File size: 10,248 Bytes
c969dc6
 
 
 
 
 
 
 
 
 
 
 
 
 
07175a7
c969dc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3e748e
 
c969dc6
 
 
 
 
 
 
 
 
d1e7bce
c969dc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1e7bce
c969dc6
d1e7bce
c969dc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1e7bce
c969dc6
07175a7
c969dc6
f3e748e
c969dc6
f3e748e
c969dc6
 
 
 
 
f3e748e
c969dc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3e748e
c969dc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3e748e
c969dc6
 
 
 
 
 
 
f3e748e
c969dc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3e748e
c969dc6
 
 
 
 
 
 
f3e748e
 
c969dc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
644b72e
c969dc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a875a7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
import time
from omegaconf import OmegaConf
import torch
from scripts.evaluation.funcs import load_model_checkpoint, save_videos, batch_ddim_sampling, get_latent_z
from utils.utils import instantiate_from_config
from huggingface_hub import hf_hub_download
from einops import repeat
import torchvision.transforms as transforms
from pytorch_lightning import seed_everything
from einops import rearrange
from cldm.model import load_state_dict
import cv2

import spaces 

def extract_frames(video_path):
    # 動画ファイルを読み込む
    cap = cv2.VideoCapture(video_path)
    
    frame_list = []
    frame_num = 0
    
    while True:
        # フレームを読み込む
        ret, frame = cap.read()
        if not ret:
            break
        
        # フレームをリストに追加
        frame_list.append(frame)
        frame_num += 1

    print("load video length:", len(frame_list))
    # 動画ファイルを閉じる
    cap.release()
    
    return frame_list

class Image2Video():
    def __init__(self,result_dir='./tmp/',gpu_num=1,resolution='256_256') -> None:
        self.resolution = (int(resolution.split('_')[0]), int(resolution.split('_')[1])) #hw
        self.download_model()
        print("after download model")
        self.result_dir = result_dir
        if not os.path.exists(self.result_dir):
            os.mkdir(self.result_dir)
        
        #ToonCrafterModel
        ckpt_path='checkpoints/tooncrafter_'+resolution.split('_')[1]+'_interp_v1/model.ckpt'
        config_file='configs/inference_'+resolution.split('_')[1]+'_v1.0.yaml'
        config = OmegaConf.load(config_file)
        model_config = config.pop("model", OmegaConf.create())
        model_config['params']['unet_config']['params']['use_checkpoint']=False  

        #ControlModel
        cn_ckpt_path = "control_models/sketch_encoder.ckpt"
        cn_config_file = 'configs/cldm_v21.yaml'
        cn_config = OmegaConf.load(cn_config_file)
        cn_model_config = cn_config.pop("control_stage_config", OmegaConf.create())

        print("before init") 
        model_list = []

        for gpu_id in range(gpu_num):
            model = instantiate_from_config(model_config)
            cn_model = instantiate_from_config(cn_model_config)

            # model = model.cuda(gpu_id)
            assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
            model = load_model_checkpoint(model, ckpt_path)
            model.eval()

            cn_model.load_state_dict(load_state_dict(cn_ckpt_path, location='cpu'))  
            cn_model.eval()

            model.control_model = cn_model
            
            model_list.append(model)
        self.model_list = model_list
        self.save_fps = 8
        print("init done.")

    @spaces.GPU(duration=100)
    def get_image(self, image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, image2=None, frame_guides=None,control_scale=0.6):
        print("enter fn")
        control_frames = extract_frames(frame_guides)
        print("extract frames")
        seed_everything(seed)
        transform = transforms.Compose([
            transforms.Resize(min(self.resolution)),
            transforms.CenterCrop(self.resolution),
            ])
        print("before empty cache")
        torch.cuda.empty_cache()
        print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
        start = time.time()
        gpu_id=0
        if steps > 60:
            steps = 60 
        model = self.model_list[gpu_id]
        model = model.cuda()
        batch_size=1
        channels = model.model.diffusion_model.out_channels
        frames = model.temporal_length
        h, w = self.resolution[0] // 8, self.resolution[1] // 8
        noise_shape = [batch_size, channels, frames, h, w]

        # text cond
        with torch.no_grad(), torch.cuda.amp.autocast():
            text_emb = model.get_learned_conditioning([prompt])
            print("before control")
            #control cond
            if frame_guides is not None:
                cn_videos = []
                for frame in control_frames:
                    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
                    frame = cv2.bitwise_not(frame)
                    cn_tensor = torch.from_numpy(frame).unsqueeze(2).permute(2, 0, 1).float().to(model.device)
                    
                    #cn_tensor = (cn_tensor / 255. - 0.5) * 2
                    cn_tensor = ( cn_tensor/255.0 )
                    cn_tensor_resized = transform(cn_tensor) #3,h,w

                    cn_video = cn_tensor_resized.unsqueeze(0).unsqueeze(2) # bc1hw
                    cn_videos.append(cn_video)
                
                cn_videos = torch.cat(cn_videos, dim=2)
                model_list = []
                for model in self.model_list:
                    model.control_scale = control_scale
                    model_list.append(model)
                self.model_list = model_list
                
            else:
                cn_videos = None

            print("image cond")

