraw.Draw(image)
font_files = ["Arial_Unicode.ttf"]
font = None
for font_file in font_files:
font_path = os.path.join(os.path.dirname(__file__), font_file)
if os.path.exists(font_path):
try:
font = ImageFont.truetype(font_path, size=size)
print(f"Using font: {font_file}")
break
except IOError:
print(f"Error loading font: {font_file}")
if font is None:
print("No suitable font found. Using default font.")
font = ImageFont.load_default()
lines = text.split('\n')
max_line_width = 0
total_height = 0
line_heights = []
for line in lines:
left, top, right, bottom = draw.textbbox((0, 0), line, font=font)
line_width = right - left
line_height = bottom - top
line_heights.append(line_height)
max_line_width = max(max_line_width, line_width)
total_height += line_height
position_mapping = {
"top-left": (10, 10),
"top-left-center": (width // 4 - max_line_width // 2, 10),
"top-center": ((width - max_line_width) / 2, 10),
"top-right-center": (3 * width // 4 - max_line_width // 2, 10),
"top-right": (width - max_line_width - 10, 10),
"upper-left": (10, height // 4 - total_height // 2),
"upper-left-center": (width // 4 - max_line_width // 2, height // 4 - total_height // 2),
"upper-center": ((width - max_line_width) / 2, height // 4 - total_height // 2),
"upper-right-center": (3 * width // 4 - max_line_width // 2, height // 4 - total_height // 2),
"upper-right": (width - max_line_width - 10, height // 4 - total_height // 2),
"middle-left": (10, (height - total_height) / 2),
"middle-left-center": (width // 4 - max_line_width // 2, (height - total_height) / 2),
"middle-center": ((width - max_line_width) / 2, (height - total_height) / 2),
"middle-right-center": (3 * width // 4 - max_line_width // 2, (height - total_height) / 2),
"middle-right": (width - max_line_width - 10, (height - total_height) / 2),
"lower-left": (10, 3 * height // 4 - total_height // 2),
"lower-left-center": (width // 4 - max_line_width // 2, 3 * height // 4 - total_height // 2),
"lower-center": ((width - max_line_width) / 2, 3 * height // 4 - total_height // 2),
"lower-right-center": (3 * width // 4 - max_line_width // 2, 3 * height // 4 - total_height // 2),
"lower-right": (width - max_line_width - 10, 3 * height // 4 - total_height // 2),
"bottom-left": (10, height - total_height - 10),
"bottom-left-center": (width // 4 - max_line_width // 2, height - total_height - 10),
"bottom-center": ((width - max_line_width) / 2, height - total_height - 10),
"bottom-right-center": (3 * width // 4 - max_line_width // 2, height - total_height - 10),
"bottom-right": (width - max_line_width - 10, height - total_height - 10),
}
x, y = position_mapping.get(position, ((width - max_line_width) / 2, (height - total_height) / 2))
for i, line in enumerate(lines):
draw.text((x, y), line, fill="black", font=font)
y += line_heights[i]
return image
@spaces.GPU
def infer_canny(prompt, text_for_image, text_position, font_size,
negative_prompt = "nsfw, facial shadows, low resolution, jpeg artifacts, blurry, bad quality, dark face, neon lights",
seed = 397886929,
randomize_seed = False,
guidance_scale = 8.0,
num_inference_steps = 50,
controlnet_conditioning_scale = 0.8,
control_guidance_end = 0.9,
strength = 1.0
):
prompt = translate_korean_to_english(prompt)
negative_prompt = translate_korean_to_english(negative_prompt)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# Generate text image
init_image = text_to_image(text_for_image, size=font_size, position=text_position)
init_image = resize_image(init_image, MAX_IMAGE_SIZE)
pipe = pipe_canny.to("cuda")
condi_img = process_canny_condition(init_image)
image = pipe(
prompt=prompt,
image=init_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
control_guidance_end=control_guidance_end,
strength=strength,
control_image=condi_img,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator,
).images[0]
return image, seed # CANNY 이미지 반환 제거
def update_button_states(selected_position):
return [
gr.update(variant="primary") if pos == selected_position else gr.update(variant="secondary")
for pos in position_list
]
position_list = [
"top-left", "top-left-center", "top-center", "top-right-center", "top-right",
"upper-left", "upper-left-center", "upper-center", "upper-right-center", "upper-right",
"middle-left", "middle-left-center", "middle-center", "middle-right-center", "middle-right",
"lower-left", "lower-left-center", "lower-center", "lower-right-center", "lower-right",
"bottom-left", "bottom-left-center", "bottom-center", "bottom-right-center", "bottom-right"
]
css = """
footer {
visibility: hidden;
}
.text-position-grid {
display: grid;
grid-template-columns: repeat(5, 1fr);
gap: 2px;
margin-bottom: 10px;
width: 150px;
}
.text-position-grid button {
aspect-ratio: 1;
padding: 0;
border: 1px solid #ccc;
background-color: #f0f0f0;
cursor: pointer;
font-size: 10px;
transition: all 0.3s ease;
}
.text-position-grid button:hover {
background-color: #e0e0e0;
}
.text-position-grid button.selected {
background-color: #007bff;
color: white;
transform: scale(1.1);
}
"""
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as Kolors:
text_position = gr.State("middle-center")
with gr.Row():
with gr.Column(elem_id="col-left"):
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt",
lines=2,
value="coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K, 리얼리티 사진" # Default value added here
)
with gr.Row():
text_for_image = gr.Textbox(
label="Text for Image Generation",
placeholder="Enter text to be converted into an image",
lines=3,
value="대한 萬世 GO" # Default value added here
)
with gr.Row():
with gr.Column():
gr.Markdown("Text Position")
with gr.Row(elem_classes="text-position-grid"):
position_buttons = [gr.Button("•") for _ in range(25)]
for btn, pos in zip(position_buttons, position_list):
btn.click(lambda p=pos: p, outputs=text_position)
btn.click(update_button_states, inputs=[text_position], outputs=position_buttons)
with gr.Column():
font_size = gr.Slider(
label="Text Size",
minimum=12,
maximum=144,
step=1,
value=72
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
placeholder="Enter a negative prompt",
visible=True,
value="nsfw, facial shadows, low resolution, jpeg artifacts, blurry, bad quality, dark face, neon lights"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=8.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=50,
step=1,
value=50,
)
with gr.Row():
controlnet_conditioning_scale = gr.Slider(
label="Controlnet Conditioning Scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.8,
)
control_guidance_end = gr.Slider(
label="Control Guidance End",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.9,
)
with gr.Row():
strength = gr.Slider(
label="Strength",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
with gr.Row():
canny_button = gr.Button("Start", elem_id="button")
with gr.Column(elem_id="col-right"):
result = gr.Image(label="Result", show_label=False) # Gallery에서 Image로 변경
seed_used = gr.Number(label="Seed Used")
canny_button.click(
fn = infer_canny,
inputs = [prompt, text_for_image, text_position, font_size, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
outputs = [result, seed_used]
)
# Set initial button states
Kolors.load(update_button_states, inputs=[text_position], outputs=position_buttons)
Kolors.launch() |