Spaces:
Running
Running
File size: 9,069 Bytes
1f74d92 60ffe25 1f74d92 aa9f8f2 60ffe25 1f74d92 aa9f8f2 1f74d92 aa9f8f2 1f74d92 60ffe25 aa9f8f2 1f74d92 60ffe25 1f74d92 60ffe25 1f74d92 aa9f8f2 1f74d92 60ffe25 aa9f8f2 1f74d92 aa9f8f2 60ffe25 1f74d92 60ffe25 1f74d92 60ffe25 1f74d92 60ffe25 aa9f8f2 1f74d92 aa9f8f2 1f74d92 aa9f8f2 1f74d92 aa9f8f2 1f74d92 aa9f8f2 6cbe35a aa9f8f2 60ffe25 aa9f8f2 60ffe25 aa9f8f2 60ffe25 aa9f8f2 60ffe25 aa9f8f2 1f74d92 aa9f8f2 6cbe35a aa9f8f2 6cbe35a aa9f8f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import time
from PIL import Image
from fastapi import FastAPI, HTTPException, Query
from fastapi.middleware.trustedhost import TrustedHostMiddleware
from starlette.middleware.base import BaseHTTPMiddleware
from pydantic import BaseModel, Field
from transformers import MBartForConditionalGeneration, MBartTokenizerFast
import torch
import requests, json, base64
from io import BytesIO
from typing import List, Optional, Tuple
import os
import warnings
import logging
# Suppress specific FutureWarning from huggingface_hub
warnings.filterwarnings(
"ignore",
category=FutureWarning,
module="huggingface_hub.file_download"
)
# Initialize FastAPI app with versioning
app = FastAPI(
title="Text-to-Pictogram API",
version="1.0.0",
description="An API for converting text to pictograms, supporting English, French, and Tamil.",
)
# Set up custom logging format
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(message)s",
level=logging.INFO
)
logger = logging.getLogger(__name__)
# Custom Middleware for request time logging
class RequestTimingMiddleware(BaseHTTPMiddleware):
async def dispatch(self, request, call_next):
start_time = time.time()
logger.info(f"Request received: {request.method} {request.url}")
# Process the request
response = await call_next(request)
end_time = time.time()
processing_time = end_time - start_time
# Log the timing
logger.info(f"Request processed: {request.method} {request.url}")
logger.info(f"Processing time: {processing_time:.4f}s")
# Return the response
return response
# Add the middleware to the app
app.add_middleware(RequestTimingMiddleware)
COLORS = {
"white": (255, 255, 255),
"black": (0, 0, 0),
"red": (255, 0, 0),
"green": (0, 255, 0),
"blue": (0, 0, 255),
"yellow": (255, 255, 0),
"cyan": (0, 255, 255),
"magenta": (255, 0, 255),
"gray": (128, 128, 128),
"orange": (255, 165, 0),
"purple": (128, 0, 128),
"brown": (165, 42, 42),
"pink": (255, 192, 203),
"lime": (0, 255, 0),
"teal": (0, 128, 128),
"navy": (0, 0, 128)
# Add more colors as needed
}
# Define schemas for requests and responses
class TranslationRequest(BaseModel):
src: str = Field(..., description="Source text to be translated.")
language: str = Field(..., description="Language of the source text. Accepted values: 'en', 'fr', 'ta'.")
class TranslationResponse(BaseModel):
language: str = Field(..., description="Language of the source text.")
src: str = Field(..., description="Source text in the original language.")
tgt: Optional[str] = Field(None, description="Translated text in the original language.")
pictogram_ids: Optional[List[Optional[int]]] = Field(None, description="List of pictogram IDs corresponding to the translation.")
image_base64: Optional[str] = Field(None, description="Base64-encoded image of the pictograms, if generated.")