            # img cond
            img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
            img_tensor = (img_tensor / 255. - 0.5) * 2

            image_tensor_resized = transform(img_tensor) #3,h,w
            videos = image_tensor_resized.unsqueeze(0).unsqueeze(2) # bc1hw
            print("get latent z")
            # z = get_latent_z(model, videos) #bc,1,hw
            videos = repeat(videos, 'b c t h w -> b c (repeat t) h w', repeat=frames//2)

            img_tensor2 = torch.from_numpy(image2).permute(2, 0, 1).float().to(model.device)
            img_tensor2 = (img_tensor2 / 255. - 0.5) * 2
            image_tensor_resized2 = transform(img_tensor2) #3,h,w
            videos2 = image_tensor_resized2.unsqueeze(0).unsqueeze(2) # bchw
            videos2 = repeat(videos2, 'b c t h w -> b c (repeat t) h w', repeat=frames//2)
            
            
            videos = torch.cat([videos, videos2], dim=2)
            z, hs = self.get_latent_z_with_hidden_states(model, videos)

            img_tensor_repeat = torch.zeros_like(z)

            img_tensor_repeat[:,:,:1,:,:] = z[:,:,:1,:,:]
            img_tensor_repeat[:,:,-1:,:,:] = z[:,:,-1:,:,:]

            print("image embedder")
            cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc
            img_emb = model.image_proj_model(cond_images)

            imtext_cond = torch.cat([text_emb, img_emb], dim=1)

            fs = torch.tensor([fs], dtype=torch.long, device=model.device)
            cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat], "control_cond": cn_videos}

            print("before sample loop")
            ## inference
            batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale, hs=hs)

            ## remove the last frame
            if image2 is None:
                batch_samples = batch_samples[:,:,:,:-1,...]
            ## b,samples,c,t,h,w
            prompt_str = prompt.replace("/", "_slash_") if "/" in prompt else prompt
            prompt_str = prompt_str.replace(" ", "_") if " " in prompt else prompt_str
            prompt_str=prompt_str[:40]
            if len(prompt_str) == 0:
                prompt_str = 'empty_prompt'

        save_videos(batch_samples, self.result_dir, filenames=[prompt_str], fps=self.save_fps)
        print(f"Saved in {prompt_str}. Time used: {(time.time() - start):.2f} seconds")
        model = model.cpu()
        result_dir = os.path.join(self.result_dir, f"{prompt_str}.mp4")
        print("result saved to:", result_dir)
        return result_dir

        # import torchvision
        # batch_tensors = batch_samples
        # n_samples = batch_tensors.shape[1]
        # for idx, vid_tensor in enumerate(batch_tensors):
        #     video = vid_tensor.detach().cpu()
        #     video = torch.clamp(video.float(), -1., 1.)
        #     video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
        #     frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n_samples)) for framesheet in video] #[3, 1*h, n*w]
        #     grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
        #     grid = (grid + 1.0) / 2.0
        #     grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
        #     # savepath = os.path.join(savedir, f"{filenames[idx]}.mp4")
        #     # torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'})
        #     return grid

    def download_model(self):
        REPO_ID = 'Doubiiu/ToonCrafter'
        filename_list = ['model.ckpt']
        if not os.path.exists('./checkpoints/tooncrafter_'+str(self.resolution[1])+'_interp_v1/'):
            os.makedirs('./checkpoints/tooncrafter_'+str(self.resolution[1])+'_interp_v1/')
        for filename in filename_list:
            local_file = os.path.join('./checkpoints/tooncrafter_'+str(self.resolution[1])+'_interp_v1/', filename)
            if not os.path.exists(local_file):
                hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/tooncrafter_'+str(self.resolution[1])+'_interp_v1/', local_dir_use_symlinks=False)
    
    def get_latent_z_with_hidden_states(self, model, videos):
        b, c, t, h, w = videos.shape
        x = rearrange(videos, 'b c t h w -> (b t) c h w')
        encoder_posterior, hidden_states = model.first_stage_model.encode(x, return_hidden_states=True)

        hidden_states_first_last = []
        ### use only the first and last hidden states
        for hid in hidden_states:
            hid = rearrange(hid, '(b t) c h w -> b c t h w', t=t)
            hid_new = torch.cat([hid[:, :, 0:1], hid[:, :, -1:]], dim=2)
            hidden_states_first_last.append(hid_new)

        z = model.get_first_stage_encoding(encoder_posterior).detach()
        z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
        return z, hidden_states_first_last
if __name__ == '__main__':
    i2v = Image2Video()
    video_path = i2v.get_image('prompts/art.png','man fishing in a boat at sunset')
    print('done', video_path)