File size: 7,223 Bytes
dd67556 a119d24 dd67556 a119d24 dd67556 a119d24 dd67556 a1915c8 63e5794 a1915c8 63e5794 a1915c8 c384edc dd67556 c384edc dd67556 c384edc dd67556 c384edc dd67556 c384edc dd67556 52b892c c384edc cffeaa2 52b892c cffeaa2 c384edc cffeaa2 c384edc cffeaa2 c384edc cffeaa2 c384edc cffeaa2 c384edc cffeaa2 c384edc cffeaa2 c384edc cffeaa2 c384edc d975af1 c384edc a6a92bb c384edc d975af1 a6a92bb d975af1 c384edc ef55172 c384edc 4421191 c384edc 8f831fa c384edc 8f831fa c384edc 637a6ee c384edc 725fefe 2686b72 d975af1 c384edc a1915c8 4421191 a1915c8 c384edc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import numpy as np
import torch
import torch.nn.functional as F
from torchvision.transforms.functional import normalize
from huggingface_hub import hf_hub_download
import gradio as gr
from gradio_imageslider import ImageSlider
from briarmbg import BriaRMBG
import PIL
from PIL import Image
from typing import Tuple
import os
import requests
from moviepy.editor import VideoFileClip
from moviepy.audio.AudioClip import AudioClip
def search_pexels_images(query):
API_KEY = os.getenv("API_KEY")
url = f"https://api.pexels.com/v1/search?query={query}&per_page=80"
headers = {"Authorization": API_KEY}
response = requests.get(url, headers=headers)
data = response.json()
# ๊ณ ํด์๋ ์ด๋ฏธ์ง URL๋ง ์ ํํ์ฌ ๋ฆฌ์คํธ ์์ฑ
images_urls = []
for photo in data.get('photos', []):
# 'large2x' ํด์๋์ ์ด๋ฏธ์ง๊ฐ ์ ๊ณต๋๋ ๊ฒฝ์ฐ, ํด๋น URL ์ฌ์ฉ
if 'src' in photo and 'large2x' in photo['src']:
images_urls.append(photo['src']['large2x'])
# 'large2x' ํด์๋์ ์ด๋ฏธ์ง๊ฐ ์๋ ๊ฒฝ์ฐ, 'large' ๋๋ 'original'์ ๋์ฒด๋ก ์ฌ์ฉ
elif 'large' in photo['src']:
images_urls.append(photo['src']['large'])
elif 'original' in photo['src']:
images_urls.append(photo['src']['original'])
return images_urls
def show_search_results(query):
images_urls = search_pexels_images(query)
return images_urls
net=BriaRMBG()
# model_path = "./model1.pth"
model_path = hf_hub_download("briaai/RMBG-1.4", 'model.pth')
if torch.cuda.is_available():
net.load_state_dict(torch.load(model_path))
net=net.cuda()
else:
net.load_state_dict(torch.load(model_path,map_location="cpu"))
net.eval()
def resize_image(image):
image = image.convert('RGB')
model_input_size = (1024, 1024)
image = image.resize(model_input_size, Image.BILINEAR)
return image
def process(image):
# ์ด๋ฏธ์ง๊ฐ numpy ๋ฐฐ์ด์ธ ๊ฒฝ์ฐ์๋ง PIL.Image ๊ฐ์ฒด๋ก ๋ณํ
if isinstance(image, np.ndarray):
orig_image = Image.fromarray(image)
else:
# ์ด๋ฏธ PIL.Image.Image ๊ฐ์ฒด์ธ ๊ฒฝ์ฐ, ๋ณํ ์์ด ์ฌ์ฉ
orig_image = image
w, h = orig_im_size = orig_image.size
image = resize_image(orig_image)
im_np = np.array(image)
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1)
im_tensor = torch.unsqueeze(im_tensor, 0)
im_tensor = torch.divide(im_tensor, 255.0)
im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
if torch.cuda.is_available():
im_tensor = im_tensor.cuda()
# inference
result = net(im_tensor)
# post process
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode='bilinear'), 0)
ma = torch.max(result)
mi = torch.min(result)
result = (result - mi) / (ma - mi)
# image to pil
im_array = (result * 255).cpu().data.numpy().astype(np.uint8)
pil_im = Image.fromarray(np.squeeze(im_array))
# paste the mask on the original image
new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0))