# Load the model and tokenizer
model_path = "feedlight42/mbart25-text2picto"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = MBartForConditionalGeneration.from_pretrained(model_path)
tokenizer = MBartTokenizerFast.from_pretrained(model_path)
model = model.to(device)
# Folder to store local pictogram images
pictogram_folder = 'pictogram_images'
# Load the pictogram dictionary from the JSON file
with open('pictogram_vocab.json', 'r') as f:
pictogram_dict = json.load(f)
# Function to fetch a pictogram image from the ARASAAC API, or use local file if present
def fetch_pictogram(picto_id: int):
# Check if the pictogram image exists locally
image_path = os.path.join(pictogram_folder, f"{picto_id}.png")
if os.path.exists(image_path):
return Image.open(image_path)
# If the image is not local, request from ARASAAC API
url = f"https://api.arasaac.org/v1/pictograms/{picto_id}"
response = requests.get(url)
if response.status_code == 200:
# Save the image locally
img = Image.open(BytesIO(response.content))
img.save(image_path) # Save the image to the local folder
return img
return None
# Generate an image from a sequence of pictogram IDs with a customizable background color
def create_pictogram_image(pictogram_ids, background_color=(255, 0, 0)): # Default to red background
pictogram_images = []
for picto_id in pictogram_ids:
picto_image = fetch_pictogram(picto_id)
if picto_image:
pictogram_images.append(picto_image)
# Concatenate all pictogram images
widths, heights = zip(*(i.size for i in pictogram_images))
total_width = sum(widths)
max_height = max(heights)
# Create a new image with the specified background color (RGBA with alpha channel)
final_image = Image.new('RGBA', (total_width, max_height), background_color + (255,)) # RGBA with alpha channel
x_offset = 0
for img in pictogram_images:
img = img.convert("RGBA") # Ensure the image has an alpha channel
img_with_bg = Image.new("RGBA", img.size, background_color + (255,)) # Create a solid background
img_with_bg.paste(img, (0, 0), img) # Paste the image on top of the background
final_image.paste(img_with_bg, (x_offset, 0), img_with_bg)
x_offset += img.size[0]
return final_image
# Endpoint for health check
@app.get("/")
@app.get("/health", summary="Health Check", response_description="Health status")
async def health_check():
return {"status": "healthy", "message": "API is up and running"}
# Main translation endpoint
@app.post("/v1/translate", summary="Translate Text to Pictograms", description="Translates text from a source language to a target language and converts the translation into pictograms. Optionally customize the background color of the generated pictogram images.")
async def translate(
request: TranslationRequest,
backgroundColor: Optional[str] = Query("white"),
backgroundColorRGB: Optional[Tuple[int, int, int]] = Query(None)
):
"""
Translate the provided source text into pictograms and return a corresponding image.
- **src**: The source text to be translated.
- **language**: The source language. Accepted values are 'en', 'fr', 'ta'.
- **backgroundColor**: (Optional) Background color for the pictogram image, specified by name (e.g., 'red'). Default is 'white'.
- **backgroundColorRGB**: (Optional) Background color for the image in RGB format (e.g., (255, 0, 0) for red). This overrides backgroundColor.
"""
# Ensure that both backgroundColor and backgroundColorRGB are not provided simultaneously
if backgroundColor and backgroundColorRGB:
raise HTTPException(status_code=400, detail="You cannot provide both backgroundColor and backgroundColorRGB at the same time.")
# Ensure that the given language is a valid one
if request.language not in ["en", "fr", "ta"]:
raise HTTPException(status_code=400, detail="Invalid language. Accepted values: 'en', 'fr', 'ta'.")
# Default to white RGB (255, 255, 255) if neither backgroundColor nor backgroundColorRGB is provided
if backgroundColorRGB: background_color = backgroundColorRGB
elif backgroundColor: background_color = COLORS.get(backgroundColor.lower(), (255, 255, 255))
else: background_color = (255, 255, 255)
# Temporary fix
# Placeholder for unsupported languages
if request.language in ["en", "ta"]:
return TranslationResponse(
language=request.language,
src=request.src,
tgt=None,
pictogram_ids=[],
image_base64=None,
)
# Translate using French model
inputs = tokenizer(request.src, return_tensors="pt", padding=True, truncation=True).to(device)
translated_tokens = model.generate(**inputs)
tgt_sentence = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
# Map translated sentence to pictograms
words = tgt_sentence.split()
pictogram_ids = [pictogram_dict.get(word.lower(), None) for word in words]
pictogram_ids = [picto_id for picto_id in pictogram_ids if picto_id]
if pictogram_ids:
# Generate pictogram image
final_image = create_pictogram_image(pictogram_ids, background_color)
if final_image:
img_byte_arr = BytesIO()
final_image.save(img_byte_arr, format="PNG")
encoded_image = base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
return TranslationResponse(
language=request.language,
src=request.src,
tgt=tgt_sentence,
pictogram_ids=pictogram_ids,
image_base64=encoded_image,
)
return TranslationResponse(
language=request.language,
src=request.src,
tgt=tgt_sentence,
pictogram_ids=pictogram_ids,
image_base64=None,
) |