sahi-yolox / utils.py
fcakyon
add usage
486e870
raw
history blame
5.64 kB
import streamlit.components.v1 as components
import numpy
import sahi.predict
import sahi.utils
from PIL import Image
import base64
import io
import os
import uuid
TEMP_DIR = "temp"
def sahi_mmdet_inference(
image,
detection_model,
slice_height=512,
slice_width=512,
overlap_height_ratio=0.2,
overlap_width_ratio=0.2,
image_size=640,
postprocess_type="UNIONMERGE",
postprocess_match_metric="IOS",
postprocess_match_threshold=0.5,
postprocess_class_agnostic=False,
):
# standard inference
prediction_result_1 = sahi.predict.get_prediction(
image=image, detection_model=detection_model, image_size=image_size
)
visual_result_1 = sahi.utils.cv.visualize_object_predictions(
image=numpy.array(image),
object_prediction_list=prediction_result_1.object_prediction_list,
)
output_1 = Image.fromarray(visual_result_1["image"])
# sliced inference
prediction_result_2 = sahi.predict.get_sliced_prediction(
image=image,
detection_model=detection_model,
image_size=image_size,
slice_height=slice_height,
slice_width=slice_width,
overlap_height_ratio=overlap_height_ratio,
overlap_width_ratio=overlap_width_ratio,
postprocess_type=postprocess_type,
postprocess_match_metric=postprocess_match_metric,
postprocess_match_threshold=postprocess_match_threshold,
postprocess_class_agnostic=postprocess_class_agnostic,
)
visual_result_2 = sahi.utils.cv.visualize_object_predictions(
image=numpy.array(image),
object_prediction_list=prediction_result_2.object_prediction_list,
)
output_2 = Image.fromarray(visual_result_2["image"])
return output_1, output_2
def pillow_to_base64(image: Image.Image):
in_mem_file = io.BytesIO()
image.save(in_mem_file, format="JPEG", subsampling=0, quality=100)
img_bytes = in_mem_file.getvalue() # bytes
image_str = base64.b64encode(img_bytes).decode("utf-8")
base64_src = f"data:image/jpg;base64,{image_str}"
return base64_src
def local_file_to_base64(image_path: str):
file_ = open(image_path, "rb")
img_bytes = file_.read()
image_str = base64.b64encode(img_bytes).decode("utf-8")
file_.close()
base64_src = f"data:image/jpg;base64,{image_str}"
return base64_src
def pillow_local_file_to_base64(image: Image.Image):
# pillow to local file
img_path = TEMP_DIR + "/" + str(uuid.uuid4()) + ".jpg"
image.save(img_path, subsampling=0, quality=100)
# local file base64 str
base64_src = local_file_to_base64(img_path)
return base64_src
def image_comparison(
img1: str,
img2: str,
label1: str = "1",
label2: str = "2",
width: int = 700,
show_labels: bool = True,
starting_position: int = 50,
make_responsive: bool = True,
in_memory=False,
):
"""Create a new juxtapose component.
Parameters
----------
img1: str, PosixPath, PIL.Image or URL
Input image to compare
img2: str, PosixPath, PIL.Image or URL
Input image to compare
label1: str or None
Label for image 1
label2: str or None
Label for image 2
width: int or None
Width of the component in px
show_labels: bool or None
Show given labels on images
starting_position: int or None
Starting position of the slider as percent (0-100)
make_responsive: bool or None
Enable responsive mode
in_memory: bool or None
Handle pillow to base64 conversion in memory without saving to local
Returns
-------
static_component: Boolean
Returns a static component with a timeline
"""
# prepare images
img_width, img_height = img1.size
h_to_w = img_height / img_width
height = (width * h_to_w) * 0.95
img1_pillow = sahi.utils.cv.read_image_as_pil(img1)
img2_pillow = sahi.utils.cv.read_image_as_pil(img2)
if in_memory:
# create base64 str from pillow images
img1 = pillow_to_base64(img1_pillow)
img2 = pillow_to_base64(img2_pillow)
else:
# clean temp dir
os.makedirs(TEMP_DIR, exist_ok=True)
for file_ in os.listdir(TEMP_DIR):
if file_.endswith(".jpg"):
os.remove(TEMP_DIR + "/" + file_)
# create base64 str from pillow images
img1 = pillow_local_file_to_base64(img1_pillow)
img2 = pillow_local_file_to_base64(img2_pillow)
# load css + js
cdn_path = "https://cdn.knightlab.com/libs/juxtapose/latest"
css_block = f'<link rel="stylesheet" href="{cdn_path}/css/juxtapose.css">'
js_block = f'<script src="{cdn_path}/js/juxtapose.min.js"></script>'
# write html block
htmlcode = f"""
{css_block}
{js_block}
<div id="foo"style="height: {height}; width: {width or '%100'};"></div>
<script>
slider = new juxtapose.JXSlider('#foo',
[
{{
src: '{img1}',
label: '{label1}',
}},
{{
src: '{img2}',
label: '{label2}',
}}
],
{{
animate: true,
showLabels: {'true' if show_labels else 'false'},
showCredits: true,
startingPosition: "{starting_position}%",
makeResponsive: {'true' if make_responsive else 'false'},
}});
</script>
"""
static_component = components.html(htmlcode, height=height, width=width)
return static_component