Spaces:
Runtime error
Runtime error
File size: 2,819 Bytes
42c0eb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
import math
from inspect import isfunction
import torch
from torch import nn
import torch.distributed as dist
def gather_data(data, return_np=True):
''' gather data from multiple processes to one list '''
data_list = [torch.zeros_like(data) for _ in range(dist.get_world_size())]
dist.all_gather(data_list, data) # gather not supported with NCCL
if return_np:
data_list = [data.cpu().numpy() for data in data_list]
return data_list
def autocast(f):
def do_autocast(*args, **kwargs):
with torch.cuda.amp.autocast(enabled=True,
dtype=torch.get_autocast_gpu_dtype(),
cache_enabled=torch.is_autocast_cache_enabled()):
return f(*args, **kwargs)
return do_autocast
def extract_into_tensor(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def noise_like(shape, device, repeat=False):
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
noise = lambda: torch.randn(shape, device=device)
return repeat_noise() if repeat else noise()
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def exists(val):
return val is not None
def identity(*args, **kwargs):
return nn.Identity()
def uniq(arr):
return{el: True for el in arr}.keys()
def mean_flat(tensor):
"""
Take the mean over all non-batch dimensions.
"""
return tensor.mean(dim=list(range(1, len(tensor.shape))))
def ismap(x):
if not isinstance(x, torch.Tensor):
return False
return (len(x.shape) == 4) and (x.shape[1] > 3)
def isimage(x):
if not isinstance(x,torch.Tensor):
return False
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
def max_neg_value(t):
return -torch.finfo(t.dtype).max
def shape_to_str(x):
shape_str = "x".join([str(x) for x in x.shape])
return shape_str
def init_(tensor):
dim = tensor.shape[-1]
std = 1 / math.sqrt(dim)
tensor.uniform_(-std, std)
return tensor
ckpt = torch.utils.checkpoint.checkpoint
def checkpoint(func, inputs, params, flag):
"""
Evaluate a function without caching intermediate activations, allowing for
reduced memory at the expense of extra compute in the backward pass.
:param func: the function to evaluate.
:param inputs: the argument sequence to pass to `func`.
:param params: a sequence of parameters `func` depends on but does not
explicitly take as arguments.
:param flag: if False, disable gradient checkpointing.
"""
if flag:
return ckpt(func, *inputs, use_reentrant=False)
else:
return func(*inputs) |