File size: 5,727 Bytes
42c0eb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from functools import partial
import numpy as np

import torch
import pytorch_lightning as pl
from torch.utils.data import DataLoader, Dataset

import os, sys
os.chdir(sys.path[0])
sys.path.append("..")
from lvdm.data.base import Txt2ImgIterableBaseDataset
from utils.utils import instantiate_from_config


def worker_init_fn(_):
    worker_info = torch.utils.data.get_worker_info()

    dataset = worker_info.dataset
    worker_id = worker_info.id

    if isinstance(dataset, Txt2ImgIterableBaseDataset):
        split_size = dataset.num_records // worker_info.num_workers
        # reset num_records to the true number to retain reliable length information
        dataset.sample_ids = dataset.valid_ids[worker_id * split_size:(worker_id + 1) * split_size]
        current_id = np.random.choice(len(np.random.get_state()[1]), 1)
        return np.random.seed(np.random.get_state()[1][current_id] + worker_id)
    else:
        return np.random.seed(np.random.get_state()[1][0] + worker_id)


class WrappedDataset(Dataset):
    """Wraps an arbitrary object with __len__ and __getitem__ into a pytorch dataset"""

    def __init__(self, dataset):
        self.data = dataset

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]


class DataModuleFromConfig(pl.LightningDataModule):
    def __init__(self, batch_size, train=None, validation=None, test=None, predict=None,

                 wrap=False, num_workers=None, shuffle_test_loader=False, use_worker_init_fn=False,

                 shuffle_val_dataloader=False, train_img=None,

                 test_max_n_samples=None):
        super().__init__()
        self.batch_size = batch_size
        self.dataset_configs = dict()
        self.num_workers = num_workers if num_workers is not None else batch_size * 2
        self.use_worker_init_fn = use_worker_init_fn
        if train is not None:
            self.dataset_configs["train"] = train
            self.train_dataloader = self._train_dataloader
        if validation is not None:
            self.dataset_configs["validation"] = validation
            self.val_dataloader = partial(self._val_dataloader, shuffle=shuffle_val_dataloader)
        if test is not None:
            self.dataset_configs["test"] = test
            self.test_dataloader = partial(self._test_dataloader, shuffle=shuffle_test_loader)
        if predict is not None:
            self.dataset_configs["predict"] = predict
            self.predict_dataloader = self._predict_dataloader

        self.img_loader = None
        self.wrap = wrap
        self.test_max_n_samples = test_max_n_samples
        self.collate_fn = None

    def prepare_data(self):
        pass

    def setup(self, stage=None):
        self.datasets = dict((k, instantiate_from_config(self.dataset_configs[k])) for k in self.dataset_configs)
        if self.wrap:
            for k in self.datasets:
                self.datasets[k] = WrappedDataset(self.datasets[k])

    def _train_dataloader(self):
        is_iterable_dataset = isinstance(self.datasets['train'], Txt2ImgIterableBaseDataset)
        if is_iterable_dataset or self.use_worker_init_fn:
            init_fn = worker_init_fn
        else:
            init_fn = None
        loader = DataLoader(self.datasets["train"], batch_size=self.batch_size,
                          num_workers=self.num_workers, shuffle=False if is_iterable_dataset else True,
                          worker_init_fn=init_fn, collate_fn=self.collate_fn,
                          )
        return loader

    def _val_dataloader(self, shuffle=False):
        if isinstance(self.datasets['validation'], Txt2ImgIterableBaseDataset) or self.use_worker_init_fn:
            init_fn = worker_init_fn
        else:
            init_fn = None
        return DataLoader(self.datasets["validation"],
                          batch_size=self.batch_size,
                          num_workers=self.num_workers,
                          worker_init_fn=init_fn,
                          shuffle=shuffle, 
                          collate_fn=self.collate_fn,
                          )

    def _test_dataloader(self, shuffle=False):
        try:
            is_iterable_dataset = isinstance(self.datasets['train'], Txt2ImgIterableBaseDataset)
        except:
            is_iterable_dataset = isinstance(self.datasets['test'], Txt2ImgIterableBaseDataset)

        if is_iterable_dataset or self.use_worker_init_fn:
            init_fn = worker_init_fn
        else:
            init_fn = None

        # do not shuffle dataloader for iterable dataset
        shuffle = shuffle and (not is_iterable_dataset)
        if self.test_max_n_samples is not None:
            dataset = torch.utils.data.Subset(self.datasets["test"], list(range(self.test_max_n_samples)))
        else:
            dataset = self.datasets["test"]
        return DataLoader(dataset, batch_size=self.batch_size,
                          num_workers=self.num_workers, worker_init_fn=init_fn, shuffle=shuffle,
                          collate_fn=self.collate_fn,
                          )

    def _predict_dataloader(self, shuffle=False):
        if isinstance(self.datasets['predict'], Txt2ImgIterableBaseDataset) or self.use_worker_init_fn:
            init_fn = worker_init_fn
        else:
            init_fn = None
        return DataLoader(self.datasets["predict"], batch_size=self.batch_size,
                          num_workers=self.num_workers, worker_init_fn=init_fn,
                          collate_fn=self.collate_fn,
                          )