Spaces:
Runtime error
Runtime error
File size: 6,445 Bytes
42c0eb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import os
import time
import logging
mainlogger = logging.getLogger('mainlogger')
import torch
import torchvision
import pytorch_lightning as pl
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.utilities import rank_zero_only
from pytorch_lightning.utilities import rank_zero_info
from utils.save_video import log_local, prepare_to_log
class ImageLogger(Callback):
def __init__(self, batch_frequency, max_images=8, clamp=True, rescale=True, save_dir=None, \
to_local=False, log_images_kwargs=None):
super().__init__()
self.rescale = rescale
self.batch_freq = batch_frequency
self.max_images = max_images
self.to_local = to_local
self.clamp = clamp
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
if self.to_local:
## default save dir
self.save_dir = os.path.join(save_dir, "images")
os.makedirs(os.path.join(self.save_dir, "train"), exist_ok=True)
os.makedirs(os.path.join(self.save_dir, "val"), exist_ok=True)
def log_to_tensorboard(self, pl_module, batch_logs, filename, split, save_fps=8):
""" log images and videos to tensorboard """
global_step = pl_module.global_step
for key in batch_logs:
value = batch_logs[key]
tag = "gs%d-%s/%s-%s"%(global_step, split, filename, key)
if isinstance(value, list) and isinstance(value[0], str):
captions = ' |------| '.join(value)
pl_module.logger.experiment.add_text(tag, captions, global_step=global_step)
elif isinstance(value, torch.Tensor) and value.dim() == 5:
video = value
n = video.shape[0]
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n), padding=0) for framesheet in video] #[3, n*h, 1*w]
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
grid = (grid + 1.0) / 2.0
grid = grid.unsqueeze(dim=0)
pl_module.logger.experiment.add_video(tag, grid, fps=save_fps, global_step=global_step)
elif isinstance(value, torch.Tensor) and value.dim() == 4:
img = value
grid = torchvision.utils.make_grid(img, nrow=int(n), padding=0)
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
pl_module.logger.experiment.add_image(tag, grid, global_step=global_step)
else:
pass
@rank_zero_only
def log_batch_imgs(self, pl_module, batch, batch_idx, split="train"):
""" generate images, then save and log to tensorboard """
skip_freq = self.batch_freq if split == "train" else 5
if (batch_idx+1) % skip_freq == 0:
is_train = pl_module.training
if is_train:
pl_module.eval()
torch.cuda.empty_cache()
with torch.no_grad():
log_func = pl_module.log_images
batch_logs = log_func(batch, split=split, **self.log_images_kwargs)
## process: move to CPU and clamp
batch_logs = prepare_to_log(batch_logs, self.max_images, self.clamp)
torch.cuda.empty_cache()
filename = "ep{}_idx{}_rank{}".format(
pl_module.current_epoch,
batch_idx,
pl_module.global_rank)
if self.to_local:
mainlogger.info("Log [%s] batch <%s> to local ..."%(split, filename))
filename = "gs{}_".format(pl_module.global_step) + filename
log_local(batch_logs, os.path.join(self.save_dir, split), filename, save_fps=10)
else:
mainlogger.info("Log [%s] batch <%s> to tensorboard ..."%(split, filename))
self.log_to_tensorboard(pl_module, batch_logs, filename, split, save_fps=10)
mainlogger.info('Finish!')
if is_train:
pl_module.train()
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx=None):
if self.batch_freq != -1 and pl_module.logdir:
self.log_batch_imgs(pl_module, batch, batch_idx, split="train")
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx=None):
## different with validation_step() that saving the whole validation set and only keep the latest,
## it records the performance of every validation (without overwritten) by only keep a subset
if self.batch_freq != -1 and pl_module.logdir:
self.log_batch_imgs(pl_module, batch, batch_idx, split="val")
if hasattr(pl_module, 'calibrate_grad_norm'):
if (pl_module.calibrate_grad_norm and batch_idx % 25 == 0) and batch_idx > 0:
self.log_gradients(trainer, pl_module, batch_idx=batch_idx)
class CUDACallback(Callback):
# see https://github.com/SeanNaren/minGPT/blob/master/mingpt/callback.py
def on_train_epoch_start(self, trainer, pl_module):
# Reset the memory use counter
# lightning update
if int((pl.__version__).split('.')[1])>=7:
gpu_index = trainer.strategy.root_device.index
else:
gpu_index = trainer.root_gpu
torch.cuda.reset_peak_memory_stats(gpu_index)
torch.cuda.synchronize(gpu_index)
self.start_time = time.time()
def on_train_epoch_end(self, trainer, pl_module):
if int((pl.__version__).split('.')[1])>=7:
gpu_index = trainer.strategy.root_device.index
else:
gpu_index = trainer.root_gpu
torch.cuda.synchronize(gpu_index)
max_memory = torch.cuda.max_memory_allocated(gpu_index) / 2 ** 20
epoch_time = time.time() - self.start_time
try:
max_memory = trainer.training_type_plugin.reduce(max_memory)
epoch_time = trainer.training_type_plugin.reduce(epoch_time)
rank_zero_info(f"Average Epoch time: {epoch_time:.2f} seconds")
rank_zero_info(f"Average Peak memory {max_memory:.2f}MiB")
except AttributeError:
pass
|