File size: 8,901 Bytes
d5f497d
 
 
6c91ee7
 
 
d5f497d
f2a614f
6c91ee7
 
d5f497d
 
6c91ee7
0bf993c
6c91ee7
 
9edd5a6
 
6c91ee7
d5f497d
 
6c91ee7
d5f497d
0bf993c
 
 
d5f497d
 
 
 
6c91ee7
 
d5f497d
6c91ee7
d5f497d
0bf993c
d5f497d
 
6c91ee7
d5f497d
 
6c91ee7
d5f497d
0bf993c
 
 
 
 
 
 
6c91ee7
 
 
 
 
 
 
 
 
d5f497d
8004741
d5f497d
f2a614f
9edd5a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2a614f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4134a4
d5f497d
 
 
 
 
 
d890da3
d5f497d
 
 
 
 
 
0bf993c
d5f497d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c91ee7
d5f497d
 
 
 
 
 
6c91ee7
d5f497d
 
6c91ee7
 
d5f497d
 
6c91ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f497d
78ad020
20c2217
66f9e06
d5f497d
6c91ee7
9de30d4
66f9e06
78ad020
e9f3ef9
f2a614f
3ad3d31
 
 
f2a614f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import spaces
import random
import torch
import cv2
import gradio as gr
import numpy as np
from huggingface_hub import snapshot_download
from transformers import pipeline
from diffusers.utils import load_image
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.controlnet import ControlNetModel
from diffusers import AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image, ImageDraw, ImageFont
import os

device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")

# Add translation pipeline
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)

pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
    vae=vae,
    controlnet=controlnet_canny,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    force_zeros_for_empty_prompt=False
)

@spaces.GPU
def translate_korean_to_english(text):
    if any(ord(char) >= 0xAC00 and ord(char) <= 0xD7A3 for char in text):  # Check if Korean characters are present
        translated = translator(text, max_length=512)[0]['translation_text']
        return translated
    return text

@spaces.GPU
def process_canny_condition(image, canny_threods=[100,200]):
    np_image = image.copy()
    np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1])
    np_image = np_image[:, :, None]
    np_image = np.concatenate([np_image, np_image, np_image], axis=2)
    np_image = HWC3(np_image)
    return Image.fromarray(np_image)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def text_to_image(text, size=72, position="middle-center"):
    width, height = 1024, 576
    image = Image.new("RGB", (width, height), "white")
    draw = ImageDraw.Draw(image)
    
    font_files = ["Arial_Unicode.ttf"]
    font = None
    for font_file in font_files:
        font_path = os.path.join(os.path.dirname(__file__), font_file)
        if os.path.exists(font_path):
            try:
                font = ImageFont.truetype(font_path, size=size)
                print(f"Using font: {font_file}")
                break
            except IOError:
                print(f"Error loading font: {font_file}")
    if font is None:
        print("No suitable font found. Using default font.")
        font = ImageFont.load_default()

    lines = text.split('\n')
    max_line_width = 0
    total_height = 0
    line_heights = []
    for line in lines:
        left, top, right, bottom = draw.textbbox((0, 0), line, font=font)
        line_width = right - left
        line_height = bottom - top
        line_heights.append(line_height)
        max_line_width = max(max_line_width, line_width)
        total_height += line_height

    position_mapping = {
        "top-left": (10, 10),
        "top-center": ((width - max_line_width) / 2, 10),
        "top-right": (width - max_line_width - 10, 10),
        "middle-left": (10, (height - total_height) / 2),
        "middle-center": ((width - max_line_width) / 2, (height - total_height) / 2),
        "middle-right": (width - max_line_width - 10, (height - total_height) / 2),
        "bottom-left": (10, height - total_height - 10),
        "bottom-center": ((width - max_line_width) / 2, height - total_height - 10),
        "bottom-right": (width - max_line_width - 10, height - total_height - 10),
    }

    x, y = position_mapping.get(position, ((width - max_line_width) / 2, height - total_height - 10))
    for i, line in enumerate(lines):
        draw.text((x, y), line, fill="black", font=font)
        y += line_heights[i]

    return image

@spaces.GPU
def infer_canny(prompt, 
          negative_prompt = "nsfw, facial shadows, low resolution, jpeg artifacts, blurry, bad quality, dark face, neon lights", 
          seed = 397886929, 
          randomize_seed = False,
          guidance_scale = 6.0, 
          num_inference_steps = 50,
          controlnet_conditioning_scale = 0.7,
          control_guidance_end = 0.9,
          strength = 1.0
        ):
    prompt = translate_korean_to_english(prompt)
    negative_prompt = translate_korean_to_english(negative_prompt)
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    
    # Generate text image
    init_image = text_to_image(prompt)
    init_image = resize_image(init_image, MAX_IMAGE_SIZE)
    
    pipe = pipe_canny.to("cuda")
    condi_img = process_canny_condition(np.array(init_image))
    image = pipe(
        prompt=prompt,
        image=init_image,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        control_guidance_end=control_guidance_end, 
        strength=strength, 
        control_image=condi_img,
        negative_prompt=negative_prompt, 
        num_inference_steps=num_inference_steps, 
        guidance_scale=guidance_scale,
        num_images_per_prompt=1,
        generator=generator,
    ).images[0]
    return [condi_img, image], seed

css = """
footer {
    visibility: hidden;
}
"""

with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as Kolors:
    with gr.Row():
        with gr.Column(elem_id="col-left"):
            with gr.Row():
                prompt = gr.Textbox(
                    label="Prompt",
                    placeholder="Enter your prompt",
                    lines=2
                )
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt = gr.Textbox(
                    label="Negative prompt",
                    placeholder="Enter a negative prompt",
                    visible=True,
                    value="nsfw, facial shadows, low resolution, jpeg artifacts, blurry, bad quality, dark face, neon lights"
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=6.0,
                    )
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=10,
                        maximum=50,
                        step=1,
                        value=30,
                    )
                with gr.Row():
                    controlnet_conditioning_scale = gr.Slider(
                        label="Controlnet Conditioning Scale",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.7,
                    )
                    control_guidance_end = gr.Slider(
                        label="Control Guidance End",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.9,
                    )
                with gr.Row():
                    strength = gr.Slider(
                        label="Strength",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=1.0,
                    )
            with gr.Row():
                canny_button = gr.Button("Canny", elem_id="button")

        with gr.Column(elem_id="col-right"):
            result = gr.Gallery(label="Result", show_label=False, columns=2)
            seed_used = gr.Number(label="Seed Used")

    canny_button.click(
        fn = infer_canny,
        inputs = [prompt, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
        outputs = [result, seed_used]
    )

Kolors.queue().launch(debug=True)