new_im.paste(orig_image, mask=pil_im)
return new_im
def calculate_position(org_size, add_size, position):
if position == "์๋จ ์ข์ธก":
return (0, 0)
elif position == "์๋จ ๊ฐ์ด๋ฐ":
return ((org_size[0] - add_size[0]) // 2, 0)
elif position == "์๋จ ์ฐ์ธก":
return (org_size[0] - add_size[0], 0)
elif position == "์ค์ ์ข์ธก":
return (0, (org_size[1] - add_size[1]) // 2)
elif position == "์ค์ ๊ฐ์ด๋ฐ":
return ((org_size[0] - add_size[0]) // 2, (org_size[1] - add_size[1]) // 2)
elif position == "์ค์ ์ฐ์ธก":
return (org_size[0] - add_size[0], (org_size[1] - add_size[1]) // 2)
elif position == "ํ๋จ ์ข์ธก":
return (0, org_size[1] - add_size[1])
elif position == "ํ๋จ ๊ฐ์ด๋ฐ":
return ((org_size[0] - add_size[0]) // 2, org_size[1] - add_size[1])
elif position == "ํ๋จ ์ฐ์ธก":
return (org_size[0] - add_size[0], org_size[1] - add_size[1])
def merge(org_image, add_image, scale, position, display_size):
# ์ฌ์ฉ์๊ฐ ์ ํํ ๋์คํ๋ ์ด ํฌ๊ธฐ์ ๋ฐ๋ผ ๊ฒฐ๊ณผ ์ด๋ฏธ์ง ํฌ๊ธฐ ์กฐ์
display_width, display_height = map(int, display_size.split('x'))
# ์ด๋ฏธ์ง ๋ณํฉ ๋ก์ง
scale_percentage = scale / 100.0
new_size = (int(add_image.width * scale_percentage), int(add_image.height * scale_percentage))
add_image = add_image.resize(new_size, Image.Resampling.LANCZOS)
position = calculate_position(org_image.size, add_image.size, position)
merged_image = Image.new("RGBA", org_image.size)
merged_image.paste(org_image, (0, 0))
merged_image.paste(add_image, position, add_image)
# ๊ฒฐ๊ณผ ์ด๋ฏธ์ง ๋์คํ๋ ์ด ํฌ๊ธฐ ์กฐ์
final_image = merged_image.resize((display_width, display_height), Image.Resampling.LANCZOS)
return final_image
with gr.Blocks() as demo:
with gr.Tab("Background Removal"):
with gr.Column():
gr.Markdown("๋๋ผ๋ฐ๊ธฐ์ ์ '๋ํน'(Nuking)")
gr.HTML('''
<p style="margin-bottom: 10px; font-size: 94%">
This is a demo for BRIA RMBG 1.4 that using
<a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone.
</p>
''')
input_image = gr.Image(type="pil")
output_image = gr.Image()
process_button = gr.Button("Remove Background")
process_button.click(fn=process, inputs=input_image, outputs=output_image)
with gr.Tab("Merge"):
with gr.Column():
org_image = gr.Image(label="Background", type='pil', image_mode='RGBA', height=400) # ์์๋ก ๋์ด ์กฐ์
add_image = gr.Image(label="Foreground", type='pil', image_mode='RGBA', height=400) # ์์๋ก ๋์ด ์กฐ์
scale = gr.Slider(minimum=10, maximum=200, step=1, value=100, label="Scale of Foreground Image (%)")
position = gr.Radio(choices=["์ค์ ๊ฐ์ด๋ฐ", "์๋จ ์ข์ธก", "์๋จ ๊ฐ์ด๋ฐ", "์๋จ ์ฐ์ธก", "์ค์ ์ข์ธก", "์ค์ ์ฐ์ธก", "ํ๋จ ์ข์ธก", "ํ๋จ ๊ฐ์ด๋ฐ", "ํ๋จ ์ฐ์ธก"], value="์ค์ ๊ฐ์ด๋ฐ", label="Position of Foreground Image")
display_size = gr.Textbox(value="1024x768", label="Display Size (Width x Height)")
btn_merge = gr.Button("Merge Images")
result_merge = gr.Image()
btn_merge.click(
fn=merge,
inputs=[org_image, add_image, scale, position, display_size],
outputs=result_merge,
)
with gr.TabItem("Image Search"):
with gr.Column():
gr.Markdown("### FREE Image Search")
search_query = gr.Textbox(label="์ฌ์ง ๊ฒ์")
search_btn = gr.Button("๊ฒ์")
images_output = gr.Gallery(label="๊ฒ์ ๊ฒฐ๊ณผ ์ด๋ฏธ์ง")
search_btn.click(
fn=show_search_results,
inputs=search_query,
outputs=images_output
)
demo.launch() |