File size: 3,809 Bytes
bf90cd3
 
 
f387a3a
bf90cd3
 
 
9b5b26a
bf90cd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
bf90cd3
 
d123b17
 
 
a32ad6f
d123b17
 
 
 
bf90cd3
 
 
a32ad6f
 
bf90cd3
a32ad6f
bf90cd3
 
2bd42a9
bf90cd3
a32ad6f
bf90cd3
 
 
 
 
a32ad6f
bf90cd3
 
 
 
 
 
ae7a494
a32ad6f
 
 
 
 
 
 
 
 
 
 
 
bf90cd3
 
 
 
a32ad6f
 
bf90cd3
 
 
 
 
 
 
 
8fe992b
bf90cd3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from smolagents import CodeAgent, HfApiModel, tool
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
import requests
import yaml
import os
from typing import Dict, List, Optional

@tool
def fetch_news(topic: str, num_results: int = 5) -> List[Dict]:
    """Fetches recent news articles about any topic using Serper.dev.
    
    Args:
        topic: The topic to search for news about
        num_results: Number of news articles to retrieve (default: 5)
    
    Returns:
        List of dictionaries containing article information
    """
    try:
        api_key = os.environ.get("SERPER_API_KEY")
        if not api_key:
            return "Error: SERPER_API_KEY not found in environment variables"
        
        url = f"https://google.serper.dev/news"
        headers = {
            "X-API-KEY": api_key
        }
        params = {
            "q": topic,
            "gl": "us",
            "hl": "en"
        }
        
        response = requests.get(url, headers=headers, params=params)
        response.raise_for_status()
        
        results = response.json()
        
        if "news" not in results:
            return []
            
        articles = []
        for article in results["news"][:num_results]:
            articles.append({
                'title': article.get('title', 'No title'),
                'source': article.get('source', 'Unknown source'),
                'date': article.get('date', 'No date'),
                'link': article.get('link', 'No link'),
                'snippet': article.get('snippet', 'No preview available')
            })
        
        return articles
        
    except Exception as e:
        return f"Error: {str(e)}"

@tool
def summarize_news(articles: List[Dict]) -> str:
    """Creates a summary of the news articles followed by a list of sources.
    
    Args:
        articles: List of article dictionaries containing title, source, date, link, and snippet
    
    Returns:
        A string containing a summary followed by article references
    """
    if not articles or not isinstance(articles, list):
        return "No articles to summarize"
    
    # Collect all snippets for the overall summary
    all_snippets = [article['snippet'] for article in articles if article.get('snippet')]
    
    # Create a high-level summary from snippets
    summary = "📰 Summary:\n"
    summary += "Latest news covers " + ", ".join(set(article['source'] for article in articles)) + ". "
    summary += "Key points: " + ". ".join(all_snippets[:2]) + "\n\n"
    
    # List individual articles
    summary += "🔍 Articles:\n"
    for idx, article in enumerate(articles, 1):
        title = article['title']
        link = article['link']
        date = article['date']
        snippet = article['snippet'][:100] + "..." if len(article['snippet']) > 100 else article['snippet']
        
        summary += f"{idx}. **{title}**\n"
        summary += f"   {snippet}\n"
        summary += f"   [Read more]({link}) ({date})\n\n"
    
    return summary

# Load prompt templates
with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)

# Initialize the model
model = HfApiModel(
    max_tokens=2096,
    temperature=0.5,
    model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
    custom_role_conversions=None,
)

final_answer = FinalAnswerTool()

# Create the agent with all tools
agent = CodeAgent(
    model=model,
    tools=[fetch_news, summarize_news, final_answer],
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name="News Agent",
    description="An agent that fetches and summarizes news about any topic",
    prompt_templates=prompt_templates
)

# Launch the Gradio interface
if __name__ == "__main__":
    GradioUI(agent).launch()