Spaces:
Paused
Paused
File size: 8,901 Bytes
d5f497d 6c91ee7 d5f497d f2a614f 6c91ee7 d5f497d 6c91ee7 0bf993c 6c91ee7 9edd5a6 6c91ee7 d5f497d 6c91ee7 d5f497d 0bf993c d5f497d 6c91ee7 d5f497d 6c91ee7 d5f497d 0bf993c d5f497d 6c91ee7 d5f497d 6c91ee7 d5f497d 0bf993c 6c91ee7 d5f497d 8004741 d5f497d f2a614f 9edd5a6 f2a614f b4134a4 d5f497d d890da3 d5f497d 0bf993c d5f497d 6c91ee7 d5f497d 6c91ee7 d5f497d 6c91ee7 d5f497d 6c91ee7 d5f497d 78ad020 20c2217 66f9e06 d5f497d 6c91ee7 9de30d4 66f9e06 78ad020 e9f3ef9 f2a614f 3ad3d31 f2a614f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import spaces
import random
import torch
import cv2
import gradio as gr
import numpy as np
from huggingface_hub import snapshot_download
from transformers import pipeline
from diffusers.utils import load_image
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.controlnet import ControlNetModel
from diffusers import AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image, ImageDraw, ImageFont
import os
device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")
# Add translation pipeline
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)
pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
vae=vae,
controlnet=controlnet_canny,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
force_zeros_for_empty_prompt=False
)
@spaces.GPU
def translate_korean_to_english(text):
if any(ord(char) >= 0xAC00 and ord(char) <= 0xD7A3 for char in text): # Check if Korean characters are present
translated = translator(text, max_length=512)[0]['translation_text']
return translated
return text
@spaces.GPU
def process_canny_condition(image, canny_threods=[100,200]):
np_image = image.copy()
np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1])
np_image = np_image[:, :, None]
np_image = np.concatenate([np_image, np_image, np_image], axis=2)
np_image = HWC3(np_image)
return Image.fromarray(np_image)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def text_to_image(text, size=72, position="middle-center"):
width, height = 1024, 576
image = Image.new("RGB", (width, height), "white")
draw = ImageDraw.Draw(image)
font_files = ["Arial_Unicode.ttf"]
font = None
for font_file in font_files:
font_path = os.path.join(os.path.dirname(__file__), font_file)
if os.path.exists(font_path):
try:
font = ImageFont.truetype(font_path, size=size)
print(f"Using font: {font_file}")
break
except IOError:
print(f"Error loading font: {font_file}")
if font is None:
print("No suitable font found. Using default font.")
font = ImageFont.load_default()
lines = text.split('\n')
max_line_width = 0
total_height = 0
line_heights = []
for line in lines:
left, top, right, bottom = draw.textbbox((0, 0), line, font=font)
line_width = right - left
line_height = bottom - top
line_heights.append(line_height)
max_line_width = max(max_line_width, line_width)
total_height += line_height
position_mapping = {
"top-left": (10, 10),
"top-center": ((width - max_line_width) / 2, 10),
"top-right": (width - max_line_width - 10, 10),
"middle-left": (10, (height - total_height) / 2),
"middle-center": ((width - max_line_width) / 2, (height - total_height) / 2),
"middle-right": (width - max_line_width - 10, (height - total_height) / 2),
"bottom-left": (10, height - total_height - 10),
"bottom-center": ((width - max_line_width) / 2, height - total_height - 10),
"bottom-right": (width - max_line_width - 10, height - total_height - 10),
}
x, y = position_mapping.get(position, ((width - max_line_width) / 2, height - total_height - 10))
for i, line in enumerate(lines):
draw.text((x, y), line, fill="black", font=font)
y += line_heights[i]
return image
@spaces.GPU
def infer_canny(prompt,
negative_prompt = "nsfw, facial shadows, low resolution, jpeg artifacts, blurry, bad quality, dark face, neon lights",
seed = 397886929,
randomize_seed = False,
guidance_scale = 6.0,
num_inference_steps = 50,
controlnet_conditioning_scale = 0.7,
control_guidance_end = 0.9,
strength = 1.0
):
prompt = translate_korean_to_english(prompt)
negative_prompt = translate_korean_to_english(negative_prompt)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# Generate text image
init_image = text_to_image(prompt)
init_image = resize_image(init_image, MAX_IMAGE_SIZE)
pipe = pipe_canny.to("cuda")
condi_img = process_canny_condition(np.array(init_image))
image = pipe(
prompt=prompt,
image=init_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
control_guidance_end=control_guidance_end,
strength=strength,
control_image=condi_img,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator,
).images[0]
return [condi_img, image], seed
css = """
footer {
visibility: hidden;
}
"""
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as Kolors:
with gr.Row():
with gr.Column(elem_id="col-left"):
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt",
lines=2
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
placeholder="Enter a negative prompt",
visible=True,
value="nsfw, facial shadows, low resolution, jpeg artifacts, blurry, bad quality, dark face, neon lights"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=6.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=50,
step=1,
value=30,
)
with gr.Row():
controlnet_conditioning_scale = gr.Slider(
label="Controlnet Conditioning Scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.7,
)
control_guidance_end = gr.Slider(
label="Control Guidance End",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.9,
)
with gr.Row():
strength = gr.Slider(
label="Strength",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
with gr.Row():
canny_button = gr.Button("Canny", elem_id="button")
with gr.Column(elem_id="col-right"):
result = gr.Gallery(label="Result", show_label=False, columns=2)
seed_used = gr.Number(label="Seed Used")
canny_button.click(
fn = infer_canny,
inputs = [prompt, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
outputs = [result, seed_used]
)
Kolors.queue().launch(debug=True) |